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ABSTRACT. In this paper, some subclasses of meromorphic univalent functions in the unit disk
A are extended. Ldl/(p) denote the class of normalized univalent meromorphic functfons

in A with a simple pole at = p > 0. Let ¢ be a function with positive real part o with

¢(0) =1, ¢’(0) > 0 which mapsA onto a region starlike with respect tawhich is symmetric

with respect to the real axis. The clds¥ (p, wo, ¢) consists of functiong € U(p) satisfying

2f'(2) P Pz
(Tt ) e
The classy (p, ¢) consists of functiong € U (p) satisfying

f"(z) | 2p 2pz
- (1+Zf’(2) NP 1—292) <oz

The bounds foiw, and some initial coefficients gfin 3" (p, wo, ¢) and>_(p, ¢) are obtained.
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1. INTRODUCTION

Let U(p) denote the class of univalent meromorphic functignis the unit diskA with a
simple pole at = p > 0 and with the normalizatiori(0) = 0 and f'(0) = 1. LetU*(p, wy) be
the subclass df (p) such thatf(z) € U*(p, wp) if and only if there is g, 0 < p < 1, with the
property that

%L(Z) <0
f(z) —wo
for p < |z| < 1. The functions inU*(p,wy) map|z| < r < p (for somep, p < p < 1)
onto the complement of a set which is starlike with respeai¢do Further the functions in
U*(p, wo) all omit the valuew,. This class of starlike meromorphic functions is developed from
Robertson’s concept of star center points [11]. Pedenote the class of functior(z) which
are meromorphic ir\ and satisfyP(0) = 1 andR{P(z)} > 0 forall z € A.
For f(z) € U*(p,wy), there is a functiorP(z) € P such that

f'(2) P PE_ p,
(2.1) Zf(z)—w0+z—p 1—pz P()

forall = € A. Let > "(p,wy) denote the class of functiongz) which satisfy [(1.]L) and the
condition f(0) = 0, f'(0) = 1. ThenU*(p, w,) is a subset op " (p, wy). Miller [9] proved that

U*(p, wo) = >-"(p, wo) for p < 2 — /3.
Let K'(p) denote the class of functions which belond ) and magz| < r < p (for some
p < p < 1) onto the complement of a convex set.flE K(p), then thereis @ < p < 1, such

that for eacle, p < |z| < 1
d%d}
R1+ <0.
{ f'(2)

If f € K(p), then for eaclr in A,

(1.2) %{1+zf@)+ L }go
fi(z)  z2—=p 1-pz

Let > (p) denote the class of functiorfswhich satisfy [(1.R) and the conditiorf§0) = 0 and
f(0) = 1. The classk (p) is contained ir)_(p). Royster[12] showed that fér < p < 2 — /3,
if f € > (p)andis meromorphic, thefie K(p). Also, for each functiory € > (p), thereis a
function P € P such that

f'(z) | 2p 2z
z — =

fz) z—=p 1-pz
The clasd/(p) and related classes have been studied/in([3],[[4], [5] @and [6].

Let A be the class of all analytic functions of the forfiz) = 2 + a»2® + azz® + --- in

A. Several subclasses of univalent functions are characterized by the quantities f(z)
or 1+ zf"(z)/f'(z) lying often in a region in the right-half plane. Ma and Minda [7] gave
a unified presentation of various subclasses of convex and starlike functions. For an ana-
lytic function ¢ with positive real part om\ with ¢(0) = 1, ¢'(0) > 0 which maps the unit
disk A onto a region starlike (univalent) with respectitavhich is symmetric with respect
to the real axis, they considered the clas$¢) consisting of functionsf € A for which
2f'(2)/f(z) < ¢(z) (z € A). They also investigated a corresponding claés) of functions
f e Asatisfyingl + zf"(2)/f'(2) < ¢(2) (2 € A). For related results, sele [1,[2/8] 13]. In
the following definition, we consider the corresponding extension for meromorphic univalent
functions.

1+ —P(2).
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Definition 1.1. Let ¢ be a function with positive real part ah with ¢(0) = 1, ¢’(0) > 0 which
mapsA onto a region starlike with respecttavhich is symmetric with respect to the real axis.
The classy " (p, wo, ¢) consists of functiong € U(p) satisfying

2f'(2) % Pz
_(f(z)—w0+z_p_ 1—pz) < ¢(z) (z€A).
The classy (p, ¢) consists of functiong € U(p) satisfying
f"(2) 2p 2pz
_ <1+Zf’(z) + o 1_pz> < ¢(2) (z€A).

In this paper, the bounds adm,| will be determined. Also the bounds for some coefficients
of fin > " (p, wo, ¢) and>_(p, ¢) will be obtained.

2. COEFFICIENTS BOUND PROBLEM
To prove our main result, we need the following:

Lemma 2.1([7]). If p1(2) = 1+ ¢12 + 2% + - - - is a function with positive real part in\,
then
—dv+2 if v<o0,

lcg —vei] << 2 if 0<v<1,

4v — 2 if v>1.

