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ABSTRACT. In this paper, some subclasses of meromorphic univalent functions in the unit disk
∆ are extended. LetU(p) denote the class of normalized univalent meromorphic functionsf
in ∆ with a simple pole atz = p > 0. Let φ be a function with positive real part on∆ with
φ(0) = 1, φ′(0) > 0 which maps∆ onto a region starlike with respect to1 which is symmetric
with respect to the real axis. The class

∑∗(p, w0, φ) consists of functionsf ∈ U(p) satisfying

−
(

zf ′(z)
f(z)− w0

+
p

z − p
− pz

1− pz

)
≺ φ(z).

The class
∑

(p, φ) consists of functionsf ∈ U(p) satisfying

−
(

1 + z
f ′′(z)
f ′(z)

+
2p

z − p
− 2pz

1− pz

)
≺ φ(z).

The bounds forw0 and some initial coefficients off in
∑∗(p, w0, φ) and

∑
(p, φ) are obtained.
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1. I NTRODUCTION

Let U(p) denote the class of univalent meromorphic functionsf in the unit disk∆ with a
simple pole atz = p > 0 and with the normalizationf(0) = 0 andf ′(0) = 1. Let U∗(p, w0) be
the subclass ofU(p) such thatf(z) ∈ U∗(p, w0) if and only if there is aρ, 0 < ρ < 1, with the
property that

< zf ′(z)

f(z)− w0

< 0

for ρ < |z| < 1. The functions inU∗(p, w0) map |z| < r < ρ (for someρ, p < ρ < 1)
onto the complement of a set which is starlike with respect tow0. Further the functions in
U∗(p, w0) all omit the valuew0. This class of starlike meromorphic functions is developed from
Robertson’s concept of star center points [11]. LetP denote the class of functionsP (z) which
are meromorphic in∆ and satisfyP (0) = 1 and<{P (z)} ≥ 0 for all z ∈ ∆.

Forf(z) ∈ U∗(p, w0), there is a functionP (z) ∈ P such that

(1.1) z
f ′(z)

f(z)− w0

+
p

z − p
− pz

1− pz
= −P (z)

for all z ∈ ∆. Let
∑∗(p, w0) denote the class of functionsf(z) which satisfy (1.1) and the

conditionf(0) = 0, f ′(0) = 1. ThenU∗(p, w0) is a subset of
∑∗(p, w0). Miller [9] proved that

U∗(p, w0) =
∑∗(p, w0) for p ≤ 2−

√
3.

Let K(p) denote the class of functions which belong toU(p) and map|z| < r < ρ (for some
p < ρ < 1) onto the complement of a convex set. Iff ∈ K(p), then there is ap < ρ < 1, such
that for eachz, ρ < |z| < 1

<
{

1 +
zf ′′(z)

f ′(z)

}
≤ 0.

If f ∈ K(p), then for eachz in ∆,

(1.2) <
{

1 + z
f ′′(z)

f ′(z)
+

2p

z − p
− 2pz

1− pz

}
≤ 0.

Let
∑

(p) denote the class of functionsf which satisfy (1.2) and the conditionsf(0) = 0 and
f ′(0) = 1. The classK(p) is contained in

∑
(p). Royster [12] showed that for0 < p ≤ 2−

√
3,

if f ∈
∑

(p) and is meromorphic, thenf ∈ K(p). Also, for each functionf ∈
∑

(p), there is a
functionP ∈ P such that

1 + z
f ′′(z)

f ′(z)
+

2p

z − p
− 2pz

1− pz
= −P (z).

The classU(p) and related classes have been studied in [3], [4], [5] and [6].
Let A be the class of all analytic functions of the formf(z) = z + a2z

2 + a3z
3 + · · · in

∆. Several subclasses of univalent functions are characterized by the quantitieszf ′(z)/f(z)
or 1 + zf ′′(z)/f ′(z) lying often in a region in the right-half plane. Ma and Minda [7] gave
a unified presentation of various subclasses of convex and starlike functions. For an ana-
lytic function φ with positive real part on∆ with φ(0) = 1, φ′(0) > 0 which maps the unit
disk ∆ onto a region starlike (univalent) with respect to1 which is symmetric with respect
to the real axis, they considered the classS∗(φ) consisting of functionsf ∈ A for which
zf ′(z)/f(z) ≺ φ(z) (z ∈ ∆). They also investigated a corresponding classC(φ) of functions
f ∈ A satisfying1 + zf ′′(z)/f ′(z) ≺ φ(z) (z ∈ ∆). For related results, see [1, 2, 8, 13]. In
the following definition, we consider the corresponding extension for meromorphic univalent
functions.
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Definition 1.1. Let φ be a function with positive real part on∆ with φ(0) = 1, φ′(0) > 0 which
maps∆ onto a region starlike with respect to1 which is symmetric with respect to the real axis.
The class

