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ABSTRACT. We propose to extend Talenti’s estimates onith@orm of the second order deriva-
tives of the solutions of a uniformly elliptic PDE with measurable coefficients satisfying the
Cordes condition to the non-uniformly elliptic case.
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1. INTRODUCTION

The Cordes conditions first were used by H. O. Cordés [1] and later by G. Talenti [5] to
proveC®, Ct* andW?? estimates for the solutions of second order linear and elliptic partial
differential equations in non-divergence form

n

Au = Z al-j(:c)Diju,

i,j=1

whereA = (a;;) € L*>(Q2,R™™) is a symmetric matrix function. As an introductory remark
about the Cordes condition we can say that by using the normalization (see [5])

n

i=1
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2 ANDRAS DOMOKOS

or strictly positive lower and upper bounds (see [1])
0<p< Zan’(l“) <P
=1

we get a condition equivalent to the uniform ellipticity condition®# and stronger than it

in R", n > 3. At the same time it seems to be the weakest condition which implies4hat

is an isomorphism between the spatg$*(Q) and L*(Q) and implicitly gives existence and
unigueness for boundary value problems with measurable coeffidiénts [4]. As an application it
was used to prove the second order differentiability-eharmonic functions [3].

If we assume that the Cordes condition is satisfied, then it is possible to give an optimal
upper bound of thé? norm of the second order derivatives to the solution W;*(2) of the
problem

Au=f, feL*Q)
in terms of a constant times the? norm of f. An interesting method, that connects linear
algebra to PDE'’s, has been developed. in [5]. In this paper we will extend this method to not
necessarily uniformly elliptic problems and as an application we will also show a change in Tal-
enti’s constant. More exactly, estimafte (1.2) below holds in the case of operators with constant
coefficients, but needs a change to cover the general case.

Let us consider the bounded dom&ine R™ with a sufficiently regular boundary and the
Sobolev space

W22(Q) = {u € LX(Q) : Dyu e LXQ), Vi, j e {1,... ,n}}
endowed with the inner-product
(u,v)pz2 = / (u(x)v(x) + Z D;ju(z) - Dijv(ac)> dx.
Q Q=1

Let W2*(Q2) be the closure af’s°(Q) in W22(Q2) and denote by)?u the matrix of the second
order derivatives.
We state now Talenti’s result using our setting.

Theorem 1.1([5]). Let us suppose that for a fixéd< ¢ < 1 and almost every: € () the
following conditions hold:

1.1 i(r) =1 i <
(1.1) ;a“(x) and ijZﬂ(al](x)) e
Then, for allu € W;*(Q) we have
vn—1+4¢
(1.2) || D?ul| 20y < — <\/n —T+e+/(1—e)(n— 1)) || Aul[ L2y -

2. MAIN RESULT

Consider the matrix valued mappingy: Q@ — M, (R), whereA(x) = (a;;(x)) with a;; €
L>(2), and let

(2.1) Au = Z a;;(z)Dyj(u).
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We use the notationga|| = /a2 +---+a2 for a = (ay,...,a,) € R* andtrace A =
> _i—y a;; for the trace of am x n matrix A = (a,;). Also, we denote byA, B) =37, a;;bi;

the inner product and byA|| =, />"7,_, a;; the Euclidean norm ifR"™*".

Definition 2.1 (Cordes conditior{,). We say thatA satisfies the Cordes conditidty. if there
existss € (0, 1] such that

(2.2) 0 < [|A(2)|]* < . (traceA(a:))z,

n—1
for almost everyr € Q2 and
1
——c I}
trace A loc

Remark 2.1. We observe that inequality (2.2) implies that for

(2).

