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Abstract

Every convex set in the plane gives rise to geometric functionals such as the
area, perimeter, diameter, width, inradius and circumradius. In this paper, we
prove new inequalities involving these geometric functionals for planar convex
sets containing zero or one interior lattice point. We also conjecture two results
concerning sets containing one interior lattice point. Finally, we summarize
known inequalities for sets containing zero or one interior lattice point.

2000 Mathematics Subject Classification: 52A10, 52A40, 52C05, 11H06
Key words: Planar Convex Set, Lattice, Lattice Point Enumerator, Lattice-Point-Free,

Sublattice, Area, Perimeter, Diameter, Width, Inradius, Circumradius.
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1. Introduction
Let K2 denote the set of all planar, compact, convex sets. LetK be a set in
K2 with areaA = A(K), perimeterp = p(K), diameterd = d(K), width
w = w(K), inradiusr = r(K) and circumradiusR = R(K). Let Ko denote
the interior ofK. Let Γ denote the integer lattice. The lattice point enumerator
G(Ko, Γ) is defined to be the number of points ofΓ contained inKo. In the
case whereG(Ko, Γ) = 0, we say thatK is lattice-point-free.

In this article, we prove new inequalities involving the geometric functionals
A, p, d, w, r andR for setsK ∈ K2 with G(Ko, Γ) = 0 andG(Ko, Γ) = 1.
These may be found in Sections2 and3 respectively. In Section4, we conjec-
ture two results concerning setsK ∈ K2 with G(Ko, Γ) = 1. Finally, in Sec-
tions5 and6, we summarize known inequalities in one and two functionals for
setsK ∈ K2 with G(Ko, Γ) = 0 andG(Ko, Γ) = 1 respectively (see [26] for
a summary of inequalities involving two and three functionals for setsK ∈ K2

without lattice constraints). Although there are extensive bibliographies for lat-
tice constrained convex sets [8, 10, 11, 12, 24], this article attempts to organise
the numerous results for setsK ∈ K2 with G(Ko, Γ) = 0 andG(Ko, Γ) = 1.
Although these results are rather special, they are a natural starting point for
problems in the area and have in fact served as a springboard for many new and
interesting problems.

In the statements of the theorems and the conjecture, each inequality is fol-
lowed by a set for which the inequality is sharp.

http://jipam.vu.edu.au/
mailto:pscott@maths.adelaide.edu.au
http://jipam.vu.edu.au/


Inequalities for Lattice
Constrained Planar Convex

Sets

Poh Wah Hillock and Paul R. Scott

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 20

J. Ineq. Pure and Appl. Math. 3(2) Art. 23, 2002

http://jipam.vu.edu.au

2. Some Elementary Results for Lattice-Point-Free
Sets

Theorem 2.1. Let K ∈ K2 with G(Ko, Γ) = 0. Letλ = 2
√

2 sin φ/2, φ being
the unique solution of the equationsin θ = π/2− θ, (φ ≈ 0.832 ≈ 47.4o). Then

r ≤
√

2

2
, C0 (Figure2a),(2.1)

A

R
≤ 2λ ≈ 2.288, H0 (Figure2c),(2.2)

A

w3
≥ 1√

3

(
1 +

√
3

2

)−1

≈ 0.309, E0 (Figure2b),(2.3)

(2r − 1)p ≤ 4

r
(
√

2− 1), S0 (Figure2e).(2.4)

Proof. To prove (2.1), we use the following lemma from [3]:

Lemma 2.2. Suppose thatK ∈ K2 and G(Ko, Γ) = 0. Then there is a set
K∗ ∈ K2 with G(K∗

o, Γ) = 0. satisfying the following conditions:
(a) r(K) ≤ r(K∗),
(b) K∗ is symmetric about the linesx = 1

2
, y = 1

2
.

