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Abstract

In this paper, we first generalize the traditional notation (a; ¢),, to [g(x); ¢],, and
then obtain an inequality about ¢-series and some infinite products by means
of the new conception. Because many ¢-series are not summable, our results
are useful to study ¢-series and its application.
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g-series, which are also called basic hypergeometric series, play an very impor-

tant role in many fields. Such as affine root systems, Lie algebras and groups,
number theory, orthogonal polynomials, physics (such as representations of

guantum groups and Baxter’s work on the hard hexagon model). Most of the
research work om-series is to set up identity. But there are also great many

g-series whose sums cannot be obtained easily. On these occasions, we must

use other methods to studyseries. Using inequalities is one of the choices.
In this paper, we obtain an inequality abguteries and some infinite products.
Our results are useful for the studygkeries.
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In this section we will introduce a new concept and obtain an inequality about
g-series. First we give some lemmas.

Lemma2.1.1f 0 < ¢ < 1,0 < a < 1, then for any natural numbet, we have

1<1—aq <1—aq

l—¢» — 1—¢q

Proof. Let g(z) = =%, 0 < x < 1, theng'(z) = =5 > 0. Sog(x)is a

11—z

strictly increasing function ofv, 1). For any natural number, we have

0<q"<qg<1.
So,
9(0) < g(¢") < g(q).

That is . -
—agq” _1—ag

1< .

1—¢®» = 1—gq
OJ
Lemmaz2.2.1f0<a< %3,0 < q < 1, then for any real numbei < = < 1,

we have
2(1 —
1+ax<aw—w) > 0.
l—gq
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Proof. Let

g(x):1+am(ax—w) =1+

- [a(1+ q)x® — 22].

Under the condition < a < {72, we know0 < a(1 +¢) < 1 — ¢, SO

/ 2a
9@0—1_q

la(l + Q) — 1] < 12—_“61[(1 R

Since0 <1—-¢ <1, 0<z <1, weknow0 < (1 —¢g)z < 1. Therefore
g (z) < 0 andg(z) is a strictly decreasing function dn, 1]. We have

2(1 — 1
g(a:)>g(1):1+a(a— ( “‘J)): [(1+ q)a® — 2a + (1 — q)].
l—gq l—gq
Letting
(14 q)a* —2a+ (1 —¢q) =0,
we have
1—¢q 1
a=—, as = 1.
1 1+q 2

So, wher) < a < ifg
(1+¢q)a* —2a+ (1 —q) >0,
that is,

1+am<ax—w) > 0.

1—g¢q
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Lemma2.3.1f 0 < ¢ < v/2 — 1, we have

1—g¢q

< .
=77

Proof. Let
9(q) =q(1+q)—(1—q) = <q+1+\/§> <q+1—\/§).

Wheno < ¢ < v2 — 1, g(q) < 0, so we have

l—gq
g < .
[
Definition 2.1. Supposeg(x) is a function on0, 1], we denotég(x); ¢|,, by
l9(x)sqln = (1 = g(¢”)) (L = g(¢")) -~ (1 = g(¢"™")).
We also use the notatidn(x); ¢| to express infinite product. That is
9(2); qloe = (1 = g(¢")) (X = 9(¢")) - (L = g(g")) -~ .
If g(z) = ax, then
9(2);q)n = (1 —a)(1 —aq) - (1 —ag"™") = (a;q)n.

So[g(x); q|, is the expansion dfe; q),,, where(a; q),, is theg-shifted factorial.
Please note that our notati@y(z); ¢, in this paper is different from traditional
notation(a; q),.
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Theorem 2.4.Supposé) < a < 74,0 < ¢ < V21,0 < z < 1, then the

following inequality holds

[g (LU CL - [gl('rva); Q]oo
2.1
A >[g1<x 0 Z 0= 2l 0. a0
where
g1(z,a) = —ax(ax — 2)z,
2(1 —
g2(z,a) = —ax (ax - %aqqx)) z.
Whena = ¢, the equality holds.
Proof. Let
(@),
fla.z) nZ:O (G2
since
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1 S B Dy 2 a1 - (1 - ag) + 21— ¢

n=1 (q’ )
q q \"drd)n n aQ? n 1 ’I’L
L+ Z Z @D
n=1 n=1 n 1
aq; q n 1
—2a Z (1—q")(1 - ag")2"
n=1
aq, q \8% D n (aq, n 1 n aq q n 1 1— aq n An Inequality About g-Series
1+ — 2a 2",
; ; ((] Q)n 1 nz: % 1 1_q Mingjin Wang
From Lemma2.1, we know:=2% > 1. So
q Title Page
o (ag;9); (ag; 95—y (ag; )71 1 — aq" Contents
fla,z) =1+ —"z” +a =" — 2a z"
nz: Sa) nzzl (¢:0)7-1 ; (¢9)ny 1—q" < S8
a ) n n
< f(aq, 2) + a*zf(aq, 2) —ZaZ(qqq—))lz . .
) n=1 MM Go Back
= f(ag,2) + a*2f(aq, =) = 2azf(aq, 2) s
=(1+ala—2)z)f(aq, 2). _
Quit
By iterating this functional inequality — 1 times we get that Page 8 of 16

fla,2) <lgi(z,a);qlnflaq",2), n=1,2,...,

whereg, (z,a) = —az(ax — 2)z. Which on lettingn — oo and using;” — 0
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gives

