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Abstract

In this paper, using the Hausdorff topology in the space of open sets under
some capacity constraints on geometrical domains we prove the strong conti-
nuity with respect to the moving domain of the solutions of a p-Laplacian Dirich-
let problem. We are also interested in the minimization of the first eigenvalue of
the p-Laplacian with Dirichlet boundary conditions among open sets and quasi
open sets of given measure.
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Let Q be an open subset of a fixed ballin RV, N > 2 andl < p < +oo.
Consider the Sobolev spabié,”(Q2) which is the closure af> functions com-
pactly supported ifi2 for the norm

lull, = [ lu(@Pds + [ [Vu(o)Pds,
Q Q
Thep-Laplacian is the operator defined by

A, Wy P(Q) — Wh(Q)
u— Apu = div(|VulP~>Vu),

where W —14(0Q) is the dual space dfi/;”(Q) and we havel < p,q < oo,

=1
We are interested in the nonlinear eigenvalue problem

(1.1)

—Apu— MulP?u = 0inQ,
u = 0onofL.

Let u be a function ofi¥,*(Q2), not identically0. The functionu is called an
eigenfunction if

/\Vu(x)|p2VuV¢dx = )\/ lu(z) [P 2ugdx
0 0

for all ¢ € C3°(2). The corresponding real numbgis called an eigenvalue.
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Contrary to the Laplace operator, thd_aplacian spectrum has not been
proved to be discrete. In f], the first eigenvalue and the second eigenvalue are
described.

Let D be a bounded domain iR andc > 0. Let us denote\;((2) as the
first eigenvalue for the-Laplacian operator. The aim of this paper is to study
the isoperimetric inequality

min{\(Q),Q C D and |Q] = ¢}

and its continuous dependance with respect to the domain. We extend the
Rayleigh-Faber-Khran inequality to thhe_aplacian operator and study the min-
imization of the first eigenvalue in two dimensions wheris a box. By con-
sidering a class of simply connected domains, we study the stability of the min-
imizer 2, of the first eigenvalue with respect gdhat is if €2, is a minimizer of

the first eigenvalue for thg-Laplacian Dirichlet, whemp goes ta@, €2, is also a
minimizer of the first eigenvalue of the Laplacian Dirichlet. Thus we will give

a formal justification of the following conjecture(2"is a minimizer of given
volumec, contained in a fixed boX and if D is too small to contain a ball of

the same volume d3. Are the free parts of the boundary@fpieces of circle?"

Henrot and Oudet solved this question and proved by using the H6lmgren
uniqueness theorem, that the free part of the bounda®ya@nnot be pieces of
circle, see {0].

The structure of this paper is as follows: The first section is devoted to the
definition of two eigenvalues. In the second section, we study the properties of
geometric variations for the first eigenvalue. The third section is devoted to the
minimization of the first eigenvalue among open (or, if specified, quasi open)
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sets of given volume. In the fourth part we discuss the minimization of the first
eigenvalue in a box in two dimensions.

Let D be a bounded open setl’ which contains all the open (or, if spec-
ified, quasi open) subsets used.
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The first eigenvalue is defined by the nonlinear Rayleigh quotient
\Y Pd \Y Pd
M(Q) = min Jo Vo)l _ Jo [V (@)Pds
sewir @020 Jgo lo(@)[P Jo lua(z)|pdz

where the minimum is achieved hy which is a weak solution of the Euler-
Lagrange equation

The First Eigenvalue for the

_ _ p—2 — : p-Laplacian Operator
2.1) { Apu — MulP~*u 0 in Q |
U = 0 on 0. Idrissa Ly

The first eigenvalue has many special properties, it is strictly positive, simple in

any bounded connected domain seg[ And u; is the only positive eigenfunc-

tion for thep-Laplacian Dirichlet see alsd f]. Contents
In [15], the second eigenvalue is defined by

Title Page

<4< 44
\Y Pd
A2(2) = inf max —‘[Q| Sl 3:7 4 >
cec; ¢ [ |o(x)|p Go Back
where Close
Cy = {C € W,?(Q) : C = —C such thatgenus(C) > 2}. Quit
Page 6 of 28
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In this section we are interested in the continuity of the map
Q— A\ (Q).