__Wn
ole) = trace A(x)
we have
1 ) 1 2
(2.3) 0< 5y S MEIP < m(traceA(m))

with o(-) € L2_.(Q2). Therefore without a strictly positive lower bound faface A(z), the

loc

Cordes conditior, does not imply uniform ellipticity. As an example we can mention

y 5
e = o v
defined on

Q:{(m,y)€R2zx>0,y>0,0<x2+y2<1,1<g<2}.
T

In this case inequality (2.2) looks like

2 2 2
< .
v oy t+y < (@)
Considering the lineg = mx we see that
m 2
=infd ——:1l<m<2; ==
€=1n {m2+m—|—1 m } -
and
V2
o(x) = :
Tr+y

Remark 2.2. In the case when we want to have a strictly positive lower boundrfae A we
should use a Cordes conditidq , that asks for the existence of a numbes 0 such that
(2.4 0< < e <A@IP € ———(trace A(x))
. — — T — | trace X
v T oX(x) T “n—1+4¢
for almost everyr € Q. In this way the normalized conditiofi (1.1) corresponds toRhg,
since) " | a; = 1 implies thaty = n.

We recall the following lemma from [5].
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Lemma 2.3. Leta = (a4, ...,a,) € R". Suppose that

(2.5) (a1 + - +an)” > (n—1)|a|”.
If for o > 1 and > 0 the condition
1 1 1
. 2> _ - 2, - _ — _
@8) (e (n-te D)l g (=14 2 - D),

holds, then we have
(2.7) 1BI® + 200 " Kiky < Blaks + -+ + anky)?
1<j
forall k = (ky,...,k,) € R™
The next lemma is the nonsymmetric version of the original one in Talenti's paper [5]. By
nonsymmetric version we mean that we drop the assumptiomitisasymmetric. On the other
hand, it is easy to see that Lemma]2.4 below will not hold for arbitrary nonsymmetric matrices

P, even in the case whethis diagonal. For the completeness of our paper we include the proof,
which can be considered as a natural extension of the original one.

Lemma 2.4. Let A = (a;;) be ann x n real matrix. Suppose that

(2.8) (trace A)? > (n — 1)||A||*.
If for « > 1 and > 0 the condition
1 1 1
: 2> (n—-—14+-= 24 (n— - —
(2.9) (trace A)* > (n 1+ a> | Al + 3 (n 1+ a) (a—1)
holds, then we have
2.10 P2+ P Pii | < g(a, Py
(2.10) 1P aZ: o po | SBAP)

for all real and symmetria: x n matricesP = (p;;).

Proof. Consider an arbitrary but fixed real and symmetric makti®t follows that there exists
a real orthogonal matri€’ and a diagonal matrix

kq 0
D = .
0 k.,
such that? = C~'DC'. Observe that
1 < Dii  Dij
2 Z Dij DPjj

ij=1

is the coefficient of\"~2 in the characteristic polynomial d?, therefore

L~ | pi vy Z
- Z i i _ k’ik?]
2 i,j=1 pij pjj 1<J
Moreover,
(2.11) > pf =trace(P?) = > k7.

ij=1 i=1
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Hence, inequality] (2.10) can be rewritten as

N 2
(2.12) |k|? + QQZkikj <p (Z aijpij) .

i<j ij=1
Let B = CAC~!. Thentrace B = trace A and
(2.13) (A, P) = trace(AP)
= trace(CAPC™)
= trace(CAC*CPC™)
= trace(BD)

1=1

Also, becausé? and A are unitary equivalent, we have

n n n
Sy b= al
i=1 ij

,j=1

Thereforep = (by1, ..., bnn), a andg satisfy the conditior (2]6) from Lemna 2.3, and hence

Z P +2a0)  kiky < B(buky + - + bunkn)? = B(A, P)*.