From the lemma, it suffices to prove (2.1) for setsK which are symmetric
about the linesx = 1

2
andy = 1

2
. To fully utilise the symmetry ofK about the

linesx = 1
2

andy = 1
2
, we move the origin to the point(1

2
, 1

2
). If r ≤ 1

2
, then

(2.1) is trivially true. Hence we may assume thatr > 1
2
. SinceKo does not

contain the pointsP1(
1
2
, 1

2
), P2(−1

2
, 1

2
), P3(−1

2
,−1

2
) andP4(

1
2
,−1

2
), it follows
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by the convexity ofK that for eachi = 1, . . . , 4, K is bounded by a lineli
through the pointPi with l1 andl3 having negative slope andl2 andl4 having
positive slope. Furthermore, sinceK is symmetric about the coordinate axes,
K is contained in a rhombusQ determined by the linesli, i = 1, . . . , 4. Since
K ⊆ Q, r(K) ≤ r(Q). Clearlyr(Q) ≤

√
2/2. Hencer(K) ≤

√
2/2 and (2.1)

is proved. An example of a set for which the inequality is sharp is the circleC0

(Figure2a).
(2.2) follows easily from a result by Scott [18], that if K ∈ K2 with G(Ko, Γ) =

0, then

(2.5)
A

d
≤ λ ≈ 1.144,

whereλ is as defined in Theorem2.1. The result is best possible with equality
when and only whenK ∼= H0 (Figure2c). Usingd ≤ 2R and (2.5), it follows
immediately that

A

R
≤ 2λ ≈ 2.288,

with equality when and only whenK ∼= H0 (Figure2c).
The proof of (2.3) follows easily by combining two known results. The first

is that of all sets inK2 with a given width, the equilateral triangle has the least
area [27, p. 68]. HenceA ≥ (1/

√
3)w2. We also recall from [17] that if

K ∈ K2 with G(Ko, Γ) = 0, then

w ≤ 1 +

√
3

2
,
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with equality when and only whenK ∼= E0 (Figure2b). Hence

A

w3
=

(
A

w2

)
1

w
≥ 1√

3

(
1 +

√
3

2

)−1

≈ 0.309.

Equality holds when and only whenK ∼= E0 (Figure2b).
To prove (2.4), we use a result from [3]: If K ∈ K2 with G(Ko, Γ) = 0, then

(2.6) (2r − 1)A ≤ 2(
√

2− 1),

with equality when and only whenK ∼= S0 (Figure2e). We also note from the
same paper, that ifK is a convex polygon,K may be partitioned into triangles
by joining each vertex ofK to an in-centre ofK. Summing the areas of these
triangles gives

A ≥ 1

2
pr,

with equality when and only when every edge ofK touches the unique incircle.
Since any set inK2 is either a convex polygon, or may be approximated by a
convex polygon, this inequality is valid for all sets inK2. By combining this
inequality with (2.6), we have (2.4), with equality when and only whenK ∼= S0

(Figure2e).
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3. Some Elementary Results for Sets Containing
One Interior Lattice Point

Theorem 3.1.LetK ∈ K2 withG(Ko, Γ) = 1, . Letλ be as defined in Theorem
2.1. Then

r ≤ 1, C1 (Figure3a),(3.1)
A

R
≤ 2

√
2λ ≈ 3.232, H1 (Figure3d),(3.2)

A(w −
√

2) ≤ 1

2
w2, T1 (Figure3e),(3.3)

(2r −
√

2)p ≤ 8

r
(2−

√
2), S1 (Figure3g).(3.4)

We note that (3.1), (3.2) and (3.4) are the results for setsK ∈ K2 having
G(Ko, Γ) = 1 corresponding to (2.1), (2.2) and (2.4) respectively. Furthermore,
we recall from [22] that if K ∈ K2 with G(Ko, Γ) = 0, then

(3.5) A(w − 1) ≤ 1

2
w2,

with equality when and only whenK ∼= T0 (Figure2f). We observe that (3.3)
is the result corresponding to (3.5) for setsK ∈ K2 havingG(Ko, Γ) = 1.

In fact, (3.3) has been proved in [14], where the method of proof is an adap-
tation of the method in [22]. In this paper we present a short and different proof
for (3.3). We will see that all the inequalities of Theorem3.1 follow immedi-
ately from their corresponding inequalities for lattice-point-free sets by using a
simple sublattice argument.
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Proof. Let
Γ′ = {(x, y) : x + y ≡ 1 mod 2)}.

O

Γ

Γ /

Figure 1: The latticeΓ′.