Then, we have to fix topology on the space of the open subsdis G the
family of the open subsets @, we define the Hausdorff complementary topol-
ogy, denoted7¢ given by the metric

dpe(927,95) = sup |d(x, QF) — d(z, Q5)].

z€RN

The He¢-topology has some good properties for example the space of the open

subsets o) is compact. Moreover if2,, = Q, then for any compadk’ CC (2
we haveK cc (2, forn large enough.

However, perturbations in this topology may be very irregular and in general
situations the continuity of the mappifg— X, () fails, see {].

In order to obtain a compactness result we impose some additional con-
straints on the space of the open subset®ofrhich are expressed in terms
of the Sobolev capacity. There are many ways to define the Sobolev capacity,
we use the local capacity defined in the following way.

Definition 3.1. For a compact sek contained in a balls,

cap(K, B) ::inf{/ [VolP, ¢ € CP(B), ¢ >1 on K}.
B

The First Eigenvalue for the
p-Laplacian Operator

Idrissa Ly

Title Page
Contents
<44 44
< >
Go Back
Close
Quit
Page 7 of 28

J. Ineq. Pure and Appl. Math. 6(3) Art. 91, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:idrissa@math.univ-metz.fr
http://jipam.vu.edu.au/

Definition 3.2.

1. Itis said that a property holdg-quasi everywhere (abbreviated as p-g.e)
if it holds outside a set gf-capacity zero.

2. A setQ) ¢ RY is said to be quasi open if for eveey> 0 there exists an
open sef), such that? C ., andcap(Q2\?) < e.

3. A functionu : RV — R is saidp-quasi continuous if for every > 0
there exists an open s@t such thatcap(€).) < e andur,q, is continuous
The First Eigenvalue for the

In R\QE- p-Laplacian Operator

It is well known that every Sobolev functiom € W?(R"Y) has ap-quasi Idrissa Ly
continuous representative which we still denet&herefore, level sets of Sobolev
functions are»-quasi open sets; in particul@, = {z € D;|v(z)| > 0} is quasi

open subsets ab. Title Page
N . . Contents
Definition 3.3. We say that an open sét has thep — (r, c¢) capacity density
condition if 44 44
> < >
cap(Q2° N B(x,0), B(x,20))
Vre o), YO<d<r, = >
v : cap(B(x,0), B(x,20)) ‘ Go Back
whereB(z, §) denotes the ball of radui§ centred ate. Close
Definition 3.4. We say that the sequence of the spd@fé§(9n) converges in Quit
the sense of Mosco to the spdég™” (1) if the following conditions hold Page 8 of 28
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2. The second Mosco condition: For every sequengec W, * (€, ) weakly
convergent iV, (D) to a functiong, we havep € W, (Q).

Definition 3.5. We say a sequencg,,) of open subsets of a fixed b@l ~,-
converges t® if for any f € W~19(Q) the solutions of the Dirichlet problem

—Apup = f in Qu, € WyP(Q,)

converge strongly ifi, 7(D), asn — oo, to the solution of the correspond-
ing problem in(2, see [/], [ €].

By O, (D), we denote the family of all open subsetsiofwhich sat-
isfy thep — (r, ¢) capacity density condition. This family is compact in the
He topology see4]. In [Z], D. Bucur and P. Trebeschi, using capacity con-
straints analogous to those introduceihdnd [4] for the linear case, prove the
yp-compactness result for theLaplacian. In the same way, they extend the
continuity result of Sverak![] to thep-Laplacian forp € (N — 1, N], N > 2.
The reason of the choice pfis that inR" the curves have positive capacity
if p > N — 1. The casep > N is trivial since all functions if¥1*(RY) are
continuous.

Let us denote by

O(D) ={Q2C D, Q° <1}
wheref denotes the number of the connected components. We have the follow-
ing theorem.

Theorem 3.1 (Bucur-Trebeschi).Let N > p > N — 1. Consider the sequence
(©2,) € O)(D) and assume thaf, converges in Hausdorff complementary
topology toQ2. Then(2 C O;(D) and2,, ~,—converges td..
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Proof of Theoren3.1 See P]. O

For N = 2andp = 2, Theorem3.1 becomes the continuity result of Sverak

[19].
Back to the continuity result, we use the above results to prove the following
theorem.

Theorem 3.2. Consider the sequend€,,) C O,(D). Assume thaf), con-
verges in Hausdorff complementary topologyXoThen\,(£2,,) converges to
A1(9).

