

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 4, Article 153, 2006

BEST GENERALIZATION OF HARDY-HILBERT'S INEQUALITY WITH MULTI-PARAMETERS

DONGMEI XIN

DEPARTMENT OF MATHEMATICS GUANGDONG EDUCATION COLLEGE GUANGZHOU, GUANGDONG 510303 PEOPLE'S REPUBLIC OF CHINA. xdm77108@qdei.edu.cn

Received 07 February, 2006; accepted 13 April, 2006 Communicated by B. Yang

ABSTRACT. By introducing some parameters and the β function and improving the weight function, we obtain a generalization of Hilbert's integral inequality with the best constant factor. As its applications, we build its equivalent form and some particular results.

Key words and phrases: Hardy-Hilbert's inequality, Hölder's inequality, weight function, β function.

2000 Mathematics Subject Classification. 26D15.

1. Introduction

If p>1, $\frac{1}{p}+\frac{1}{q}=1$, f,g are non-negative functions such that $0<\int_0^\infty f^p(t)dt<\infty$ and $0<\int_0^\infty g^q(t)dt<\infty$, then we have

$$(1.1) \qquad \int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y} dx dy < \frac{\pi}{\sin(\frac{\pi}{p})} \left\{ \int_0^\infty f^p(t) dt \right\}^{\frac{1}{p}} \left\{ \int_0^\infty g^q(t) dt \right\}^{\frac{1}{q}};$$

(1.2)
$$\int_0^\infty \left[\int_0^\infty \frac{f(x)}{x+y} dx \right]^p dy < \left[\frac{\pi}{\sin(\frac{\pi}{p})} \right]^p \int_0^\infty f^p(t) dt,$$

where the constant factors $\frac{\pi}{\sin(\pi/p)}$ and $\left[\frac{\pi}{\sin(\pi/p)}\right]^p$ are the best possible (see [1]). Inequality (1.1) is well known as Hardy-Hilbert's integral inequality, which is important in analysis and applications (see [2]). Inequality (1.1) is equivalent to (1.2).

ISSN (electronic): 1443-5756

© 2006 Victoria University. All rights reserved.

In 2002, Yang [3] gave some generalizations of (1.1) and (1.2) by introducing a parameter $\lambda > 0$ as:

$$(1.3) \qquad \int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x^\lambda + y^\lambda} dx dy < \frac{\pi}{\lambda \sin(\frac{\pi}{p})} \left\{ \int_0^\infty t^{(p-1)(1-\lambda)} f^p(t) dt \right\}^{\frac{1}{p}} \left\{ \int_0^\infty t^{(q-1)(1-\lambda)} g^q(t) dt \right\}^{\frac{1}{q}};$$

$$(1.4) \qquad \int_0^\infty y^{\lambda-1} \left[\int_0^\infty \frac{f(x)}{x^\lambda + y^\lambda} dx \right]^p dy < \left[\frac{\pi}{\lambda \sin(\frac{\pi}{p})} \right]^p \int_0^\infty t^{(p-1)(1-\lambda)} f^p(t) dt,$$

where the constant factors $\frac{\pi}{\lambda \sin(\pi/p)}$ and $\left[\frac{\pi}{\lambda \sin(\pi/p)}\right]^p$ are the best possible. Inequality (1.3) is equivalent to (1.4).

When $\lambda = 1$, both (1.3) and (1.4) change to (1.1) and (1.2). Yang [4] gave another generalization of (1.1) by introducing a parameter λ and a β function.

