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ABSTRACT. The aim of the present paper is to establish some variants integral inequalities in
two independent variables. These integral inequalities given here can be applied as tools in the
boundedness and uniquness of certain partial differential equations.
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1. INTRODUCTION

The integral inequalities involving functions of one and more than one independent variables
which provide explicit bounds on unknown functions play a fundamental role in the develop-
ment of the theory of differential equations (see [1]-[11]). In recent year, Pachpatte [11] dis-
covered some new integral inequalities involving functions of two independent variables. These
inequalities are applied to study the boundedness and uniqueness of the solutions of following
terminal value problem for the hyperbolic partial differential equation (1.1) with the condition

2.2).
(1.1) Ugy (2, y) = h(z,y,u(z,y)) +r(z,y),
(1.2) u(z,00) = 000 (), u(00,y) = Too(y), u(oo, 00) = d.
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2 S.S. IRAGOMIR AND YOUNG-HO KM

Our main objective here, motivated by Pachpatte’s inequalities [11], is to establish additional
new integral inequalities involving functions of two independent variables which can be used in
the analysis of certain classes of partial differential equations.

2. MAIN RESULTS

Throughout the paper, all the functions which appear in the inequalities are assumed to be
real-valued and all the integrals are involved in existence on the domains of their definitions.
We shall introduce some notatioR, denotes the set of real numbers a@d = [0, o) is the
given subset oR. The first order partial derivatives of a functiong:, y) defined forz,y € R
with respect tar andy are denoted by, (z,y) andz,(z, y) respectively.

We need the inequalities in the following Lemnal2.1 and Lernmia 2.2, which are given in the
book [1].

Lemma 2.1. Let g be a monotone continuous function in an interyatontaining a pointuy,
which vanishes i. Let« and k be continuous functions in an intervdl = [«, 3] such that
u(J) C I, and suppose thdt is of fixed sign in/. Leta € I.

(i) Assume thag is nondecreasing anklis nonnegative. If
u(t) <a+ /tk(s)g (u(s))ds, teJ,
then )
u(t) < G7! <G(a) + /tk(s)ds) , a<t<p,
whereG(u) = [ dz/g(x),u € I, anczjﬂl = min(vy, v7), With
vy :sup{v € J:a—l—/tk(s)g(u(s))ds €l,a gtgv},
Ug = Sup {U eJ: G(a)+/t/€(s)d$ eG),a<t< v} :
(i) Assume thatl = («, 5]. If
u(t) <a+ /tﬁ k(s)g (u(s))ds, teJ,
then

u(t) < G! (G(a) + /tﬁ k:(s)ds) , oap <t<p,

wherea; = max(puy, p2), With
B
m :sup{ul € J:a—i—/ k(s)g(u(s))dse I, p<t< ﬁ},
¢

ugzsup{uéJ:G(a)+/tﬁk(s)dsGG(I),,ugtSB}.

The proofs of the inequalities in (i), (ii) can be completed asin [1, p. 40-42]. Here we omit
the details.
Letu(zx,y),a(z,y),b(x,y) be nonnegative continuous functions definedifay € R, .
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Lemma 2.2. (i) Assume that(x,y) is nondecreasing in: and nonincreasing iny for

r,y € Ry If
uloy) < awy)+ [ [ b Duls. ) deds
0 Jy

forall z,y € Ry, then

w(@,y) < alz, ) exp ( /0 ' /y (s t) dtds) |

(i) Assume that(z,y) is nonincreasing in each of the variablesy € R, . If

u(z,y) < alx,y)+ /OO /00 b(s,t)u(s,t)dtds

forall xz,y € R, then

(@) < alz,y) exp (/Oo /ym b(s, 1) dtds) |

The proofs of the inequalities in (i), (i) can be completed aslin [1, p. 109-110]. Here we omit
the details.
To establish our results, we require the class of functi®res defined in[][2]. A function
g :10,00) — [0, 00) is said to belong to the classif
() g(u) is positive, nondecreasing and continuousdor 0,
(i) (1/v)g(u) < g(u/v),u>0,v=1.