Proof of Theoren3.2. Let us take

Jo Vo (2)|Pdx _ Jo, [Vun(2)[Pdx
Jo, 9a(@)P Jo, (@)

where the minimum is attained by,,, and

Jo |Vé(@)Pdz_ [, |V ()Pda
Jolo(a)lP I, Jun () pda

where the minimum is achieved hy.

By the Bucur and Trebeschi theorefn, ~, converges tdl. This implies
W,y (€2,) converges in the sense of Moscoltg ™ (12).

If the sequencéu,,) is bounded iV, ”(D), then there exists a subsequence
still denotedu,, such thatu,, converges weakly ifi;” (D) to a functionu. The
second condition of Mosco implies thate W, 7(Q).

Al(Qn) =

min
Pn€WYP (), dn#0

min
PEW P (Q),0£0

/\1(9) =
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Using the weak lower semicontinuity of tH&—norm, we have the inequal-
ity

. p I Vun(z | de _ [, |Vu(z | de _ [, [Vui(z)Pdx
lim inf > > )
n—+too [ |un(x) Jo lu(z) Jo [ur ()P
then
(3.1) liminf A(2,) > M(9Q).

Using the first condition of Mosco, there exists a sequengg € W, 7(Q,,)
such that,, converges strongly ifil/,” (D) to u;.

We have
5 Vo ( x)]pdx

[ [on(x)

M) <

this implies that

fD |V, (x)|Pdx

lim sup A;(€2,,) < limsup

n—s-+oo n—s-+oo fD |UTL l’)
. [ IVuu(@)Pdz [ |[Vuy () Pdx
lim —
n—too [} v (2)[P Jo lus ()P
then
(3.2) lim sup A1 (2,) < A (Q).
n—-—+o0o

By the relations §.1) and @.2) we conclude thad,(2,) converges to\;(f2).
0
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We extend the classical inequality of Faber-Krahn for the first eigenvalue of the
Dirichlet Laplacian to the Dirichlet-Laplacian. We study this inequality when
(2 is a quasi open subset Of.

Definition 4.1. Let ) be an open subset and boundediifi. We denote by
the ball centred at the origin with the same volumélia&etu be a non negative
function inQ2, which vanishes on(. For all ¢ > 0, the set{z € Q, u(z) > ¢}
is called the level set af. The First Eigenvalue for the
The functionu* which has the following level set pLaplacian Operator

Idrissa Ly
Ve>0, {xe€ Bu"(x)>c}={reQux)>c}
is called the Schwarz rearrangementofThe level sets af* are the balls that Title Page
we obtain by rearranging the sets of the same volume of Contents
We have the following lemma. <« b
Lemma 4.1. Let) be an open subset R". < >
Let) be any continuous function oR’ , we have
Go Back
1. [o¥(u(z))de = [, (u*(x))de  u*is equi-mesurable with. p—
2. [qu(z)v(z)de < [, u*(x)v*(x)de. Quit
3. Ifue W, P(Q),p>1 thenu* € W,7(Q*) and Page 12 of 28
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Proof of Lemmat.1. See [.7]. O

The basic result for the minimization of eigenvalues is the conjecture of
Lord Rayleigh: “The disk should minimize the first eigenvalue of the Laplacian
Dirichlet among every open set of given measure”. We extend the Rayleigh-
Faber-Krahn inequality to theLaplacian operator.

Let Q be any open set iiR" with finite measure. We denote by () the
first eigenvalue for the-Laplacian operator with Dirichlet boundary conditions.
We have the following theorem.

The First Eigenvalue for the
p-Laplacian Operator

Theorem 4.2. Let B be the ball of the same volume @sthen

Idrissa Ly
A(B) = min{\(Q2),Q opensetof RY, Q| = |B|}.
Proof of Theoremt.2. Let u; be the first eigenfunction of;(Q2), it is strictly Title Page
positive see [5]. By Lemma4.1, equi-mesurability of the function; and its
i Contents
Schwarz rearrangemeat gives
<44 >
|u (m)|pdx:/ |ui(x)|Pdx.
/Q L 5! < >
The Polya inequality implies that Go Back
Close
\Y Pdx > Vui(x)|Pdx.
| vu@rae> [ (Vi@ ot
By the two conditions, it becomes Page 13 of 28