In 2004, by introducing some parameters and estimating the weight function, Yang [5] gave some extensions of (1.1) and (1.2) with the best constant factors as:

$$(1.5) \qquad \int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x^\lambda + y^\lambda} dx dy < \frac{\pi}{\lambda \sin(\frac{\pi}{x})} \left\{ \int_0^\infty x^{p(1-\frac{\lambda}{r})-1} f^p(x) dx \right\}^{\frac{1}{p}} \left\{ \int_0^\infty x^{q(1-\frac{\lambda}{s})-1} g^q(x) dx \right\}^{\frac{1}{q}};$$

$$(1.6) \qquad \int_0^\infty y^{\frac{p\lambda}{s}-1} \left[\int_0^\infty \frac{f(x)}{x^\lambda + y^\lambda} dx \right]^p dy < \left[\frac{\pi}{\lambda \sin(\frac{\pi}{r})} \right]^p \int_0^\infty x^{p(1-\frac{\lambda}{r})-1} f^p(x) dx,$$

where the constant factors $\frac{\pi}{\lambda \sin(\pi/r)}$ and $\left[\frac{\pi}{\lambda \sin(\pi/r)}\right]^p$ are the best possible. Inequality (1.5) is equivalent to (1.6). Recently, [6, 7, 8, 9] considered some multiple extensions of (1.1).

Under the same conditions with (1.1), we still have (see [1, Th. 342]):

$$(1.7) \qquad \int_0^\infty \int_0^\infty \frac{\ln\left(\frac{x}{y}\right) f(x)g(y)}{x-y} dx dy < \left[\frac{\pi}{\sin(\frac{\pi}{p})}\right]^2 \left\{\int_0^\infty f^p(t) dt\right\}^{\frac{1}{p}} \left\{\int_0^\infty g^q(t) dt\right\}^{\frac{1}{q}};$$

(1.8)
$$\int_0^\infty \left[\frac{\ln\left(\frac{x}{y}\right) f(x)}{x - y} dx \right]^p dy < \left[\frac{\pi}{\sin\left(\frac{\pi}{p}\right)} \right]^{2p} \int_0^\infty f^p(t) dt,$$

where the constant factors $\left[\frac{\pi}{\sin(\pi/p)}\right]^2$ and $\left[\frac{\pi}{\sin(\pi/p)}\right]^{2p}$ are the best possible. Inequality (1.7) is equivalent to (1.8). In recent years, by introducing a parameter λ , Kuang [10] gave an new extension of (1.7).

In 2003, by introducing a parameter $\lambda > 0$ and the weight function, Yang [11] gave another generalisation of (1.7) and the extended equivalent form as:

$$(1.9) \int_{0}^{\infty} \int_{0}^{\infty} \frac{\ln\left(\frac{x}{y}\right) f(x)g(y)}{x^{\lambda} - y^{\lambda}} dx dy$$

$$< \left[\frac{\pi}{\lambda \sin\left(\frac{\pi}{p}\right)}\right]^{2} \left\{ \int_{0}^{\infty} t^{(p-1)(1-\lambda)} f^{p}(t) dt \right\}^{\frac{1}{p}} \left\{ \int_{0}^{\infty} t^{(q-1)(1-\lambda)} g^{q}(t) dt \right\}^{\frac{1}{q}};$$

(1.10)
$$\int_0^\infty y^{\lambda-1} \left[\frac{\ln\left(\frac{x}{y}\right) f(x)}{x^{\lambda} - y^{\lambda}} dx \right]^p dy < \left[\frac{\pi}{\lambda \sin\left(\frac{\pi}{p}\right)} \right]^{2p} \int_0^\infty t^{(p-1)(1-\lambda)} f^p(t) dt,$$

where the constant factors $\left[\frac{\pi}{\lambda \sin(\pi/p)}\right]^2$ and $\left[\frac{\pi}{\lambda \sin(\pi/p)}\right]^{2p}$ are the best possible. Inequality (1.9) is equivalent to (1.10).

In this paper, by using the β function and obtaining the expression of the weight function, we give a new extension of (1.7) with some parameters as (1.5). As applications, we also consider the equivalent form and some other particular results.