Theorem 2.3. Letu(x,y), a(x,y),b(z,y), c(z,y), d(x,y) be nonnegative continuous functions
defined forz,y € Ry, letg € S. Define a function:(z, y) by

“(a.9) = aloy) + clovy) [ / (s, t)u(s, 1) dtds
with z(z, y) is nondecreasing in andz(x,y) > 1 for z,y € R If

(2.1) uw(z,y) < z(z,y) / s,y)) ds,

fora,z,y € Ry anda < x, then

(2.2) u(r.y) < plz.y) [a@c,y) + e(z, y)e(z,y) exp ( I / " (s, Op(s, el 1) dtds)} ,

forz,y € R, where

23) o) =67 (6 + [Csaas),
(2.4) e(z,y) = /Ow /OO d(s,t)p(s,t)a(s,t)dtds,
(2.5) G(u) = /u %, u > uy >0,

G~!is the inverse function af, and

G(1) + /x b(s,y)ds € Dom (G™1).
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Proof. Let z(x, y) is @ nonnegative, continuous, nondecreasing angldet. Then [2.1) can be
restated as

(2.6) “Ezg <1 [ M o (uls) ds

Define a functionu(z, ) by the right side of(216), thefu(z, ) /2 (x, )] < w(z,y) and
@7 wle.) <1+ [ Ws0)g (ols.0) ds

Treatingy, y € R, fixed in (2.7) and using (i) of Lemnfa 2.1 {0 (2.7), we get

(2.8) w(z,y) <G! (G(l) +/: b(s,y) ds) .

Using [2.8) in[u(z, y)/2z(z,y)] < w(z,y), we obtain
u(z,y) < z(z,y)p(z,y),
wherep(z, y) is defined by[(2]3). From the definition ofz, y) we have

(2.9) u(z,y) < plz,y) (a(z,y) + c(z, y)v(z,y)),
wherev(z, y) is defined by

v(z,y) = /x /oo d(s,t)u(s,t)dtds.
0 Jy
From (2.9) we get

v(z,y) < /Ow /00 d(s,t)p(s,t) (a(s,t) + c(s,t)v(s,t)) dtds
=e(z,y) + /OI /00 d(s,t)p(s,t)c(s,t)v(s,t)dtds,

wheree(z, y) is defined by[(2}4). Clearly,(z, y) is nonnegative, continuous, nondecreasing in
z,z € Ry and nonincreasing in, y € R,. Now, by (i) of Lemm4g 2.P, we obtain

(2.10) v(z,y) < e(x,y)exp (/Om /yoo d(s,t)p(s,t)c(s,t) dtds) :

Using (2.10) in[(2.P) we get the required inequality[in [2.2). O

Theorem 2.4. Letu(x,y), a(x,y),b(z,y), c(z,y), d(x,y) be nonnegative continuous functions
defined forz, y € R, and letg € S. Define a functiorx(x, y) by

2(z,y) = a(x,y) + c(z,y) /OO /OO d(s,t)u(s,t)dtds

with z(x, y) is nonincreasing inc and z(x,y) > 1 forz,y € R, If

15}
u(e,y) < =(z,y) + / b(s,4)g (u(s, y)) ds

for 5, x,y € R, andj > z, then

ute) < 7lap) [ao) + el ([ / s (s et 1) s )|
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forz,y € R, where
B
(2.11) ple.) =67 (6 + [ sds)
e(x,y) = /OO /OO d(s,t)p(s,t)a(s,t)dtds.

G is defined in[(25) ! is the inverse function af, and
8
G(1) +/ b(s,y)ds € Dom(G™1).

The details of the proof of Theordm 2.4 follows by an argument similar to that in the proofs
of Theorenj 2.3 with suitable changes. We omit the details.

Theorem 2.5. Letu(x,y),a(x,y),b(z,y), c(z,y) be nonnegative continuous functions defined
forz,y € Ry andF : R? — R, be a continuous function which satisfies the condition

(212) OSF(IIZ’,?/,U)—F(ZE,ZJ,U) SK(ZL’,y,U)(U—U)

foru > v > 0, whereK (x, y,v) is a nonnegative continuous function definedifoy, v € R,
And letg € S. Define a functiorx(z, y) by

2(z,y) = alz,y) + c(z,y) /093 /00 F(s,t,u(s,t))dtds

with nondecreasing in andz(z,y) > 1 forz,y € R,. If

T

(2.13) MxmsZuwwy/b@wm@@w»@

«

fora,z,y € Ry anda < x, then
@14) utz.9) < pley)ale.) + ol ) Ale.)

X exp </0 /OO K (5.t p(s, )a(s, £)) pl(s, £)c(s. 1) dtds)}
for z,y € R,, wherep(z,y) is defined by (2.3y) and
(2.15) Az, y) = /O /OO F (s,t,p(s,t)a(s, 1)) dtds,
G(u) = [, (ds/g(s)),u >ug>0,G" iys the inverse function af, and
G + / b(s,y) ds € Dom (G~1).

