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ABSTRACT. In this paper, using the Hausdorff topology in the space of open sets under some
capacity constraints on geometrical domains we prove the strong continuity with respect to the
moving domain of the solutions of i@Laplacian Dirichlet problem. We are also interested in
the minimization of the first eigenvalue of tipeLaplacian with Dirichlet boundary conditions
among open sets and quasi open sets of given measure.
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1. INTRODUCTION

Let Q be an open subset of a fixed ballin RV, N > 2 andl < p < +oco. Consider the
Sobolev spac&/, ”(Q) which is the closure of> functions compactly supported fafor the
norm

lullt, = [ Juwlrd+ [ [Vato)ps
Thep-Laplacian is the operator defined by
Ay Wi () — WH4(0)
u— Apu = div(|VulP~*Vu),
wherelV ~14(0) is the dual space d¥/;”(€2) and we have < p,q < oo, 2 +1=1.
We are interested in the nonlinear eigenvalue problem
{ —Apu — ANulP?u = 0inQ,

1.1
(1) U = 0onof.
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2 IDRISSALY

Letu be a function o, ”(£2), not identically0. The functionu is called an eigenfunction if

/|Vu(m)|p_2VuV¢da: = )\/ lu(x)|P 2updx
Q Q

for all p € C3°(2). The corresponding real numbgis called an eigenvalue.

Contrary to the Laplace operator, theaplacian spectrum has not been proved to be discrete.
In [15], the first eigenvalue and the second eigenvalue are described.

Let D be a bounded domain iR" andc > 0. Let us denote\}(€2) as the first eigenvalue for
the p-Laplacian operator. The aim of this paper is to study the isoperimetric inequality

min{\/(Q),Q C D and |Q] = ¢}

and its continuous dependance with respect to the domain. We extend the Rayleigh-Faber-
Khran inequality to the-Laplacian operator and study the minimization of the first eigenvalue

in two dimensions whe is a box. By considering a class of simply connected domains, we
study the stability of the minimizet, of the first eigenvalue with respect tothat is if €2,

is a minimizer of the first eigenvalue for theLaplacian Dirichlet, wherp goes to2, 2, is

also a minimizer of the first eigenvalue of the Laplacian Dirichlet. Thus we will give a formal
justification of the following conjecture:(? is a minimizer of given volume, contained in a

fixed box D and if D is too small to contain a ball of the same volume&a#re the free parts

of the boundary of? pieces of circle?"

Henrot and Oudet solved this question and proved by using the Hélmgren uniqueness theo-
rem, that the free part of the boundaryf@tannot be pieces of circle, see [10].

The structure of this paper is as follows: The first section is devoted to the definition of two
eigenvalues. In the second section, we study the properties of geometric variations for the first
eigenvalue. The third section is devoted to the minimization of the first eigenvalue among open
(or, if specified, quasi open) sets of given volume. In the fourth part we discuss the minimization
of the first eigenvalue in a box in two dimensions.

Let D be a bounded open setltl’ which contains all the open (or, if specified, quasi open)
subsets used.

2. DEFINITION OF THE FIRST AND SECOND EIGENVALUES
The first eigenvalue is defined by the nonlinear Rayleigh quotient
Jo|Vo(@)Pde [, [Vui(2)Pdx
pewir@ez0  Jolo(@)[P Jo lur () |pda
where the minimum is achieved lay which is a weak solution of the Euler-Lagrange equation
{ —Apu— ANulPu = 0 in Q

)\1(9) =

(2.1) u — 0 on 0.

The first eigenvalue has many special properties, it is strictly positive, simple in any bounded
connected domain see |15]. And is the only positive eigenfunction for theLaplacian
Dirichlet see alsa [15].

In [15], the second eigenvalue is defined by

\Y Pd
A2(Q2) = inf max —f9| o(z)| x’
cee; ¢ [ |o(x)lP
where
Cy = {C e WyP(Q) : C = —C such thatgenus(C) > 2}.
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In [1], Anane and Tsouli proved that there does not exist any eigenvalue between the first and
the second ones.