Suppose thatK ∈ K2, with G(Ko, Γ) = 1. Then clearlyG(Ko, Γ′) = 0
(Figure1). We also observe thatΓ′ is essentially an anticlockwise rotation ofΓ
aboutO through an angleπ/4 and scaled by a factor of

√
2. Now letA′, p′, d′

w′, r′, andR′ be the area, perimeter, diameter, width, inradius and circumradius
respectively ofK measured in the scale ofΓ′. Then sinceG(Ko, Γ′) = 0, the

http://jipam.vu.edu.au/
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inequalities (2.1), (2.2), (3.5), and (2.4) apply, from which we have

r′ ≤
√

2

2
, C0

′

A′

R′ ≤ 2λ, H0
′

A′(w′ − 1) ≤ 1

2
(w′)2, T0

′

(2r′ − 1)p′ ≤ 4

r′
(
√

2− 1), S0
′,

whereC0
′,H0

′, T0
′, andS0

′ are the setsC0, H0, T0 andS0 respectively rotated
anticlockwise aboutO throughπ/4 and scaled by a factor of

√
2. HenceC0

′ =
C1 (Figure3a), H0

′ = H1 (Figure3d), T0
′ = T1 (Figure3e), andS0

′ = S1

(Figure3g). Furthermore, sinceΓ′ is a rotation ofΓ scaled by a factor of
√

2,
we have

A′ =

(
1√
2

)2

A, p′ =
1√
2
p, w′ =

1√
2
w, r′ =

1√
2
r, R′ =

1√
2
R.

Substituting these into the above inequalities, we obtain (3.1), (3.2), (3.3),
and (3.4) respectively.
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4. Conjectures for Sets Containing One Interior
Lattice Point

Conjecture 4.1. Let K ∈ K2 with G(Ko, Γ′) = 1. LetO be the circumcentre
of K in (4.2). Then

A

w3
≥ 1√

3
.

4√
2(5 +

√
3)
≈ 0.243, E1 (Figure3b),(4.1)

A ≤ α ≈ 4.05, Q1 (Figure3f).(4.2)

The problem which occurs in (4.1) is that for a setK ∈ K2 with G(Ko, Γ) =
1, w ≤ 1 +

√
2 ≈ 2.414, with equality when and only whenK ∼= I1 (Figure

3e) [23]. Since this set of largest width is not an equilateral triangle, the method
used to prove (2.3) cannot be applied.

A simple calculation shows that the width ofE1 (Figure 3b) is 1
4

√
2(5 +√

3) ≈ 2.38. Hence if0 < w ≤ 1
4

√
2(5 +

√
3), an equilateral triangle contain-

ing one interior lattice point may be constructed. SinceA ≥ (1/
√

3)w2 with
equality when and only whenK is an equilateral triangle, for this range ofw
we have

A

w3
=

(
A

w2

)
1

w
≥ 1√

3
.

4√
2(5 +

√
3)
≈ 0.243,

with equality when and only whenK ∼= E1 (Figure3b).
This leaves unresolved those cases for which1

4

√
2(5 +

√
3) < w ≤ 1 +

√
2.

We believe that the set for whichA/w3 is minimal is congruent to the equilateral
triangleE1 (Figure3b).
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In [21], Scott conjectures a result concerning the maximal area of a setK ∈
K2 with G(Ko, Γ) = 1 and having circumcentreO. Using a computer run, we
discover that the conjecture is false. We revise the conjecture as stated in (4.2),
with equality when and only whenK ∼= Q1 (Figure3f).
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5. Inequalities Involving One and Two Functionals
for Lattice-Point-Free Sets

Tables5.1and6.1 list the known inequalities (including conjectures) involving
one and two functionals for lattice-point-free sets and sets containing one inte-
rior lattice point respectively. The extremal sets referred to in the tables may be
found in Figures2 and3 respectively. Where a star (?) appears in the inequality
column, no inequality is known for the corresponding functionals.