∑∗(p, w0, φ) consists of functionsf ∈ U(p) satisfying

−
(

zf ′(z)

f(z)− w0

+
p

z − p
− pz

1− pz

)
≺ φ(z) (z ∈ ∆).

The class
∑

(p, φ) consists of functionsf ∈ U(p) satisfying

−
(

1 + z
f ′′(z)

f ′(z)
+

2p

z − p
− 2pz

1− pz

)
≺ φ(z) (z ∈ ∆).

In this paper, the bounds on|w0| will be determined. Also the bounds for some coefficients
of f in

∑∗(p, w0, φ) and
∑

(p, φ) will be obtained.

2. COEFFICIENTS BOUND PROBLEM

To prove our main result, we need the following:

Lemma 2.1 ([7]). If p1(z) = 1 + c1z + c2z
2 + · · · is a function with positive real part in∆,

then

|c2 − vc2
1| ≤


−4v + 2 if v ≤ 0,

2 if 0 ≤ v ≤ 1,

4v − 2 if v ≥ 1.

Whenv < 0 or v > 1, equality holds if and only ifp1(z) is (1+z)/(1−z) or one of its rotations.
If 0 < v < 1, then equality holds if and only ifp1(z) is (1 + z2)/(1− z2) or one of its rotations.
If v = 0, the equality holds if and only if

p1(z) =

(
1

2
+

1

2
λ

)
1 + z

1− z
+

(
1

2
− 1

2
λ

)
1− z

1 + z
(0 ≤ λ ≤ 1)

or one of its rotations. Ifv = 1, the equality holds if and only ifp1 is the reciprocal of one of
the functions such that equality holds in the case ofv = 0.

Theorem 2.2. Let φ(z) = 1 + B1z + B2z
2 + · · · andf(z) = z + a2z

2 + · · · in |z| < p. If
f ∈

∑∗(p, w0, φ), then

w0 =
2p

pB1c1 − 2p2 − 2

and

(2.1)
p

p2 + B1p + 1
≤ |w0| ≤

p

p2 −B1p + 1
.

Also, we have

(2.2)

∣∣∣∣a2 +
w0

2

(
p2 +

1

p2
+

1

w2
0

)∣∣∣∣ ≤


|w0||B2|
2

if |B2| ≥ B1,

|w0|B1

2
if |B2| ≤ B1.

Proof. Let h be defined by

h(z) = −
[

zf ′(z)

f(z)− w0

+
p

z − p
− pz

1− pz

]
= 1 + b1z + b2z

2 + · · · .
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Then it follows that

b1 = p +
1

p
+

1

w0

, and(2.3)

b2 = p2 +
1

p2
+

1

w2
0

+
2a2

w0

.(2.4)

Sinceφ is univalent andh ≺ φ, the function

p1(z) =
1 + φ−1(h(z))

1− φ−1(h(z))
= 1 + c1z + c2z

2 + · · ·

is analytic and has a positive real part in∆. Also, we have

(2.5) h(z) = φ

(
p1(z)− 1

p1(z) + 1

)
and from this equation (2.5), we obtain

(2.6) b1 =
1

2
B1c1

and

(2.7) b2 =
1

2
B1

(
c2 −

1

2
c2
1

)
+

1

4
B2c

2
1.

From (2.3), (2.4), (2.6) and (2.7), we get

(2.8) w0 =
2p

pB1c1 − 2p2 − 2

and

(2.9) a2 =
w0

8
(2B1c2 −B1c

2
1 + B2c

2
1)−

p2w0

2
− w0

2p2
− 1

2w0

.

From (2.3) and (2.6), we obtain

p +
1

p
+

1

w0

=
1

2
B1c1

and, since|c1| ≤ 2 for a function with positive real part, we have∣∣∣∣p +
1

p
− 1

|w0|

∣∣∣∣ ≤ ∣∣∣∣p +
1

p
+

1

w0

∣∣∣∣ ≤ 1

2
B1|c1| ≤ B1

or

−B1 ≤ p +
1

p
− 1

|w0|
≤ B1.