[, [Vuitolds _ J, 9w pds
fB |ui (z)|Pdz fﬂ |uq (z) |Pdz

(Q) J. Ineq. Pure and Appl. Math. 6(3) Art. 91, 2005
1 http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:idrissa@math.univ-metz.fr
http://jipam.vu.edu.au/

This implies that
[ 1 Vu(z)|Pdx < [ VUi (z)Pdx <M ().

vEW P (B),v#0 fB ’U ’pdw fB |u1 $)|pdx

/\1(3) =
L]

Remark 1. The solution(2 must satisfy an optimality condition. We suppose
that QQC?— regular to compute the shape derivative. We deform the dofain

with respect to an admissible vector fiéfdto compute the shape derivative The First Eigenvalue for the
p-Laplacian Operator
I Q) —J(Q
dJ(Q; V) = thmo J( d+1 t) J( ) . Idrissa Ly
We have the variation calculation _
Title Page
—div(|Vu|p_2Vu) = )\|U|p_2u Contents
— / div(|VulP~?Vu)pdr = / MNulP~2ugdz, forall ¢ € D(Q) <« >
Q Q
< >
/ |VulP2VuVedr = / ANu|P 2ugdz, forall ¢ € D(Q)
Q Q Go Back
Let us take/(Q) = [, |Vul[P"*VuVede and J;(Q) = [, Mul|P*uddz. We Close
havedJ(; V) = dJ,(Q; V). Quit
We use the classical Hadamard formula to compute the Eulerian derivative
Page 14 of 28

of the functional/ at the pointQ) in the directionV.
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We have
/Q (|VulP2VuVe)dr = /Q (|VulP~2) VuV pdx
+ /ﬂ |VulP2Vu(Ve) dx + /Q |VulP~2(Vu)'Vedz.
We have the expression

(Va2 = ((vul)'s")

p— 2 / 4
= (IVul) ([Vul) >

(|VulP=2) = (p — 2)VuVu/'|VulP~

Then
dJ(;V) = (p—2) / |VulP~4|Vul|*Vu'V ¢dx
Q

—/div(\VuP”2Vu)¢’dx—/div(]Vu]p2(Vu)’)¢dx
Q Q

dJ(Q,V)=(p— 2)/ |VulP2Vu'Vodx
Q

—/div(|Vu|p_2Vu)¢'dx—/div(|Vu|p_2(Vu)')¢dx
Q 0
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because
/ div(|VulP2VuVe -V (0))dz = [ |Vulf2VuVe-V(0)-vds = 0.
Q onN
We obtain
dJ(;V)=—(p—1) / div(|VulP~2Vu')pdx — / div(|VulP~?Vu)¢'dr
Q Q
We have also
dJ (V) = / N |u|P~2ugd + / NulP~*u' pdx
Q Q
+/ NulP~?u¢'dx + (p — 2)//\|u|p_2u’¢da:,
Q Q
A (V) = / X|u|p_2ugbdm+/)\|u|p_2ugb'dx+ (p— 1)/ NulP~ 2/ pdx
Q Q Q
dJ(Q; V) =dJy (22, V) implies
—(p— 1)/div(\Vu\p_2Vu’)¢d:U— / div(|VulP~*Vu)¢'dx
Q Q
= / N|uP~2updx +/ MulP~?u¢'dr + (p — 1) / NulP~?u' d.
Q Q Q
By simplification we get
—(p— 1)/dz’v(|Vu|p_2Vu’)gbdx— / div(|Vu[P~?Vu)¢'dx
Q Q

:/X]u\p_zuqﬁdac—l—(p—1)/)\|u\p_2u’¢d3:, forall ¢ e D(Q).
Q Q
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This implies that
(4.1) {—(p— Ddiv(|VuP>Vu') = N|u|u+ (p — 1)Aju["~?¢/ inD'(Q)

We multiply the equation?(1) by « and by Green 's formula we get

—(p—1) [/ div(|VulP?Vu)u'de + [ |Vulf*Vu - uu’ds}
0 o0

=N+ (p— 1)/ N ulP~ 2w de.
Q

Finally we obtain the expression of
N V)=—(p—1) |VulPVu - viu'ds
o0

wherev' satisfies)’ = —%V(O) -vonodf). Then

N@QV)=-(p-1) o

|Vul|PV - vds.