Parameters Inequality Extremal Reference
Set

A unbounded
p unbounded
d unbounded
w w ≤ 1

2
(2 +

√
3) ≈ 1.866 E0 [17]

R unbounded
r r ≤

√
2/2 C0 (2.1)

A, p A < 1
2
p P0 [6]

A, d A/d ≤ λ, λ ≈ 1.144 H0 [18]
A, w 1. (w − 1)A ≤ 1

2
w2 T0 [20]

2. A
w3 ≥ 1√

3
(1 +

√
3

2
)−1 ≈ 0.309 E0 (2.3)

A, R A/R ≤ 2λ, λ ≈ 1.144 H0 (2.2)
A, r 1. (2r − 1)A ≤ 2(

√
2− 1) ≈ 0.828 S0 [3]

2. (2r − 1)|A− 1| < 1
2

P0 [3]
Continued . . .
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Parameters Inequality Extremal Reference
Set

p, d ?
p, w (w − 1)p ≤ 3w E0 [20]
p, R ?
p, r 1. (2r − 1)|p− 4| < 2 P0 [3]

2. (2r − 1)p ≤ 4
r
(
√

2− 1) S0 (2.4)
d, w (w − 1)(d− 1) ≤ 1 T0 [19]
d,R 2R− d ≤ 1

3
E0 [4]

d, r (2r − 1)(d− 1) < 1 P0 [3]
w, R 1. (w − 1)R ≤ 1√

3
w E0 [20]

2. (w − 1)(2R− 1) ≤
√

3
6

+ 1 ≈ 1.289 E0 [25]
w, r w − 2r ≤ 1

3
+ 1

6

√
3 ≈ 0.622 E0 [4]

R, r (2r − 1)(2R− 1) ≤ 1 P0 [25]

Table 5.1: Inequalities for the caseG(Ko,Γ) = 0.
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[The circleC0] [The equilateral triangleE0]

[The truncated diagonal squareH0, φ ≈ 47.7o]

φ

[The parallel stripP0]

[The diagonal squareS0]

π/4

[The triangleT0]
w

d

Figure 2: Extremal sets for the caseG(Ko, Γ) = 0
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6. Inequalities Involving One and Two Functionals
for Sets Containing One Interior Lattice Point
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Parameters Inequality Extremal Reference
Set

A 1. A ≤ 4 if O is centre ofK e.g.S1 [16]
2. A ≤ 4.5 if O is the C.G. Ehrhart’s4 [9]
3. Conjecture:
If O is the circumcentre thenA ≈ 4.05 Q1 (4.2)

p unbounded
d unbounded
w 1. w ≤ 1 +

√
2 ≈ 2.414 I1 [23]

2. If O is the C.G. thenw ≤ 3
√

2/2
for the family of triangles Ehrhart’s4 [13]

R R ≤ α ≈ 1.685 or R unbounded T [2]
r r ≤ 1 C1 (3.1)

A, p A/p ≤ 2(2 +
√

π)−1 ≈ 0.53 U1 [1, 7]
(O is centre ofK)

A, d A/d ≤
√

2λ, λ ≈ 1.144 H1 [15]
A, w 1. A(w −

√
2) ≤ 1√

2
w2 T1 (3.3), [14]

2. Conjecture:
A
w3 ≥ 1√

3
. 4√

2(5+
√

3)
≈ 0.243 E1 (4.1)

A, R A/R ≤ 2
√

2λ H1 (3.2)
A, r A(2r −

√
2) ≤ 4(2−

√
2) ≈ 2.343 S1 [3]

p, d ?
p, w ?
p, R ?

p, r p(2r −
√

2) ≤ 8
r
(2−

√
2) S1 (3.4)

d, w (w −
√

2)(d−
√

2) ≤ 2 T1 [23]
d,R Conjecture:

2R− d ≤
√

2
6

.(7− 3
√

3) ≈ 0.425 E1 [5]
d, r ?
w, R ?
w, r Conjecture:

w − 2r ≤
√

2
12

(5 +
√

3) ≈ 0.793 E1 [5]
R, r ?

Table 6.1: Inequalities for the caseG(Ko, Γ) = 1
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[The circleC1] [The equilateral triangleE1]

[Ehrhart’s4]

[The truncated squareH1, φ ≈ 47.7o]

φ

[The

isosceles triangleI1] d
||

||

[The truncated quadrilateralQ1, R ≈ 1.593, α ≈ 5.47o, β ≈ 20.23o]

β

α

R

[The squareS1]

[The triangleT1]

w

d

[The triangleT , R ≈ 1.685]

R

O

[The rounded squareU1, r ≈ 0.530]

r

Figure 3: Extremal sets for the caseG(Ko, Γ) = 1
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