3. PROPERTIES OF THE GEOMETRIC VARIATIONS
In this section we are interested in the continuity of the map
Q— A\ (Q).

Then, we have to fix topology on the space of the open subséis ©h the family of the open
subsets of), we define the Hausdorff complementary topology, denéiédiven by the metric
dpe (95, 95) = sup |d(x, Q) — d(x, 5)].

z€RN

The He-topology has some good properties for example the space of the open subiSats of
compact. Moreover if2,, = 2, then for any compadk’ CC €2 we havek CC €2, forn large
enough.

However, perturbations in this topology may be very irregular and in general situations the
continuity of the mappin@ — X, (Q2) fails, seel[4].

In order to obtain a compactness result we impose some additional constraints on the space
of the open subsets @ which are expressed in terms of the Sobolev capacity. There are many
ways to define the Sobolev capacity, we use the local capacity defined in the following way.

Definition 3.1. For a compact set’” contained in a balB,

cap(K, B) :—inf{/ IVolP, ¢ € C°(B),¢>1 on K}.
B

Definition 3.2.

(1) Itis said that a property holdsquasi everywhere (abbreviatedas- ¢.¢) if it holds
outside a set gp-capacity zero.

(2) A setQ) C R" is said to be quasi open if for eveey> 0 there exists an open sgt
such that) C Q., andcap(2\2) < e.

(3) A functionu : RY — R is saidp-quasi continuous if for every > 0 there exists an
open sef), such thatap(€).) < e andug o, is continuous iMR\(2,.

It is well known that every Sobolev functiane W'?(RY) has ap-quasi continuous repre-
sentative which we still denote. Therefore, level sets of Sobolev functions arguasi open
sets; in particulaf2, = {z € D;|v(z)| > 0} is quasi open subsets 6f.

Definition 3.3. We say that an open s@thas thep — (r, ¢) capacity density condition if

cap(2¢ N B(z,9), B(x,26)) .
cap(B(z,0), B(x,20))
whereB(x, ¢) denotes the ball of raduis centred atr.

Vre o), YO<d<r,

Definition 3.4. We say that the sequence of the spald&s’((2,) converges in the sense of
Mosco to the spacl’, 7(Q) if the following conditions hold
(1) The first Mosco condition: For afi € W, ”(Q) there exists a sequeneg € W, *(Q,)
such thatp,, converges strongly ifi’; (D) to ¢.
(2) The second Mosco condition: For every sequefges Wol’p (92, ) weakly convergent
in W, (D) to a functiong, we havep € W, 7 ().
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Definition 3.5. We say a sequencel,,) of open subsets of a fixed bdll ~,-converges t®? if
forany f € W—54(Q) the solutions of the Dirichlet problem

—Nup, = fin Qu, € WoP(Q)

converge strongly iV, ”(D), asn — 400, to the solution of the corresponding problem in
Q, seel7], [8].

By O, (D), we denote the family of all open subsets/ofwhich satisfy thep — (r, c)
capacity density condition. This family is compact in tHé topology see [4]. In[2], D. Bucur
and P. Trebeschi, using capacity constraints analogous to those introduce in [3] and [4] for the
linear case, prove thg,-compactness result for theLaplacian. In the same way, they extend
the continuity result of Sverak [19] to theLaplacian forp € (N — 1, N], N > 2. The reason
of the choice ofp is that inR" the curves have positive capacity ifp > N — 1. The case
p > N is trivial since all functions it/1?(R") are continuous.

Let us denote by

O(D) ={Q C D, tQ° <1}
wheref denotes the number of the connected components. We have the following theorem.
Theorem 3.1(Bucur-Trebeschi)Let N > p > N — 1. Consider the sequenc€,,) C O,(D)

and assume thd®, converges in Hausdorff complementary topology2tarhen? C O,(D)
and(2, ~,—converges t@..

Proof of Theorem 3]1See [2]. O

For N = 2andp = 2, Theoren] 31 becomes the continuity result of Sverak [19].
Back to the continuity result, we use the above results to prove the following theorem.