We have a S|m|Iar formula for the variation of the volurhg(Q2, V) faQ
vds, where J,(Q fQ dx — c.

If Qisan optimal domain then there exists a Lagrange multiplier 0 such

that

—(p—1) |VU|pV-I/dS:a/ V - vds.
a0 a0
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Then we obtain

hSA

|Vu| = (_—a) on 9.
p—1

Since is C2—regular andu = 0 on 912, then we get

ou —a »
—%: (p—l) on of.

We are also interested the existence of a minimizer for the following problem

min{\(Q),Q € A, Q] < ¢},
whereA is a family of admissible domain defined by
A={Q C D,Q isquasiopeh
and\;(Q?) is defined by

' Jo IVo(x)[Pdz [, |V (x)[Pda
A () = _ ‘
l( ) ¢€W01r228)7¢?50 fQ |¢($)|p fQ |U1(I)|pdl’

The Sobolev spacl/, ”(Q) is seen as a closed subspacéigf”(D) defined
by
WyP(Q) = {ue WyP(D):u=0p—qe on D\Q}.
The problem is to look for weak topology constraints which would make the
class.A sequentially compact. This convergence is called wgatonvergence
for quasi open sets.
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Definition 4.2. We say that a sequen¢g,,) of A weakly~,-converges t@)
Alif the sequence,, converges weakly ifi/y”(D) to a functionu € W, (D)
(that we may take as quasi-continuous) such fhat {u > 0}.

We have the following theorem.
Theorem 4.3. The problem
4.2) min{\;(Q2),Q2 € A,|Q| < ¢}
admits at least one solution.

Proof of Theorend.3. Let us take

A (2,) = min i
e WP @) but0 Jpy |On(@)PdT fg |un |pd$

Suppose that(2,),.cn) is @ minimizing sequence of domain for the problem
(4.2). We denote by, a first eigenfunction of2,,, such thatfﬂn | (z)|Pdx =
1.

Sinceu,, is the first eigenfunction ok, (2,,), u, is strictly positive, cf [ 5],
then the sequendé,, ) is defined by2,, = {u,, > 0}.

If the sequencéu,,) is bounded iV, *(D), then there exists a subsequence
still denoted byu,, such thatu, converges weakly ifiV,”(D) to a functionu.
By compact injection, we have th#t |u(z)[Pdz = 1.

Let ©2 be quasi open and defined by = {u > 0}, this implies thatu €
W,?(Q). As the sequencgu, ) is bounded iV, *(D), then

i fo Vo, (x)Pdx . Jo [Vu(z)|Pdz . Jo [Vuy (z)[Pda
n—too o |up(2)[Pda Jo lu(x)[Pda o lun (@) [Pd

= Q).
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Now we show thalQ)| < c.

We know that if the sequené€g, weakly~,- converges t6 and the Lebesgue
measure is weakly,-lower semicontinuous on the clags(see p]), then we
obtain|{u > 0}| < 17ilr_r)1i£10f [{u, > 0}| < cthis implies thafQ| < c. O

The First Eigenvalue for the
p-Laplacian Operator

Idrissa Ly

Title Page
Contents
<44 44
< >
Go Back
Close
Quit
Page 20 of 28

J. Ineq. Pure and Appl. Math. 6(3) Art. 91, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:idrissa@math.univ-metz.fr
http://jipam.vu.edu.au/

Now let us takeN = 2. We consider the class of admissible domains defined

by

C ={Q,Q open subsets dd and simply connected?| = c}.

e Forp > 2, the p-capacity of a point is stricly positive and evevyol’p
function has a continuous representative. For this reason, a property which
holdsp — ¢.e with p > 2 holds in fact everywhere. Far> 2, the domain The FifstIEigenva'ue for the
2, is a minimizer of the problemin{\}($2,),, € C}. priapiacian Operator

Consider the sequen¢®,,,) C C and assume th&l,, converges in Haus- drissaty
dorff complementary topology tQ,, whenp,, goes to 2 ang), > 2. Then
2y C C and(,, v,-converges td2,. Title Page
By the Sobolev embedding theorem, we h&ig?" (Q2,.) — H}(S,,). Contents
The~, -convergence implies that} (€2, ) converges in the sense of Mosco
to H}(Q2). Forp, > 2, by the Holder inequality we have 14 dd
< >
2 - o
(/ |Vupn|2dx> <|Qp,|2 P (/ |Vupn|p"dx) Go Back
1 Close
([190) do < et i@, i

Page 21 of 28
Then the sequende,, ) is uniformly bounded in; (12, ). There exists

a subsequence still denoteg, such that,,, converges weakly iff; (D) T P A [, ) s
to a functionu. The second condition of Mosco implies that H} (). http://jipam.vu.edu.au
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Forp > 2, we have the Sobolev embedding theofiéf”(D) — C%*(D).

