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Abstract

Every convex set in the plane gives rise to geometric functionals such as the
area, perimeter, diameter, width, inradius and circumradius. In this paper, we
prove new inequalities involving these geometric functionals for planar convex
sets containing zero or one interior lattice point. We also conjecture two results

concerning sets containing one interior lattice point. Finally, we summarize Inequalities for Lattice
known inequalities for sets containing zero or one interior lattice point. Constrainedglanaf Convex
ets
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Let K2 denote the set of all planar, compact, convex sets. L. dte a set in

K? with areaA = A(K), perimeterp = p(K), diameterd = d(K), width

w = w(K), inradiusr = r(K) and circumradiu? = R(K). Let K° denote
the interior of K. LetI" denote the integer lattice. The lattice point enumerator
G(K°,T") is defined to be the number of points Ibfcontained ink°. In the
case wheré&:(K°,I") = 0, we say thatx is lattice-point-free.

In this article, we prove new inequalities involving the geometric functionals
A, p,d,w,r and R for setsK € K? with G(K°,T') = 0 andG(K°,T) = 1.
These may be found in SectioAsand3 respectively. In Sectiod, we conjec-
ture two results concerning sefs € K2 with G(K°,I") = 1. Finally, in Sec-
tions5 and6, we summarize known inequalities in one and two functionals for
setsK € K? with G(K°,T) = 0 andG(K°,T) = 1 respectively (see’[] for
a summary of inequalities involving two and three functionals for séts K2

without lattice constraints). Although there are extensive bibliographies for lat-

tice constrained convex setg [0, 11, 12, 24], this article attempts to organise
the numerous results for seks € K2 with G(K°,T) = 0 andG(K°,T) = 1.

Although these results are rather special, they are a natural starting point for
problems in the area and have in fact served as a springboard for many new and

interesting problems.

In the statements of the theorems and the conjecture, each inequality is fol-

lowed by a set for which the inequality is sharp.
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Theorem 2.1.Let K € K2 with G(K°,T) = 0. Let\ = 2v/2sin ¢/2, ¢ being
the unique solution of the equatiem § = 7/2 — 0, (¢ ~ 0.832 ~ 47.4°). Then

(2.1) r < ?, Co (Figure2a),
(2.2) % < 2\~ 2.288, H, (FigureZ2c),
-1
A 1 V3 .

: = > = - ~ 0.

(2.3) 5 2 \/§<1+ 2) 0.309, &, (Figure2b),
24) 2r—-1)p < il(\/i—l), Sy (Figure 2e).

r

Proof. To prove @.1), we use the following lemma fron®]:

Lemma 2.2. Suppose thakk € K? and G(K°,T) = 0. Then there is a set
K, € K? with G(K.°,T") = 0. satisfying the following conditions:

(@) r(K) <r(K.),

(b) K, is symmetric about the lines= 1,y = 1.

From the lemma, it suffices to prove.{) for setsK which are symmetric
about the lineg: = % andy = % To fully utilise the symmetry of<” about the
linesz = ; andy = 1, we move the origin to the poirtt, ). If » < 2, then
(2.1 is trivially true. Hence we may assume that- % Since K° does not

contain the points? (3, 3), P2(—3, 1), Ps(—3, —3) and Py(3, —3), it follows
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by the convexity ofK that for eachi = 1,...,4, K is bounded by a liné;
through the point?; with [; andls; having negative slope ang andi, having
positive slope. Furthermore, sinéé is symmetric about the coordinate axes,
K is contained in a rhombu@ determined by the linek,i = 1,...,4. Since
K CQ,r(K) <r(Q). Clearlyr(Q) < v2/2. Hencer(K) < v/2/2 and @.1)
is proved. An example of a set for which the inequality is sharp is the @cle
(FigureZ2a).

(2.2 follows easily from a result by Scott ], thatif K € K£*with G(K°,T) =
0, then

A
— <= 1.144
d_ )

(2.5)
where) is as defined in Theoreth 1. The result is best possible with equality
when and only wherk = 'H,, (Figure2c). Usingd < 2R and @.5), it follows
immediately that

4 oxm 2088
R T

with equality when and only wheR = H,, (Figure2c).