Theorem 3.2. Consider the sequen¢€,,) C O,(D). Assume thaf2,, converges in Hausdorff
complementary topology . Then\;(£2,) converges to\(£2).

Proof of Theorem 3]2Let us take

. Jo, IVOu(2)Pdz [, |Vu,(z)[Pdx
A () = min n = == ,
bne WS (Q) b0 o |Pn(@)[P o, [un(@) [P

where the minimum is attained by,,, and

Q= i elVE@Pd V@l
pewiT @070 Jo [O(@)IP Jo lu(@)|Pda
where the minimum is achieved ly.

By the Bucur and Trebeschi theorefd, -, converges td2. This impliesiV,*(£2,,) con-
verges in the sense of Moscoltig, 7 ().

If the sequencéu,,) is bounded inlV,”(D), then there exists a subsequence still denoted
u,, such thatu, converges weakly i, ”(D) to a functionu. The second condition of Mosco
implies thatu € W, 7(Q).

Using the weak lower semicontinuity of tH& —norm, we have the inequality

lim inf fD |V, (x | dx > fQ |Vu(x |pdx > fQ |Vuy(x)|Pdx
n—too [, |un(z Jo lu(z Jo lua ()P

then

n—-+00
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Using the first condition of Mosco, there exists a sequefge € W, (,) such thatv,
converges strongly ifi’;” (D) to ;.

We have
- [ |V, (@) [Pda

— @)l

A (€2n)

this implies that

Vo, (x)Pd
lim sup A1 (€2,) < limsup fD| on(z)|dz
n—s+00 n—>+00 fD |Un(1')’p

~ lm fD\an(a:)de
n——+00 fD |Un(x)|p

_ Jo [Vuy () [Pdz

Jo lw (@)}
then
(3.2) lim sup A1 (2,) < A1 (9).
n—-4o00
By the relations|(3]1) andl (3.2) we conclude thaf(2,) converges to\ (). O

4. SHAPE OPTIMIZATION RESULT

We extend the classical inequality of Faber-Krahn for the first eigenvalue of the Dirichlet
Laplacian to the Dirichlep-Laplacian. We study this inequality whéhis a quasi open subset
of D.

Definition 4.1. Let Q be an open subset and boundedih. We denote by the ball centred
at the origin with the same volume 8sLet « be a non negative function in, which vanishes
ondf). For allc > 0, the set{z € Q, u(x) > ¢} is called the level set af.

The functionu* which has the following level set

Ve>0, {ze€B,u"(z)>c}={reQu)>c}
is called the Schwarz rearrangementofThe level sets ofi* are the balls that we obtain by
rearranging the sets of the same volume .of
We have the following lemma.
Lemma 4.1. Let() be an open subset R”.
Let) be any continuous function oR’ , we have
(1) Jov(u(x))de = [,. ¥(u*(z))dz  u*is equi-mesurable with.

(2) J,u(x)v(z)de < [, u*(x)v*(x)de.
(3) Ifu e WP (Q),p>1 thenu* € W,”(Q*) and

/|Vu(:1:)|pdx2 |Vu*(x)|Pdx  Polya inequality.
0 Q

Proof of Lemma 4]1See [12]. O

The basic result for the minimization of eigenvalues is the conjecture of Lord Rayleigh: “The
disk should minimize the first eigenvalue of the Laplacian Dirichlet among every open set of
given measure”. We extend the Rayleigh-Faber-Krahn inequality tp-tteglacian operator.

Let ) be any open set iRY with finite measure. We denote By((2) the first eigenvalue for
the p-Laplacian operator with Dirichlet boundary conditions. We have the following theorem.
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Theorem 4.2. Let B be the ball of the same volume @sthen
A (B) = min{)\(Q),Q opensetof RY,|Q| = |B|}.

Proof of Theorer 4]2Let u, be the first eigenfunction of, (2), it is strictly positive see [15].
By Lemmg 4.1, equi-mesurability of the functian and its Schwarz rearrangemeritgives

[ m@rds = [ juipd.