2. SOME LEMMAS

Lemma 2.1. If p>1, $\frac{1}{p}+\frac{1}{q}=1$, r>1, $\frac{1}{s}+\frac{1}{r}=1$, $\lambda>0$, define the weight function $\omega_{\lambda}(s,p,x)$ as

(2.1)
$$\omega_{\lambda}(s, p, x) = \int_{0}^{\infty} \frac{\ln\left(\frac{x}{y}\right)}{x^{\lambda} - y^{\lambda}} \cdot \frac{x^{(p-1)(1-\frac{\lambda}{r})}}{y^{1-\frac{\lambda}{s}}} dy, \quad x \in (0, \infty).$$

Then we have

(2.2)
$$\omega_{\lambda}(s, p, x) = x^{p(1-\frac{\lambda}{r})-1} \left[\frac{\pi}{\lambda \sin(\frac{\pi}{r})} \right]^{2}.$$

Proof. For fixed x, setting $u = (\frac{y}{x})^{\lambda}$ in the integral (2.1) and by [1] (see [1, Th. 342 Remark]), we have

(2.3)
$$\omega_{\lambda}(s, p, x) = \frac{1}{\lambda^{2}} \int_{0}^{\infty} \frac{\ln u}{x^{\lambda} (u - 1)} \cdot \frac{x^{(p-1)(1 - \frac{\lambda}{r})}}{(u^{\frac{1}{\lambda}} x)^{1 - \frac{\lambda}{s}}} x u^{\frac{1}{\lambda} - 1} du$$

$$= \frac{1}{\lambda^{2}} x^{p(1 - \frac{\lambda}{r}) - 1} \int_{0}^{\infty} \frac{\ln u}{u - 1} \cdot u^{-\frac{1}{r}} du$$

$$= \left[\frac{\pi}{\lambda \sin(\frac{\pi}{r})} \right]^{2} x^{p(1 - \frac{\lambda}{r}) - 1}.$$

Hence, (2.2) is valid and the lemma is proved.

Note. By (2.3), we still have

(2.4)
$$\omega_{\lambda}(r,q,y) = \int_{0}^{\infty} \frac{\ln\left(\frac{x}{y}\right)}{x^{\lambda} - y^{\lambda}} \cdot \frac{x^{(q-1)(1-\frac{\lambda}{s})}}{y^{1-\frac{\lambda}{r}}} dx$$
$$= y^{q(1-\frac{\lambda}{s})-1} \left[\frac{\pi}{\lambda \sin(\frac{\pi}{s})}\right]^{2}.$$

3. MAIN RESULTS AND APPLICATIONS

Theorem 3.1. If $p>1, \frac{1}{p}+\frac{1}{q}=1, r>1, \frac{1}{s}+\frac{1}{r}=1, \lambda>0, f,g\geq 0$ such that $0<\int_0^\infty x^{p(1-\frac{\lambda}{r})-1}f^p(x)dx<\infty,$ and $0<\int_0^\infty x^{q(1-\frac{\lambda}{s})-1}g^q(x)dx<\infty,$ then we have

$$(3.1) \int_0^\infty \int_0^\infty \frac{\ln\left(\frac{x}{y}\right) f(x)g(y)}{x^{\lambda} - y^{\lambda}} dx dy$$

$$< \left[\frac{\pi}{\lambda \sin(\frac{\pi}{r})}\right]^2 \left\{ \int_0^\infty x^{p(1-\frac{\lambda}{r})-1} f^p(x) dx \right\}^{\frac{1}{p}} \left\{ \int_0^\infty x^{q(1-\frac{\lambda}{s})-1} g^q(x) dx \right\}^{\frac{1}{q}},$$

where the constant factor $\left[\frac{\pi}{\lambda \sin(\pi/r)}\right]^2$ is the best possible. In particular,

(a) for r = s = 2, we have

(3.2)
$$\int_0^\infty \int_0^\infty \frac{\ln\left(\frac{x}{y}\right) f(x)g(y)}{x^\lambda - y^\lambda} dx dy < \left(\frac{\pi}{\lambda}\right)^2 \left\{ \int_0^\infty x^{p(1-\frac{\lambda}{2})-1} f^p(x) dx \right\}^{\frac{1}{p}} \left\{ \int_0^\infty x^{q(1-\frac{\lambda}{2})-1} g^q(x) dx \right\}^{\frac{1}{q}},$$