Whenv < 0 orv > 1, equality holds if and only if, (z) is (1+z)/(1—z) or one of its rotations.
If 0 < v < 1, then equality holds if and only if; (z) is (1 + 2?)/(1 — 2?) or one of its rotations.
If v = 0, the equality holds if and only if

1 1 1+z 1 1 1—2z
_ (.2 - <A<1
Pi(z) (2+2>‘> 1—z+(2 2>\) 7, 0sAsD
or one of its rotations. I = 1, the equality holds if and only f; is the reciprocal of one of
the functions such that equality holds in the case ef 0.

Theorem 2.2.Let¢(z) = 1+ Biz + Boz? +--- and f(z) = z +axz® +--- in|z| < p. If
f € > (p,wo, ¢), then

2p
w, g
0 pBici — 2p? — 2
and
p p
2.1 — < || < —.
( ) p2—|—Blp+1_| 0|_p2—31p+1

Also, we have

‘wogﬂ If |B2’ Z Blu
2.2)

Wo 2 1 1
ag + — p+ﬁ+—2 <

2 wp lwolByif |B,| < B.

Proof. Let h be defined by

h(z) = — [fo’(Z) p Pz

— =14biz+by2+---.
(2) —wy z—p 1—pz
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Then it follows that

1 1
(2.3) by=p+-+—, and
P Wo
1 1 2
(2.4) by =P+ =+ —5 + —2
p Wy Wo

Since¢ is univalent andh < ¢, the function

-1
PI(Z)_M=1+012+0222+---

1= 0¢71(h(2))
is analytic and has a positive real partin Also, we have
p(z) — 1)
2.5 hiz) = ¢ | 22— =
@5) @ =0 (20
and from this equatior (2.5), we obtain
1
(26) bl = 53161
and
1 1 1
(27) bg = §Bl (CQ - 50%) + ZBQC%.
From (2.3),[(2.#),[(2]6) an@ (3.7), we get
2p
2.8 =
(2.8) o pBicy — 2p? — 2
and
2
w p w w 1
(29) Ao = §0(2B1€2 — Blci + BQC%) - TO - 2_p()2 - 2—100
From {2.3) and[(2]6), we obtain
1 1 1
P + -4+ —= —3101
p wy 2

and, sincec;| < 2 for a function with positive real part, we have

1 1 1 1
p+—-——|<|lp+—-—+—|<=Bila| < B,
p |wol P wo 2
or . .
-Bi<pt+-——<D5;
|wol
Rewriting the inequality, we obtain
p < Juwo| < p
p*+Bip+1 p*—Bip+1

wo [ 5 1 1 wy (1 1, 1,
— -+ = ||=|= (=B - = -B
az + 5 (p —I—p2 +w8)‘ ‘ 5 (2 1le2—5a +4 2C1

Cy — —Bl_B2 c?
2 2B, 1

The result now follows from Lemnia2.1.
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The classe$ " (p, wo, ¢) and > (p, ¢) are indeed a more general class of functions, as can
be seen in the following corollaries.

Corollary 2.3 ([10, inequality 4, p. 447)If f(z) € >_"(p,wp), then

p P
< |wal < .
T =l =g 7p

Proof. Let B; = 2in (2.1) of Theorem 2]2. O

Corollary 2.4 ([10, Theorem 1, p. 447))Let f € > "(p,wo) and f(z) = z + azz? + -+ in
|z] < p. Then the second coefficientis given by

where the region of variability foti, is contained in the disk

. SRR | |wol

a —W - i Wo]|.

27T 5o D P2 wd)| = 0

Proof. Let B; = 2 in (2.2) of Theorem 2]2. O
The next theorem is for convex meromorphic functions.

Theorem 2.5.Let¢(z) = 1 + Biz + Boz® + - and f(z) = z + azz? + -+ in |z] < p. If
f€2(p,¢), then

2p2—Blp+2 2p2+Blp+2
—§|CL2|§—.
2p 2p
Also
|2B2+3uB2?| . 2B

1/, 1\ 2, N2 | T iR 3B 22

ag =3 |\ P + 5 B A < _
p p B if |22 +3uBy| <2

Proof. Let h now be defined by

2f"(2) 2p 2pz 5
hiz)=—|1 — =1+4+bz+b -
(Z) |: —+ f’(Z) Z—p 1—])2 + 1Z+ 2z +
andp, be defined as in the proof of Theorém|2.2. A computation shows that
1
(210) by =2 (p + - - CLQ) , and
p
1
(2.11) by = 2 (p2 + =+ 202 — 3a3> .
p
From (2.6) and[(2.10), we have
1 B
(2.12) ar =p+ — — 1
P 4
From (2.7) and[(2.11), we have
1

(213) az = ﬂ

From (2.12), we have

8
<8p2 + = +16a2 — 2Bicy + Bic? — Bﬁ) .

2 1
2]7 + - — 2@2 = —3101
P 2
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2
'2p+ — — 2|ay]
p

2 1
< |2p+ b 2a,| < §B1|Cl| < Bi.

Thus we have

or

—B1 < 2p+ (2/p) — 2|az| < By

20° + B 2
< lag| < M
2p

From (2.12) and (2.13), we obtain

Ll 1 2, 1\’
az — — — | —za; — ag —p— —

1 BQ 2
— (—23102 + Blc% — BQCf) — ( 161) ‘

~ 24 16
B (- )
12 2 2B 4 un
The result now follows from Lemnia2.1. O
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