The Polya inequality implies that

/ YV (2)Pder > / Vs (2)Pda.
Q B

By the two conditions, it becomes

fB|Vu1 |pdx<fQ|Vu1 x)|[Pdx
[ lui(2)|Pda Jo lur () [pd

=\(Q).
This implies that

p * p
M(B) = i [ |Vu(z)Pdx < [ 1V (2)|Pda
VEWLP (B) w0 fB |v(z)[Pdx fB \ut(z)|Pdx

<A ().

O

Remark 4.3. The solutiorf2 must satisfy an optimality condition. We suppose thét— regular
to compute the shape derivative. We deform the dofaivith respect to an admissible vector
field V' to compute the shape derivative

4IQV) = lim J(Id +1Q) — J(Q)

t—0 t

We have the variation calculation
—div(|VulP?Vu) = MuP2u
—/ div(|VulP*Vu)pdr = / MNulP 2ugdz, forall ¢ € D(Q)
Q Q
/ |VulP2VuVedr = / MNu|P 2ugdz, forall ¢ € D(Q)
Q Q
Letustake/(Q) = [, [VulP~*VuVedz andJy () = [, MulP"*uddz. We havel.J(Q; V) =
dJ(; V).
We use the classical Hadamard formula to compute the Eulerian derivative of the functional
J at the point2 in the directionV.
dJ(Q; V) = /(]Vu]p2VuV¢)'d:L’ + / div(|VulP2VuVe.V(0))dz
Q Q
We have

/ (|VulP2VuVe) dx
Q

= / (|Vul|P~2)'VuVpdz + / |VulP2Vu(Ve) dr + / |VulP~2(Vu)'Vodz.
Q Q Q
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We have the expression
(IVul2) = (([vul)=")

p—2 / p—4
= 5 (IVul) ([Vul) >

(|VulP~2) = (p — 2)VuVu'|VuP~.
Then

dI(QV) = (p—2) / IVl VuP Ve Véde
Q

— / div(|Vul|P~>Vu)¢'dr — / div(|Vul|P~*(Vu))pdx
Q Q

dJ(Q,V)=(p—2) / \VulP~2Vu'Vodx
Q
—/div(|Vu|p_2Vu)¢'d:B—/div(|Vu|p_2(Vu)’)¢dx
Q Q
because
/ div(|Vu"2VuVe - V(0))de = | |[Vul"2VuVe - V(0) - vds = 0.
Q o0
We obtain
dJ(V)=—(p—1) / div(|Vu|P ">V ) pdr — / div(|VulP~*Vu)¢'dx
Q Q
We have also
dJ (Q; V) = / N |ulP~2updx + / NulP~?u ¢dx
Q Q
+ / MulP~?u¢/dx + (p — 2)/)\|u|p_2u’gz§dx,
Q Q
AT (Q: V) = / NulP~2ugdz + / MulP~2uddz + (p — 1) / AulP~2d gz
Q Q Q
dJ(; V) =dJi (2, V) implies
—(p— 1)/div(|Vu|p_2Vu’)¢dm— / div(|VuP~?Vu)¢'dx
Q Q
:/X\u]p2u¢d:1:+/)\\u]p2u¢’d:€+(p—1)/)\]u|p2u'¢d:v.
Q Q Q
By simplification we get
—(p— 1)/div(|Vu|p_2Vu/)¢dx— / div(|VulP~?Vu)¢'dx
Q Q
= / N |ulP~2upds + (p — 1)/ MNulP~%u/'¢pdz, forall ¢ e D(Q).
Q Q

This implies that
4.1) { —(p— Ddiv(|VulP2Vu') = NuP2u+ (p— 1)Aul~>' in D'(Q)
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We multiply the equatiorj (4] 1) by and by Green ’s formula we get

—(p—1) [/ div(|VulP~2Vu)u'dr +
Q 20

Finally we obtain the expression of

|VU|p_2Vu~l/u’ds] =N+(p-1) / Alul?™uu'dz.
Q

N V)y==(p-1) \VulPVu - viu'ds
20

whereu’ satisfiesu’ = —24V/(0) - » on9€2. Then

N(EQ,V)=—=(p-1) , |Vul|PV - vds.