1<j

Using (2.11) —@3) we geff (210). O

Theorem 2.5. Suppose that! satisfies the Cordes conditioki.. Then for allu € C3°(2) we
have

1
(2.14) 102l 2@ < - (\/n Tt/ -)(n— 1)) oAl |20
Proof. Fix z € Q such that[(2]3) holds and consider an arbitrary 1/=. Then

(iau(m>>2> (n—1+ )||A< I

=1

In order to choos@(x) > 0 such that

(2.15) (iaii(x)>2 > (n—l—l— >||A( )||2+@ (n— 1+$) (a—1),

=1
observe that conditio/, is equivalent to

(Z())z (=1 2 ) AP + (2= ) @

Therefore we have to askz) to satisfy

(= 2) @I 2 55 (=14 1) -1,

(n—1a’+ (2—n)a—1
ca—1 '

and hence

(2.16) B(x) > o*(x)
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Considering the functiorf : (1/e, +00) — R defined by
fla) = (n—1Da?+2-n)a—-1

cea—1
we get that its minimum point is
n—1++y(n—1)1-e)(n—1+¢)
(n—1)e '

Therefore, the minimum value of (z) f(«), which is coincidentally the best choice 8fz),
is

Y

o =

2e—en+2n—2++/(n—1)(1—¢)(n—1+¢)

2
(\/n—1+€+\/ (I1-¢)(n—-1) )
Applying Lemmg 2.4 in the case ofe C5°(Q2) andp;; = D;;u(z), we get

(2.17) /ZDUU dx </ﬁ )(Au(z))*d

7,7=1

B(x) = o?(z

)
z)

D;u(z) Diju(x)
D;ju(xz) Djju(x)

But, integrating by parts two tlmes we get

(2.18) /Diiu(m)Djju(:p)dm:/Diju(x)Diju(m)dm,
Q Q
and hence

Diu(x)  Dij(z)
Diju(z) Djju(z)

Therefore, for alku € C§°(2) we have

1
1D%ullzzqe) < = (VA= 1T+ + /T =)= D) lloAul 20

(2.19)

0J
Theorenj 2.p clearly implies the following result.

Corollary 2.6. Suppose thatl satisfies Cordes conditiofi. .. Then for allu € W;"*(Q2) we
have

@20) (D%l < ¥ (Vi Tr e+ VT 00— D) Ml

Remark 2.7. In the case ofrace A = 1 we get that

If we compare estimatg (1.2) with ours from (4.21) we realize that our constant on the right
hand side is larger. The interesting fact is that the two constarjts in (1.2) anfd (2.21) coincide in
the case whenl = %I ande = 1, and give (see [2])

| D?ul| 120y < ||Aul|r2(), forall uwe Wi2(Q).

Looking at Talenti's papel [5] we realize that the way in which the condgastchosen on page
303 leads to

1
2.22 A LD —
(2.22) M@)P > ——
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Comparing this inequality t¢ (I.1) which gives

1 1
—<|lA El
S< AP <
and therefore )
A L
IA@IP = —=—.

we conclude that (2.22) (and hen¢e [1.2)) holds for constant matddest may fail for a
nonconstantd(z) on a subset of2 with positive Lebesgue measure. Therefore, the estimate
(2.27) is the right one for nonconstant matrix functiof{s) satisfying [(1.1).

Remark 2.8. Another interesting fact is found when applying our method to the case of convex
functionsu. In this case we can further generalize the Cordes condition in the following way:
We say thatA satisfies the conditiof. () if

eL? (Q
trace A toc(£2)

and there exists a measurable function? — R such tha0) < ¢(z) < 1 fora.e.xz € Q and
1 € L*(Q2), and the following inequalities hold:

1 <trace A(x)
o*(x)
Inequality [2.1F) in this case looks like

/ S (Dyule))dr + Y / ‘ g“Z f{% 3]152?3 ‘dxé /Q B(x)(Au(z))2dz

1,j=1 i#£j

Observe that the convexity efimplies thatD?u(z) is positive definite, which makes the deter-
minants

) <A@ < (traceA(x))

(2.23) 0< s g

Diju(z) Djju(x)
positive. We conclude in this way that under the Cordes condiigp, for all convex functions
u € W22(Q) we still have

|| D uHLz(Q)<H (x/n—1+5+\/1—5 n—l))aAu

L2(Q)
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