The proof of .3) follows easily by combining two known results. The first
is that of all sets irkC? with a given width, the equilateral triangle has the least
area P7, p. 68]. Henced > (1/v/3)w?. We also recall from 17] that if
K € K?with G(K°,T) = 0, then

&

<1l+—
w_+2,
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with equality when and only wheR = &, (Figure2b). Hence

-1
A AN 1 _ 1 V3
—_— = — ] — > — —_— ~ U. .
e (wZ)w—\@<1+ 2) 0.309
Equality holds when and only wheld = &, (Figure2b).
To prove @.4), we use aresult front]: If K € K2 with G(K°,T) = 0, then

(2.6) (2r —1)A<2(vV2-1),

with equality when and only wheR = S, (Figure2e). We also note from the

same paper, that K is a convex polygon” may be partitioned into triangles
by joining each vertex of{ to an in-centre of. Summing the areas of these
triangles gives

1
A> =
_2]973

with equality when and only when every edgefotouches the unique incircle.
Since any set irk? is either a convex polygon, or may be approximated by a
convex polygon, this inequality is valid for all setsAi¥. By combining this
inequality with €.6), we have 2.4), with equality when and only wheR = S,
(Figureze). [
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Theorem 3.1.LetK € K2withG(K°,T) = 1, . Let) be as defined in Theorem
2.1 Then

(3.1) r < 1, (; (Figure3a),
A _ - :
(3'2) E S 2\/5/\ ~ 3’232’ Hl (Flgure Bd)’ Colr?set?alljiﬁgt(ljelilgor:al_rag:)cri/ex
1 ) . Sets
(3'3) A(w o \/§> < iw ’ ’Tl (Flgure 36), Poh Wah Hillock and Paul R. Scott
8 ,
(3.4) (2r—=v2)p < —(2-V2), & (Figure3g).
r Title Page
We note that$.1), (3.2) and @.4) are the results for set& ¢ K? having Contents
G(K°,T') = 1 corresponding tod.1), (2.2) and @.4) respectively. Furthermore,
we recall from P7] that if K € K2 with G(k°,T) = 0, then « dd
1 < >
: —1) < —w?
(3.5) Alw—1) < 5w ———
with equality when and only wheR™ = 7, (Figure2f). We observe that3(3) Close
is the result corresponding t8.6) for setsK € K? havingG(K°,T) = 1. Quit

In fact, (3.9) has been proved in.f], where the method of proof is an adap-
tation of the method ing7]. In this paper we present a short and different proof Page 7 of 20
for (3.3). We will see that all the inequalities of Theoréi follow immedi-
a_tely from thel_r corresponding inequalities for lattice-point-free sets by using a * '”;‘:-t;:j;;;;‘mﬁ;_Z;‘S:;ff’ Art. 23,2002
simple sublattice argument.



http://jipam.vu.edu.au/
mailto:pscott@maths.adelaide.edu.au
http://jipam.vu.edu.au/

Proof. Let
I"={(z,y):x+y=1 mod2)}.

-
Inequalities for Lattice
// S L, Constrained Planar Convex
e i e Sets
‘& (0] N
R /‘\\ Poh Wah Hillock and Paul R. Scott
// 1’" )
N Title Page
ve
E r Contents
<4< >
, . o < 4
Figure 1: The lattica".
Go Back
Suppose thall € K2, with G(K°,T) = 1. Then clearlyG(K°,T") = 0 Close
(Figurel). We also observe thdt is essentially an anticlockwise rotationIof
Quit

aboutO through an angler/4 and scaled by a factor af2. Now let A’, p/, d’
w', ', andR’ be the area, perimeter, diameter, width, inradius and circumradius Page 8 of 20

respectively ofA” measured in the scale bf. Then since7(K°,1") = 0, the
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inequalities 2.1), (2.2), (3.5), and @.4) apply, from which we have

r < g, Co

% < 2\, HY
AW 1) < S T
ef -1 < S(VI-1), S,

whereCy', Hy', 7o', andS,’ are the set§,, H,, 7, andS, respectively rotated
anticlockwise abou® throughr /4 and scaled by a factor af2. HenceC,' =
C, (Figure3a), Hy = H; (Figure3d), 7, = 7; (Figure3e), andS, = S,
(Figure3g). Furthermore, sincE’ is a rotation ofl" scaled by a factor of/2,
we have

1\? 1 1 1 1
A/—(—) A p=——= w=—w, "=—r, RR=—R.

NG NG R NG
Substituting these into the above inequalities, we obtaii),((3.2), (3.3),
and (3.4) respectively. O
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Conjecture 4.1. Let K € K? with G(K°,T") = 1. LetO be the circumcentre
of K in (4.2). Then