(b) for $\lambda = 1$, we have

(3.3)
$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{\ln\left(\frac{x}{y}\right) f(x)g(y)}{x - y} dx dy < \left[\frac{\pi}{\sin\left(\frac{\pi}{r}\right)}\right]^{2} \left\{\int_{0}^{\infty} x^{\frac{p}{s} - 1} f^{p}(x) dx\right\}^{\frac{1}{p}} \left\{\int_{0}^{\infty} x^{\frac{q}{r} - 1} g^{q}(x) dx\right\}^{\frac{1}{q}}.$$

Proof. By Hölder's inequality and Lemma 2.1, we have

$$(3.4) \int_{0}^{\infty} \int_{0}^{\infty} \frac{\ln\left(\frac{x}{y}\right) f(x)g(y)}{x^{\lambda} - y^{\lambda}} dx dy$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \left\{ \left[\frac{\ln\left(\frac{x}{y}\right)}{x^{\lambda} - y^{\lambda}} \right]^{\frac{1}{p}} \cdot \frac{x^{(1 - \frac{\lambda}{r})/q}}{y^{(1 - \frac{\lambda}{s})/p}} f(x) \right\} \left\{ \left[\frac{\ln\left(\frac{x}{y}\right)}{x^{\lambda} - y^{\lambda}} \right]^{\frac{1}{q}} \cdot \frac{y^{(1 - \frac{\lambda}{s})/p}}{x^{(1 - \frac{\lambda}{r})/q}} g(y) \right\} dx dy$$

$$\leq \left\{ \int_{0}^{\infty} \left[\int_{0}^{\infty} \frac{\ln\left(\frac{x}{y}\right)}{x^{\lambda} - y^{\lambda}} \cdot \frac{x^{(p-1)(1 - \frac{\lambda}{r})}}{y^{(1 - \frac{\lambda}{s})}} dy \right] f^{p}(x) dx \right\}^{\frac{1}{p}}$$

$$\times \left\{ \int_{0}^{\infty} \left[\int_{0}^{\infty} \frac{\ln\left(\frac{x}{y}\right)}{x^{\lambda} - y^{\lambda}} \cdot \frac{y^{(q-1)(1 - \frac{\lambda}{s})}}{x^{(1 - \frac{\lambda}{r})}} dx \right] g^{q}(y) dy \right\}^{\frac{1}{q}}$$

$$= \left\{ \int_{0}^{\infty} \omega_{\lambda}(s, p, x) f^{p}(x) dx \right\}^{\frac{1}{p}} \left\{ \int_{0}^{\infty} \omega_{\lambda}(r, q, y) g^{q}(y) dy \right\}^{\frac{1}{q}}.$$

If (3.4) takes the form of equality, then there exist constants A and B, such that they are not all zero and (see [12])

$$A\frac{\ln\left(\frac{x}{y}\right)}{x^{\lambda} - y^{\lambda}} \cdot \frac{x^{(p-1)(1-\frac{\lambda}{r})}}{y^{1-\frac{\lambda}{s}}} f^{p}(x) = B\frac{\ln\left(\frac{x}{y}\right)}{x^{\lambda} - y^{\lambda}} \cdot \frac{y^{(q-1)(1-\frac{\lambda}{s})}}{x^{1-\frac{\lambda}{r}}} g^{q}(y),$$
a.e. in $(0, \infty) \times (0, \infty)$.

We find that $Ax \cdot x^{p(1-\frac{\lambda}{r})-1}f^p(x) = By \cdot y^{q(1-\frac{\lambda}{s})-1}g^q(y)$, a.e. in $(0,\infty) \times (0,\infty)$. Hence there exists a constant C, such that

$$Ax \cdot x^{p(1-\frac{\lambda}{r})-1} f^p(x) = C = By \cdot y^{q(1-\frac{\lambda}{s})-1} g^q(y),$$
 a.e. in $(0, \infty)$.

