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Abstract:

Acknowledgment:

In this paper, some subclasses of meromorphic univalent functions in the
unit disk A are extended. Ld¥(p) denote the class of normalized univa-
lent meromorphic functiong in A with a simple pole at = p > 0. Let

¢ be a function with positive real part oA with ¢(0) = 1, ¢’(0) > 0
which mapsA onto a region starlike with respect tavhich is symmetric

with respect to the real axis. The clds¥ (p, wo, ¢) consists of functions

f € U(p) satisfying

_(ﬂg¥

The classy_(p, ) consists of functiong € U(p) satisfying

e e
(g ) <o

) p pz
0 —|—Z_p— 1—pz> =< ¢(2).

The bounds forw, and some initial coefficients of in >_"(p, wo, ¢) and
> (p, ¢) are obtained.
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1. Introduction

Let U(p) denote the class of univalent meromorphic functigria the unit diskA
with a simple pole at = p > 0 and with the normalizatiori(0) = 0 and f'(0) = 1.
Let U*(p, wy) be the subclass @f(p) such thatf(z) € U*(p, wy) if and only if there
isap, 0 < p < 1, with the property that
f(z) —wo

for p < |z| < 1. The functions inU*(p, wy) map|z| < r < p (for somep, p <

p < 1) onto the complement of a set which is starlike with respeatto Further
the functions inU*(p, wy) all omit the valuew,. This class of starlike meromorphic
functions is developed from Robertson’s concept of star center pditis [[et P
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denote the class of functio¥ z) which are meromorphic itk and satisfyP(0) = 1
and%{P(z)} >(0forall z € A. P »

For f(z) € U*(p, wo), there is a functiorP(z) € P such that p R

(1.2) z ') + b b= = —P(z) Page 4 of 14

f(z)—wy  2—p 1-pz
forall z € A. Let > "(p, wy) denote the class of functiornf§z) which satisfy (.1)
and the conditiory(0) = 0, f/(0) = 1. ThenU*(p,w,) is a subset ob_"(p, wy). Full Screen
Miller [ 9] proved thatl/*(p, wy) = > *(p, wy) for p < 2 — /3.
Let K (p) denote the class of functions which belon@t) and mapz| < r < p
(for somep < p < 1) onto the complement of a convex set.flE K(p), then there
isap < p < 1, such that for each, p < |z] < 1
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If f € K(p),then for each in A,
1 2 2

(1.2) %{1+zf,<z> v L Pz }go.
fl(z)  z—p 1-pz

Let > (p) denote the class of functions which satisfy (.2) and the conditions
f(0) =0andf’'(0) = 1. The classK (p) is contained i _(p). Royster [L2] showed

that for0 < p < 2 — /3, if f € 3 (p) and is meromorphic, thefi € K (p). Also, e b is
for each functionf € > (p), there is a functiorP € P such that e
f”(Z) 2p 2pz vol. 10, iss. 3, art. 71, 2009

1+ = —P(2).

@) T p 1o
The clasd/(p) and related classes have been studie@Ji{ 4], [5] and [6].

Let A be the class of all analytic functions of the forfitz) = z + ax2® + Contents
azz® + -+ in A. Several subclasses of univalent functions are characterized by the « Y
quantitiesz f'(z)/f(z) or 1 + zf"(z)/ f'(2) lying often in a region in the right-half
plane. Ma and Mindaf] gave a unified presentation of various subclasses of convex < >
and starlike functions. For an analytic functigrwith positive real part om\ with
»(0) = 1, ¢'(0) > 0 which maps the unit disk\ onto a region starlike (univalent)
with respect td which is symmetric with respect to the real axis, they considered the Go Back
classS*(¢) consisting of functiong” € A forwhichzf'(z)/f(z) < ¢(z) (2 € A).
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They also investigated a corresponding clags) of functions f € A satisfying Full Screen

1+ 2f"(2)/f(2) < ¢(z) (=2 € A). For related results, sed,[2, 8, 13]. In Close

the following definition, we consider the corresponding extension for meromorphic
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with respect to the real axis. The class’(p, wo, ¢) consists of functiong € U(p)
satisfying

- (f(zz]; (—ZLO * zﬁp 1 ﬁ;) < ¢(2) (z€A).
The clas$y (p, ¢) consists of functiong € U(p) satisfying
') | 2p 2pz
— (1+Zf,(z) +Z—p_ T

In this paper, the bounds dny| will be determined. Also the bounds for some
coefficients off in > (p, wo, ¢) and>_ (p, ¢) will be obtained.
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2. Coefficients Bound Problem

To prove our main result, we need the following:

Lemma 2.1 ([7]). If p1(z) = 1+ c12 + 2% + - -+ is a function with positive real
partin A, then

—4v+2 if v <0,
co —vei| < {2 if 0<ov<I,
4v — 2 if v>1.