Ascoli's theorem implies that,, — « andVu,, — Vu locally uni-
formly in 25, whenp,, goes to 2 ang,, > 2.

Now show that
lim2 lup, [*de =1 ie. /|u|2dx = 1.
Pn—

Fore > 0 small, we have,, > 2 — ¢. Noting that

1
(/]Vupn]2edx) <, |7 (/]Vupn]p"dx> p”

= T (),

this implies that the sequeneg, is uniformly bounded iV, ().
Then there exists a subsequence still denatgdsuch that,,, is weakly
convergent inH¢ (D) to u. By the second condition of Mosco we get
Wy (). It follows that

ko= 1, [,
2—e

. 1—2=¢ pn €
< lim |, | lup, |Prdx = c2.
Pn—>2

Lettinge — 0, we obtain [ |u|*dz < 1.

2_€d£L'

The First Eigenvalue for the
p-Laplacian Operator

Idrissa Ly

Title Page
Contents
<44 44
< >
Go Back
Close
Quit
Page 22 of 28

J. Ineq. Pure and Appl. Math. 6(3) Art. 91, 2005

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:idrissa@math.univ-metz.fr
http://jipam.vu.edu.au/

On the other hand, Lemma 4.2 ¢f/] implies that

/ fufprda > / iy, P + po / P2 dru, (u — uy,).

The second integral on the right-hand side approa¢lasg,, — 2. Thus
we get[ |u[*dz > 1, and we conclude thaf |u[*dz = 1.

In[11, Theorem 2.1 p. 3350}, is continuous irp for k = 1,2, whereX}
is thek — th eigenvalue for the-Laplacian operator.

We have
(5.1) /|Vupn|p”_2Vuangbdx

— / )\an

Lettingp,, goto2, p, > 2in (5.1), and noting that,,, converges uniformly
to u on the support op, we obtain

up, [P 2u,, ¢pdz, for all

¢ € D(S22).

/Vquﬁdx = /A%uqﬁdm, forall ¢ € D(£y),

whence we have
—Au = \u in D'(£29)
u =0 on 0)s.

We conclude that whep — 2 andp > 2 the free parts of the boundary
of 2, cannot be pieces of circle.
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e Forp < 2, we consider the sequen¢®,,) C C and assume thdt,,
converges in Hausdorff complementary topology2to whenp,, goes to 2
andp,, < 2. Then by Theorer3.1, we get(2, C C and(2,, y._.-converges
to Q.

In [1€], the sequencéu,,) is bounded ilV!?7¢(D), 0 < € < 1 thatis
Vu,, converges weakly i?~¢(D)to Vu andu,, converges strongly in
L* (D) to u. In [16], we get alsof |Vu|?dz < § and [ |u|?dz < cc.

By Lemma 4.2 of 4], we have

/ P dz > / fup, P+ py / P2y, (1 — ).

The second integral on the right-hand side approa¢lasg,, — 2. Thus
we get | |u[*dz > 1. This implies that

lim | |up,,|* “dz = / lu|?>“dx = 1.
Pn—2

Lettinge — 0, we obtain| |u|*dz = 1.

The y,_.-convergence implies that,, converges strongly ifil,* ()
to u. According to P. Lindqvist seel[], we haveu € H!(D), and we
can deduce that € H](€,). As the first eigenvalue for the-Laplacian
operator is continuous ipcf [11], we have

P2, Vodr

62 [IVu,

:/)\Zf"\upn]p"_zupnqbdx, forall ¢ € D(Qy).
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Lettingp,, goto2, p,, < 2in(5.2), and noting that,,, converges uniformly
to u on the support op, we obtain

/ VuVeds = / Nupdz, forall ¢ e D(Qy),

whence we have
—Au = MNu in D'(Q)
U =0 on 0S2s.

We conclude that whep — 2 andp < 2 the free parts of the boundary
of 2, cannot be pieces of circle.
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