Without loss of generality, suppose $A \neq 0$, we may get $x^{p(1-\frac{\lambda}{r})-1}f^p(x) = C/(Ax)$, a.e. in $(0,\infty)$, which contradicts $0 < \int_0^\infty x^{p(1-\frac{\lambda}{r})-1}f^p(x)dx < \infty$. Hence (3.4) takes strict inequality as follows:

(3.5)
$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{\ln\left(\frac{x}{y}\right) f(x)g(y)}{x^{\lambda} - y^{\lambda}} dx dy < \left\{ \int_{0}^{\infty} \omega_{\lambda}(s, p, x) f^{p}(x) dx \right\}^{\frac{1}{p}} \left\{ \int_{0}^{\infty} \omega_{\lambda}(r, q, y) g^{q}(y) dy \right\}^{\frac{1}{q}}.$$

In view of (2.2) and (2.4), we have (3.1).

If the constant factor $\left[\frac{\pi}{\lambda \sin(\pi/r)}\right]^2$ in (3.1) is not the best possible, then there exists a positive constant $K\left(\text{with } K < \left[\frac{\pi}{\lambda \sin(\pi/r)}\right]^2\right)$ and an a>0. We have

(3.6)
$$\int_{a}^{\infty} \int_{0}^{\infty} \frac{\ln\left(\frac{x}{y}\right) f(x)g(y)}{x^{\lambda} - y^{\lambda}} dx dy$$

$$< K \left\{ \int_{a}^{\infty} x^{p(1 - \frac{\lambda}{r}) - 1} f^{p}(x) dx \right\}^{\frac{1}{p}} \left\{ \int_{a}^{\infty} x^{q(1 - \frac{\lambda}{s}) - 1} g^{q}(x) dx \right\}^{\frac{1}{q}}.$$

For $\varepsilon > 0$ small enough $\left(\varepsilon < \frac{p\lambda}{r}\right)$ and 0 < b < a, setting f_{ε} and g_{ε} as:

$$f_{\varepsilon}(x) = g_{\varepsilon}(x) = 0, \quad x \in (0, b);$$

 $f_{\varepsilon} = x^{-1 - \frac{\varepsilon}{p} + \frac{\lambda}{r}}, \quad g_{\varepsilon} = x^{-1 - \frac{\varepsilon}{q} + \frac{\lambda}{s}}, \quad x \in [b, \infty),$

then we find

(3.7)
$$\int_{a}^{\infty} \int_{b}^{\infty} \frac{\ln\left(\frac{x}{y}\right) f_{\varepsilon}(x) \cdot g_{\varepsilon}(y)}{x^{\lambda} - y^{\lambda}} dx dy = \int_{a}^{\infty} \int_{b}^{\infty} \frac{\ln\left(\frac{x}{y}\right) x^{-1 - \frac{\varepsilon}{p} + \frac{\lambda}{r}} \cdot y^{-1 - \frac{\varepsilon}{q} + \frac{\lambda}{s}}}{x^{\lambda} - y^{\lambda}} dx dy.$$

In (3.7), for $b \to 0^+$, by (3.6), we have

$$\frac{1}{\lambda^2 a^{\varepsilon}} \int_0^{\infty} \frac{\ln u}{u - 1} u^{-1 + \frac{1}{s} - \frac{\varepsilon}{q\lambda}} du = \varepsilon \int_a^{\infty} \int_0^{\infty} \frac{\ln \left(\frac{x}{y}\right) f_{\varepsilon}(x) g_{\varepsilon}(y)}{x^{\lambda} - y^{\lambda}} dx dy \le \frac{K}{a^{\varepsilon}}.$$

For $\varepsilon^+ \to 0$, by [1] (see [1, Th. 342 Remark]), it follows that $\left[\frac{\pi}{\lambda \sin(\pi/r)}\right]^2 \le K$, which contradicts the fact that $K < \left[\frac{\pi}{\lambda \sin(\pi/r)}\right]^2$. Hence the constant factor $\left[\frac{\pi}{\lambda \sin(\pi/r)}\right]^2$ in (3.1) is the best possible. The theorem is proved.