Proof. The proof of this theorem follows by argument similar to that given in the proof of
Theorenj 2.8. Let(z, y) is a nonnegative, continuous, nondecreasing ang {tS, then, we
observe that

u(z,y) < z(z,y)p(z,y),
wherep(z, y) is defined by[(2]3). From the definition ofz, y) we have

(2.16) u(z,y) < ple,y)(a(z,y) + c(z, y)w(z,y)),
wherew(z, y) is defined by

w(z,y) = /0 /yoo F(s,t,u(s, t)) dtds.
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From (2.12) and (2.16) we get
w(z,y) / / [ s, t,p(s,t) (a(s,t) + (s, t)w(s,t)))

+ F (s,t,p(s,t)a(s,t)) — F(s,t,p(s,t)a(s,t))} dtds

< Az, y) + /093 /oo K ((s,t,p(s,t)a(s,t)) p(s,t)c(s, t)w(s,t)dtds,

whereA(z, y) is defined by[(2.15). Clearlyi(z,y) is nonnegative, continuous, nondecreasing
in z,z € Ry and nonincreasing in, y € R... Now, by (i) of Lemmd 2.2, we obtain

@) ww) < Ao ([ 7R (s tpts 0l 0) pls. 0cts. 1) s )
0 Jy
Using (2.16) in[(2.1]7) we get the required inequalityin (2.14). O
Theorem 2.6. Let the assumptions of Theorem|2.5 be fulfilled. Define a funcfiony) by
z2(x,y) = alx,y) +cxy/ / F(s,t,u(s,t))dtds,

with nonincreasing inc andz(z,y) > 1 forz,y € Ry If

16}
u(z,y) < 2(0,y) + / b(s,4)g (uls,y)) ds

for B, x,y € R, andg > z, then

u(e,y) < pla.y) [( ) + el y) Az, y)

Xexp(/ / K (.4, B(s, t)a(s, t))ﬁ(sj)c(s,t)dtds)}

for z,y € R, wherep(z, y) is defined by (2.11) and

Az, y) // (5.1,5(s, )a(s, 1)) dids.

G is defined in[(25) ! is the inverse function af, and
8
G(1) +/ b(s,y) ds € Dom (G™1).

The details of the proof of Theorgm 2.6 follows by an argument similar to that in the proofs
of Theorenj 2.6 with suitable changes. We omit the details.

3. SOME APPLICATIONS

In this section we present some immediate applications of Thegorém 2.3 to study certain prop-
erties of solutions of the following terminal value problem for the hyperbolic partial differential
equation

(3.1) Uy (2, y) = h(z,y,u(z,y)) + (2, 9),
(3.2) U(Z, OO) = UOO(‘T): u(O,y) = T(y)v U(O, OO) =k,

whereh : R3 x R — R, 7 : R — R,04,7(y) : Ry — R are continuous functions aridis a
real constant.
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The following example deals with the estimate on the solution of the partial differential equa-
tion (3.1) with the conditiong (3]2).

Example 3.1. Let ¢(z, y) continuous, nonnegative, nondecreasing Bnd nonincreasing if
forz,y € R,, and let

(3.3) iz, y, u)| < cla, y)d(z, y) |ul,

34)  low(@)+r(y) -k — /0 /yoor(s,t) dtds

wherea(z, y), b(z,y),d(z,y), g are as defined in Theordm P.3.ufz, y) is a solution of[(3.]1)
with the conditions[(3]2), then it can be written as (see [1, p. 80])

(35)  ulr,y) = on () £ 7(y) — k- / /OO (h(s,t,u(s,1)) +r(s,1)) dtds

for z,y € R. From (3.3),[(3.4),[(3]5) we gei '

@8) i)l < alos) + [ W phallul)ds +clo) [ [ dts )l avas.

Now, a suitable application of ‘chheor.33.6) yields theyrequired estimate following

ol )| < plovs) fato) + et pyess [ / s Opls s 0y s )|

for z,y € R, wheree(z,y), p(z,y) are define in Theorem 2.3.
Our next result deals with the uniqueness of the solution of the partial differential equation

(3.7) with the conditiong (3]2).
Example 3.2. Suppose that the functidnin (3.])) satisfies the condition

(37) ’h($, Y u) - h<x7y7 U)‘ < C(QZ, y>d<x7y) |u - U‘ )

wherec(z,y),d(z,y) is as defined in Theorefn 2.3 with{z, y) is nonincreasing iry. Let
u(z,y),v(z,y) be two solutions of equatiof (3.1) with the conditiops(3.2). From| (3.5)] (3.7)

we have
(3.8) lu(z,y) — v(z,y)| < c(x,y)/o / d(s,t)|u(s,t) —v(s,t)| dtds.

Now a suitable application of Theor¢em .3 yields:, y) = v(z, y), that is, there is at most one
solution to the problenj (3.1) with the conditiofis (3.2).

< alz,y) + / b(s, y)g(u]) ds.

x
o
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