We have a similar formula for the variation of the volum& (2, V) = [,V - vds, where
Jo(Q) = [ dx —c.
If ©2is an optimal domain then there exists a Lagrange multiplier0 such that

—(p—1) \Vu]pV-VdS:a/ V - vds.
o0 o0
Then we obtain )
|Vu| = (_—a> " on o
p—1
Sincef is C2—regular and: = 0 on 952, then we get
1
_% — (p__al)p on 9.

We are also interested the existence of a minimizer for the following problem
min{\(2),Q € A, |Q| < ¢},
whereA is a family of admissible domain defined by
A={Q C D,Q isquasiopeh

and);(2) is defined by
Jo |Vo(@)Pdz [, [V (z)Pdr
vewir @020 o lo(@)[P Jo lur(z)pdz
The Sobolev spacd/, ”(Q) is seen as a closed subspacéigf” (D) defined by
WyP(Q) ={u e WyP(D):u=0p—qe on D\Q}.

The problem is to look for weak topology constraints which would make the clasequen-
tially compact. This convergence is called wegkconvergence for quasi open sets.

>\1(Q) =

Definition 4.2. We say that a sequen¢®,,) of . A weakly~,-converges té) € A if the sequence
u, converges weakly in¥,”(D) to a functionu € W,”(D) (that we may take as quasi-
continuous) such th& = {u > 0}.

We have the following theorem.

Theorem 4.4. The problem
(4.2 min{\;(22),2 € A,|Q| < ¢}
admits at least one solution.
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Proof of Theorer 4]4Let us take

. Jo |Von(@)fPde o [Vun(z)[Pdz
A (Q,) = min =
€W () on20 Jo, [On(X)Pd [o Jun(z)Pda

Suppose thaff2,,) e is @ minimizing sequence of domain for the probl(4.2). We denote
by u, a first eigenfunction ofe,,, such thatf,, |u,(z)[Pdx = 1.

Sinceu,, is the first eigenfunction of; (2,,), u,, is strictly positive, cf[15], then the sequence
(Q2,,) is defined by, = {u,, > 0}.

If the sequencéu,,) is bounded iV, ”(D), then there exists a subsequence still denoted by
u, such that., converges weakly imVOl’p(D) to a functionu. By compact injection, we have
that [, |u(x)[Pdz = 1.

Let Q be quasi open and defined bBy= {u > 0}, this implies that: € W, ”(Q). As the
sequencéu,,) is bounded iV, ”(D), then

i fo |V, (x)[Pdx . Jo IVu(z)|Pdx . Jo IVuy () [Pda
n—too  [o |up(x)[Pda Jo [u(x)|Pda Jo [ur (@) [Pda

=\ (Q).

Now we show thalQ}| < c.

We know that if the sequenc®, weakly v,- converges td) and the Lebesgue measure
is weakly ,-lower semicontinuous on the clags (see [5]), then we obtaif{u > 0} <
lim+inf {u, > 0}| < cthis implies thafQ| < c. O

5. DOMAIN IN Box
Now let us takeV = 2. We consider the class of admissible domains defined by
C={Q,Q open subsets dd and simply connectedtp| = c}.

e Forp > 2, the p-capacity of a point is stricly positive and evely, ” function has a
continuous representative. For this reason, a property which holdg.e with p > 2
holds in fact everywhere. For > 2, the domain(2, is a minimizer of the problem
min{\}(9,),, € C}.

Consider the sequen¢g,, ) C C and assume that,, converges in Hausdorff com-
plementary topology té),, whenp, goes to 2 ang), > 2. ThenQ, C C and(2,,
~o-converges tdl.