Theorem 3.2. If p>1, $\frac{1}{p}+\frac{1}{q}=1$, r>1, $\frac{1}{s}+\frac{1}{r}=1$, $\lambda>0$, $f\geq 0$ such that $0<\int_0^\infty x^{p(1-\frac{\lambda}{r})-1}f^p(x)dx<\infty$, then we have

$$(3.8) \qquad \int_0^\infty y^{\frac{p\lambda}{s}-1} \left[\int_0^\infty \frac{\ln\left(\frac{x}{y}\right) f(x)}{x^\lambda - y^\lambda} dx \right]^p dy < \left[\frac{\pi}{\lambda \sin(\frac{\pi}{r})} \right]^{2p} \int_0^\infty x^{p(1-\frac{\lambda}{r})-1} f^p(x) dx,$$

where the constant $\left[\frac{\pi}{\lambda \sin(\pi/r)}\right]^{2p}$ is the best possible. Inequality (3.8) is equivalent to (3.1). In particular,

(a) for r = s = 2, we have

$$(3.9) \qquad \int_0^\infty y^{\frac{p\lambda}{2}-1} \left[\int_0^\infty \frac{\ln\left(\frac{x}{y}\right)f(x)}{x^\lambda - y^\lambda} dx \right]^p dy < \left(\frac{\pi}{\lambda}\right)^{2p} \int_0^\infty x^{p(1-\frac{\lambda}{2})-1} f^p(x) dx,$$

(b) for $\lambda = 1$, we have

$$(3.10) \qquad \int_0^\infty y^{\frac{p}{s}-1} \left[\int_0^\infty \frac{\ln\left(\frac{x}{y}\right) f(x)}{x-y} dx \right]^p dy < \left[\frac{\pi}{\sin(\frac{\pi}{r})} \right]^{2p} \int_0^\infty x^{\frac{p}{s}-1} f^p(x) dx.$$

Proof. Setting a real function g(y) as

$$g(y) = y^{\frac{p\lambda}{s} - 1} \left[\int_0^\infty \frac{\ln\left(\frac{x}{y}\right) f(x)}{x^\lambda - y^\lambda} dx \right]^{p-1}, \quad y \in (0, \infty),$$

then by (3.1), we find

$$(3.11) \qquad \left[\int_{0}^{\infty} y^{q(1-\frac{\lambda}{s})-1} g^{q}(y) dy \right]^{p}$$

$$= \left\{ \int_{0}^{\infty} y^{\frac{p\lambda}{s}-1} \left[\int_{0}^{\infty} \frac{\ln\left(\frac{x}{y}\right) f(x)}{x^{\lambda} - y^{\lambda}} dx \right]^{p} dy \right\}^{p}$$

$$= \left[\int_{0}^{\infty} \int_{0}^{\infty} \frac{\ln\left(\frac{x}{y}\right) f(x) g(y)}{x^{\lambda} - y^{\lambda}} dx dy \right]^{p}$$

$$\leq \left[\frac{\pi}{\lambda \sin(\frac{\pi}{r})} \right]^{2p} \left\{ \int_{0}^{\infty} x^{p(1-\frac{\lambda}{r})-1} f^{p}(x) dx \right\} \left\{ \int_{0}^{\infty} x^{q(1-\frac{\lambda}{s})-1} g^{q}(x) dx \right\}^{p-1}.$$

Hence we obtain

(3.12)
$$0 < \int_0^\infty y^{q(1-\frac{\lambda}{s})-1} g^q(y) dy \le \left[\frac{\pi}{\lambda \sin(\frac{\pi}{s})} \right]^{2p} \int_0^\infty x^{p(1-\frac{\lambda}{r})-1} f^p(x) dx < \infty.$$

By (3.1), both (3.11) and (3.12) take the form of strict inequality, and we have (3.8).