A 1 4
4.1 = > .~ ~0.243, & (Figure3db),
(4.1) wd \/3 \/5(5 + \/g) 1 (Fig ) Inequalities for Lattice
. ined PI
(4.2) A S o~ 4.05’ Ql (Flgure 3f). Constraine ge?:ar Convex
The problem which occurs ir(l) is that for a sefs € K2 with G(K°,T) = e IR LA ST LGRS
1, w < 142 ~ 2.414, with equality when and only whefi = 7, (Figure
3e) [23]. Since this set of largest width is not an equilateral triangle, the method Title Page
used to proved.3) cannot be applied. e
A simple calculation shows that the width &f (Figure 3b) is i\/ﬁ@ +
V/3) &~ 2.38. Hence if0 < w < 1v/2(5 4+ v/3), an equilateral triangle contain- 4« 4
ing one interior lattice point may be constructed. Since> (1/+/3)w? with < >
equality when and only wheR' is an equilateral triangle, for this range of Go Back
we have 0 Bac
A_(A)1> 1 1 ~ 0.943 Close
w T\ w T BV Qui

with equality when and only wheR = &, (Figure3b).
This leaves unresolved those cases for wHigf2(5 + v/3) < w < 1+ V2.
We believe that the set for which/w? is minimal is congruent to the equilateral
. . J. Ineq. Pure and Appl. Math. 3(2) Art. 23, 2002
tnangleé’l (Flgure3b). http://jipam.vu.edu.au

Page 10 of 20
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In [21], Scott conjectures a result concerning the maximal area of & set
K? with G(K°,T) = 1 and having circumcentr®. Using a computer run, we
discover that the conjecture is false. We revise the conjecture as stated)jn (
with equality when and only wheR = Q, (Figure3f).
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Tables5.1and6.1list the known inequalities (including conjectures) involving
one and two functionals for lattice-point-free sets and sets containing one inte-
rior lattice point respectively. The extremal sets referred to in the tables may be
found in Figures2 and3 respectively. Where a sta#)(appears in the inequality
column, no inequality is known for the corresponding functionals.

Parameters | Inequality Extremal | Reference
Set
A unbounded
D unbounded
d unbounded
w w < 1(24V/3) ~ 1.866 o [17
R unbounded
r r < /2/2 Co (2.2)
Ap A< 3p Po [6]
A, d Ald <\ A= 1.144 Ho [18]
Ajw 1. (w—1)A < fw? To [20]
2.4 > L (1+ %) ~ 0309 & 2.3
AR A/R <2\ A~ 1.144 Ho (2.2
Ar 1.(2r — 1A <2(vV2—1) =~ 0.828 So [2]
2.2r—1]A-1] < 3 Po [2]

Continued ...
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Parameters | Inequality Extremal | Reference
Set

p,d *

pow (w—1)p < 3w & 20

p, R *

pr [T =T —4<2 P [
2.2r—p<i(WV2-1) So (2.4)

d, w (w-D@d-1)<1 7y [19]

d,R 2R—d < 5 &o [4]

d,r 2r—1)d-1) <1 Py [2]

w, R 1. (w—l)RS\/igw &o [2]
2. (w—1)(2R —1) < ¥3 1 1 ~1.289 & [25]

w,r w—2r <+ + 33~ 0.622 &o [4]

R,r 2r—-1)(2R-1)<1 Py [25]

Table 5.1: Inequalities for the casg(K°,T") = 0.
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[The circleCy) . D *

[The equilateral triangl€]

./q}\.
.\/./.

[The truncated diagonal squdkg), ¢ ~ 47.7°]

— oo

[The parallel strigPy]

— & — & — o —

[The diagonal squar&;] [The triangle7;]

Figure 2: Extremal sets for the caG¢K°,T") = 0
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Parameters | Inequality Extremal | Reference
Set
A 1. A < 4if Ois centre ofK e.g0.S [16]
2. A<45if Oisthe C.G. Ehrhart'sA [9]
3. Conjecture
If O is the circumcentre theA ~ 4.05 Q; (4.2)
P unbounded
d unbounded
w 1w<1++v2~2414 T, [27]
2. If O is the C.G. themw < 3v/2/2
for the family of triangles Ehrhart'sA [13]
R R < o= 1.685 or R unbounded T [2]
r r<l1 Cy (3.9
A p Alp <22+ /7) ' =~ 053 U [1, 7]
(O is centre ofK)
A, d Ald < V2X\ A\~ 1.144 H, [15]
A w 1. A(w — V2) < \%wz T (3.3, [14]
2. Conjecture:
o5 2 U5 vanym ~ 0-243 & (4.2)
AR A/R < 2/2) H, (3.2
Ar A(2r —V/2) < 4(2 —/2) = 2.343 S [3]
p,d *
p,w *
p, R *
pr | p@r—v2) <22-v2) Si (3.4
d,w (w—v2)(d-v2) <2 T [29]
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[The circleC,] [The equilateral triangl€;]

[Ehrhart'sA]
e
[The truncated squark;, ¢ ~ 47.7°] A, e [The

-_—d—

isosceles trianglé, ]

[The truncated quadrilater@;, R ~ 1.593, a &~ 5.47°,  ~ 20.23°]

[The squares; ] N
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