Rewriting the inequality, we obtain
p

p2 + B1p + 1
≤ |w0| ≤

p

p2 −B1p + 1
.

From (2.9), we obtain∣∣∣∣a2 +
w0

2

(
p2 +

1

p2
+

1

w2
0

)∣∣∣∣ =

∣∣∣∣w0

2

(
1

2
B1

(
c2 −

1

2
c2
1

)
+

1

4
B2c

2
1

)∣∣∣∣
=
|w0|B1

4

∣∣∣∣c2 −
(

B1 −B2

2B1

)
c2
1

∣∣∣∣ .

The result now follows from Lemma 2.1. �
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The classes
∑∗(p, w0, φ) and

∑
(p, φ) are indeed a more general class of functions, as can

be seen in the following corollaries.

Corollary 2.3 ([10, inequality 4, p. 447]). If f(z) ∈
∑∗(p, w0), then

p

(1 + p)2
≤ |w0| ≤

p

(1− p)2
.

Proof. Let B1 = 2 in (2.1) of Theorem 2.2. �

Corollary 2.4 ([10, Theorem 1, p. 447]). Let f ∈
∑∗(p, w0) andf(z) = z + a2z

2 + · · · in
|z| < p. Then the second coefficienta2 is given by

a2 =
1

2
w0

(
b2 − p2 − 1

p2
− 1

w2
0

)
,

where the region of variability fora2 is contained in the disk∣∣∣∣a2 +
1

2
w0

(
p2 +

1

p2
+

1

w2
0

)∣∣∣∣ ≤ |w0|.

Proof. Let B1 = 2 in (2.2) of Theorem 2.2. �

The next theorem is for convex meromorphic functions.

Theorem 2.5. Let φ(z) = 1 + B1z + B2z
2 + · · · andf(z) = z + a2z

2 + · · · in |z| < p. If
f ∈

∑
(p, φ), then

2p2 −B1p + 2

2p
≤ |a2| ≤

2p2 + B1p + 2

2p
.

Also∣∣∣∣∣a3 −
1

3

(
p2 +

1

p2

)
− 2

3
a2

2 − µ

(
a2 − p− 1

p

)2
∣∣∣∣∣ ≤


|2B2+3µB2

1 |
12

if |2B2

B1
+ 3µB1| ≥ 2,

B1

6
if |2B2

B1
+ 3µB1| ≤ 2.

Proof. Let h now be defined by

h(z) = −
[
1 +

zf ′′(z)

f ′(z)
+

2p

z − p
− 2pz

1− pz

]
= 1 + b1z + b2z

2 + · · ·

andp1 be defined as in the proof of Theorem 2.2. A computation shows that

b1 = 2

(
p +

1

p
− a2

)
, and(2.10)

b2 = 2

(
p2 +

1

p2
+ 2a2

2 − 3a3

)
.(2.11)

From (2.6) and (2.10), we have

(2.12) a2 = p +
1

p
− B1c1

4
.

From (2.7) and (2.11), we have

(2.13) a3 =
1

24

(
8p2 +

8

p2
+ 16a2

2 − 2B1c2 + B1c
2
1 −B2c

2
1

)
.

From (2.12), we have

2p +
2

p
− 2a2 =

1

2
B1c1
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or ∣∣∣∣2p +
2

p
− 2|a2|

∣∣∣∣ ≤ |2p +
2

p
− 2a2| ≤

1

2
B1|c1| ≤ B1.

Thus we have
−B1 ≤ 2p + (2/p)− 2|a2| ≤ B1

or
2p2 −B1p + 2

2p
≤ |a2| ≤

2p2 + B1p + 2

2p
.

From (2.12) and (2.13), we obtain∣∣∣∣∣a3 −
1

3

(
p2 +

1

p2

)
− 2

3
a2

2 − µ

(
a2 − p− 1

p

)2
∣∣∣∣∣

=

∣∣∣∣ 1

24

(
−2B1c2 + B1c

2
1 −B2c

2
1

)
− µ

(
B2

1c
2
1

16

)∣∣∣∣
=

B1

12

∣∣∣∣c2 −
(

1

2
− B2

2B1

− 3µB1

4

)
c2
1

∣∣∣∣ .

The result now follows from Lemma 2.1. �
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