On the other hand, suppose that (3.8) is valid. By Hölder's inequality, we find

$$(3.13) \qquad \int_{0}^{\infty} \int_{0}^{\infty} \frac{\ln\left(\frac{x}{y}\right) f(x) g(y)}{x^{\lambda} - y^{\lambda}} dx dy$$

$$= \int_{0}^{\infty} \left[y^{\frac{\lambda}{s} - \frac{1}{p}} \int_{0}^{\infty} \frac{\ln\left(\frac{x}{y}\right) f(x)}{x^{\lambda} - y^{\lambda}} dx \right] \left[y^{-\frac{\lambda}{s} + \frac{1}{p}} g(y) \right] dy$$

$$\leq \left\{ \int_{0}^{\infty} y^{\frac{p\lambda}{s} - 1} \left[\int_{0}^{\infty} \frac{\ln\left(\frac{x}{y}\right) f(x)}{x^{\lambda} - y^{\lambda}} dx \right]^{p} dy \right\}^{\frac{1}{p}} \left\{ \int_{0}^{\infty} y^{q(1 - \frac{\lambda}{s}) - 1} g^{q}(y) dy \right\}^{\frac{1}{q}}.$$

Then by (3.8), we have (3.1). Hence (3.1) and (3.8) are equivalent.

If the constant $\left[\frac{\pi}{\lambda \sin(\pi/r)}\right]^{2p}$ in (3.8) is not the best possible, by using (3.13), we may get a contradiction that the constant factor in (3.1) is not the best possible. Thus we complete the proof of the theorem.

Remark 3.3.

- (a) For r = q, s = p, Inequality (3.1) reduces to (1.9) and (3.8) reduces to (1.10).
- (b) Inequality (3.1) is an extension of (1.7) with parameters (λ, r, s) .
- (c) It is interesting that inequalities (1.9) and (3.2) are different, although they have the same parameters and possess a best constant factor.

REFERENCES

- [1] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, *Inequalities*, Cambridge University Press, Cambridge, UK, 1952.
- [2] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, *Inequalities Involving Functions and their Integrals and Derivatives*, Kluwer Academic Publishers, Boston, 1991.
- [3] BICHENG YANG, On an extension of Hardy-Hilbert's inequality, *J. Math. Anal. Appl.*, **23A**(2) (2002), 247–254.
- [4] BICHENG YANG, On Hardy-Hilbert's integral inequality, *J. Math. Anal. Appl.*, **261** (2001), 295–306.
- [5] BICHENG YANG, On the extended Hilbert's integral inequality and applications, *International Review of Pure and Applied Mathematics*, (2005), 10–11.
- [6] YONG HONG, All-sided generalization about Hardy-Hilbert's integral inequalities, *Acta Math. Sinica*, **44**(4) (2001), 619–626.
- [7] LEPING HE, JIANGMING YU AND MINZHE GAO, An extension of Hilbert's integral inequality, *J. Shaoguan Univ.*, (Natural Science), **23**(3) (2002), 25–30.
- [8] JICHANG KUANG, On new extensions of Hilbert's integral inequality, *J. Math. Anal. Appl.*, **235** (1999), 608–614.
- [9] M. KRNIĆ AND J. PEČARIĆ, General Hilbert's and Hardy's inequalities, *Math. Inequal. & Applics.*, **8**(1) (2005), 29–51.
- [10] JICHANG KUANG AND L. DEBNATH, On new generalizations of Hilbert's inequality and their applications, *J. Math. Anal. Appl.*, **245** (2000), 248–265.
- [11] BICHENG YANG, On a generalization of a Hilbert's type integral inequality and its applications, *Mathematics Applications*, **16**(2) (2003), 82–86.

[12] JICHANG KUANG, Applied Inequalities, Shandong Science and Technology Press, Jiinan, (2004).