By the Sobolev embedding theorem, we hag”" (€,.) — H}(Q,,). The v, -
convergence implies that;(¢,,) converges in the sense of Mosco & (€2,). For
p, > 2, by the Holder inequality we have

1 1
([ 1mae)” <10, 0875 ([ 190 mae) ™
% 1 1
(/ |Vupn|2> dw S C§7P7n)\€”(9pn).

Then the sequende,,, ) is uniformly bounded in7} (€2, ). There exists a subsequence
still denotedu,,, such thatu,, converges weakly it/;(D) to a functionu. The second
condition of Mosco implies that € Hj ().

Forp > 2, we have the Sobolev embedding theordih’ (D) — C%*(D).

Ascoli's theorem implies that,, — u« andVu,, — Vu locally uniformly in €2,
whenp,, goes to 2 ang,, > 2.
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Now show that

lim [ |uy, |*de =1 ie. /|u]2d:c = 1.

Pn—>2

Fore > 0 small, we have,, > 2 — . Noting that

i 1 1 P% 1 1
(/ |vupn|2_5d$) < |Qpn|ﬂ7p7” (/ |vupn|pndx> = ‘32767”7”)‘110%9%)7

this implies that the sequeneg, is uniformly bounded iV, “(9,,). Then there
exists a subsequence still denotgg such thatu,, is weakly convergent itff; (D) to
u. By the second condition of Mosco we get W,>~(Q,). It follows that

2—¢

— p7
e = tim [ b e < im0y, 175 ( [ prac) " < i
n n

Lettinge — 0, we obtain [ |u|*dz < 1.
On the other hand, Lemma 4.2 of [14] implies that

/ ufPrde > / fuy, [P da + pi / P 2diuy, (4 — up,).

The second integral on the right-hand side approathasp, — 2. Thus we get
[ lul*dz > 1, and we conclude thaf |u|?dz = 1.

In [11, Theorem 2.1 p. 3350} is continuous irp for & = 1,2, where \} is the
k — th eigenvalue for the-Laplacian operator.

We have

60 [V,

Letting p, go to2, p, > 2in (5.1), and noting that,,, converges uniformly ta on the
support ofp, we obtain

P2y, ¢dz, forall ¢ e D(y).

"V, Vods = [,

/Vquzﬁdx = /)\fugbdx, forall ¢ € D(Qy),

whence we have

—Au = Mu in D'(Qs)
U =0 on 0.

We conclude that whep — 2 andp > 2 the free parts of the boundary 9f, cannot
be pieces of circle.

e Forp < 2, we consider the sequen¢g,,) C C and assume thd?,, converges in
Hausdorff complementary topology fe,, whenp, goes to 2 ang),, < 2. Then by
Theorenj 31, we géb, C C and(2,, y»_.-converges tél,.

In [16], the sequenceéu,, ) is bounded inV!'2~¢(D), 0 < e < 1 that isVu,, con-
verges weakly inL?~¢(D)to Vu andu,, converges strongly i>=<(D) to u. In [18],
we get alsof |Vul?dz < § and [ |u|*dz < oc.

By Lemma 4.2 of[[14], we have

/ ufPrda > / fup, [P da + / P~ 2diy, (1 — ).
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The second integral on the right-hand side approathasp, — 2. Thus we get
[ lul*dz > 1. This implies that

lim [ |u,, > dz = / |u|?>“dx = 1.
pn—2

Lettinge — 0, we obtain[ |u|*dz = 1.

The v,_.-convergence implies that, converges strongly i, () tou. Ac-
cording to P. Lindqvist see [16], we hawvee H'(D), and we can deduce that €
H} (). As the first eigenvalue for the-Laplacian operator is continuous rcf [11],
we have

[ 1V 29, Voo = [

Lettingp,, go to2, p, < 2in (5.2), and noting that,,, converges uniformly ta on the
support ofp, we obtain

/ VuVeds = / Nupdr, forall ¢ e D(Qy),

whence we have

up, [P 2u,, ¢pdz, forall ¢ € D(Qy).

U =0 on 0f.

We conclude that whep — 2 andp < 2 the free parts of the boundary 9f, cannot
be pieces of circle.

{—Au = Mu in D'()
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