Whenv < 0 orv > 1, equality holds if and only i, (z) is (14 z)/(1 — z) or one of
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Title Page
its rotations. If0 < v < 1, then equality holds if and onlyjif (z) is (1+22)/(1—z?)
or one of its rotations. If = 0, the equality holds if and only if CEniEnE
< >
1 1 1+z2 1 1 1—2z
=({=+=A —— =) 0<A<1
n(z) <2+2)1—z+<2 2)1—|—z (0<Ars<) < >
or one of its rotations. I = 1, the equality holds if and only if; is the reciprocal Page 7 of 14
of one of the functions such that equality holds in the case-e0. Go Back
Theorem 2.2.Let¢(z) = 1 + Biz + By2? + -+ and f(z) = z + ap2®> + --- in s
2| < p. If f € 3" (p,wo, ¢), then o sereen
M Close
Wo = 2 : : -
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Also, we have

lwollB2ljf |By| > B
wo [ 4 1 1 2 20 ="

(2.2) @+—(p+—+—N§
p wolBiif |By| < B.

Proof. Let h be defined by

h(z)::__{ 2f'(2) p pz

— }:1+blz+b222+---.

f(z)—wy z—p 1—pz
Then it follows that

11
(2.3) by=p+-+—, and
P Wwo
1 1 2
(2.4) by =P+ — + — + —2.
D Wy Wo

Since¢ is univalent andh < ¢, the function
1407 (h(2))

1—¢7'(h(2))
is analytic and has a positive real partin Also, we have

(2.5) hz) = ¢ (M)

pi(z) +1

p1(2) =1+ciz+ ez’ + -

and from this equatior?(5), we obtain

1
(26) b1 = 53101
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and

1 1 1

(27) bQ = 531 (62 — 56%) + ZBQC%.
From (2.3, (2.4), (2.6) and ¢.7), we get
2p
2. =
( 8) o pBlcl — 2p2 -2
and
2
Wo P wg wWo 1

(29) Ay = ?(2-8102 - Blc% -+ BQC%) — T — 2_])2 — Q_U)O

From (2.3) and @.6), we obtain

1 1 1
‘p—i——— S’p-i———i—— < -Bila| < B
p |wol P wo| 2
or .
-Bi<p+-——-<DB;
p o |wol
Rewriting the inequality, we obtain
p p
poarny -y S L :
p*+ Bip+1 p*—DBip+1
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From (2.9), we obtain

wo [, 1 1 wo (1 1, 1.,
-0 =) =122 (2B (- = °B
as + B <p + p2 + w(%)' ‘ 5 (2 11 Co 201 + 4 2C1

Co — —Bl _ BQ C2
2 2B, -

The result now follows from Lemma. 1. ]

_ |wO’Bl
4

The classe$ " (p, wo, ¢) and> (p, ¢) are indeed a more general class of func-

tions, as can be seen in the following corollaries.

Corollary 2.3 ([10, inequality 4, p. 447]).If f(z) € > "(p, wy), then

p p
—— < |wy| < .
T == Tpp
Proof. Let B; = 2in (2.1) of Theorem2.2. ]

Corollary 2.4 ([10, Theorem 1, p. 447]).Letf € > *(p,wo) and f(z) = z+ay2>+
- in|z| < p. Then the second coefficientis given by

where the region of variability foa, is contained in the disk

+ 2_|_ + <’ |
a w Wol-
2 5 o|\P 3 w2 > 0

Proof. Let By = 2in (2.2) of Theorem2.2. ]

The next theorem is for convex meromorphic functions.
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Theorem 2.5.Let¢(z) = 1 + Byz + Boz? + - and f(z) = 2z + az2? + --- in

|z] < p. If f € (p, o), then

20° — B 2 20’ + B 2
p 1p+ §|a2|§ p+ 1p+ )
2p 2p
Also
1 2+1 2, 1\2
as — — — | — =a5 — ag —p— —
33\t PECh Lt
|2B2+3uB?|

12

IN

L if 222 4+ 3uBy| < 2.

Proof. Let h now be defined by

z2f"(2) 2p 2pz
h(z)=— |1+ —
=) { fi(z)  z2=p 1-pz
andp; be defined as in the proof of Theoreén?. A computation shows that

:|:1+b12+6222+"'

1
(210) by =2 (p + - — CLQ) , and

p

1
(2.11) by =2 (p2 + I? + 202 — 3a3) .
From (2.6) and ¢.10, we have
1 B
(2.12) as=p+ — — i)
P 4
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From (2.7) and ¢.11), we have

1 8
(2.13) a3 = 5, (Sp + =+ 16a3 — 2B1cy + By — Bgcf) :
From (2.12), we have
2 1
2p + 5 — 2&2 = §B101

or
2
2p + — — 2|ay]
p

Thus we have
~By <2+ (2/p) — 2|as| < By

or

From (2.12 and ¢.13, we obtain

Ly 2, 1\?
as — = — | —za; — ag —p— —
szt g) 3 rle-ro g

2 1
< |2p+5— 2a5| < §Bl|01| < Bi.
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