(2.2) fla,z) < [gl(w,a);Q]oof((),Z)-
Again from Lemma2.1, we know =24~ < i=%¢. So

-~ (ag:9); o (ag; q);
f<a,z>=1+z%zn+a22%n

z
— (G 9)n1

— %2a aq’ 1 _ aq n An Inequality About g-Series
n=1 q q n ! 1= q Mingjin Wang
1 —aq (ag; q n-1.n
> f(aq,2) + a*zf(aq, 2) Z -
n=1 ) Title Page
1-—
(1 + a2z — 2az I aq) flagq, 2) Contents
q
= ala 1—g z aq, z). < >
Using Lemma2.2, we know that, for any natural number Go Back
21 — qa™+! Close
14+ aq" <aq” — —( 4 )) z _
1—gq Quit
_ n+1
=z F + aq" (aq” _ 2(1 aq ))] Page 9 of 16
z 1—¢q
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2(1—aqx)

Let go(z,a) = —ax (a:c - =

ity n — 1 times we get that
fla,2) = [g2(, a); q)nf(aq", 2),
Which on lettingn — oo and using;™ — 0 gives

(23) f(CL, Z) > [92<x7a);Q]00f(072)‘

Combined with £.2) and @.3) gives

n=12,....

(2.4) [92(,a); 4o f(0, 2) < fla,2) < [g1(%,a); ¢l f(0, 2).

Using Lemma2.3, when0 < ¢ < v/2 — 1, we havey < %j So, leta = ¢, also
combining(2.2) and(2.3) gives the following inequality

f(q,2)

<J02) < e

Because off (¢, z) = =, we have

1 1

(3) (1= 2)g1(2,9); ¢ < /0.2 < (1= 2)[g2(2,9); @oe

(2.4) and @.5) yield the following inequality

[91(z,a); ¢l
(1= 2)[g2(2,9); ¢loo

[92(2, a); qloo
(1= 2)[91(7,9); qloo

< fla,2) <

) z, and by iterating this functional inequal-
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That is

[g (Q? Cl S Z [91(%@),61]00
If « = ¢, we have
[g2(z, a) i [91(,a); q)oo _ 1
(1- )[91(56 a); (g2 (1-2pgide 1-2 _ _
An Inequality About g-Series
So the equality holds. We complete our proof. O Mingjin Wang
Corollary 2.5. Under the conditions of the theorem, we have
Title Page
[91(z, a); qloo [92(2, 0); dloo .
[e%S) ontents
(@:9)n  (020)x]” . (a2; )% (g2, 9)%
(26) - "< : «“ S
(@) (020w [92(2, 0); dloo (25 )00 (475 @)oo
< >
Proof. Since
) Go Back
Z {(G;Q)n _ (CLZ;Q)OO] n Close
— (@D (220 .
. ) ) Quit
_ Z |:(CL, Q);L . 2(@, Q)n(aza Q)OO + (CLZ? q);)o:| P Page 11 of 16
— | (¢9)r  (GD(ezd)x  (229)%
> N 2 . ° . . 2 s . Ineq. Pure an . Math. rt. ;
— Z (e Q);z” — 2(az, @) Z (a; Q)"z" + (a2 Q);O 2" . r?tt;://jip;rgi%%dz.;(:)A o
— (¢; ), (9% @)oo = (4 Dn (979)% =
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N @0 (070 (020w | (a219) 1
N nz;; G0 @m0 G | @Hak -2
N @an o, 1 (e 1 (a9
B nz; @a2” T z(mark 1oz @k
N @ah 1 (azq)
- ; (@ahn 1-2(220%

l91(z,a)iqls 1 (az;q)3

T (1-2)[g27,9);de  1—2(g29)%

[91(2,a); dloe [92(2,9); qJoo
(az; q)2, (gz:9)%
[92(%, 4); q)oo (25 D)oo (023 @)oo
we gain the inequality we seek. O

Theorem 2.6. Under the conditions of the theorem, the following inequality
holds
.42 .
(27) (a27Q);o S [gl<x7a)>Q]oo'
(92:0)% ~ l92(7,q); dl
Proof. From the proof of £.6), we have

lg1(z,a)idle 1 (az9)% [(a; On_ (029)]”
0= gl i 1—2 (@5 0% — HZ:O (@ Dn (420
so the inequality4.7) holds. H
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Corollary 2.7. Suppos® < a < 1+ ,
then the following inequality holds

9 0<b< q0<q<\/_ ,0<z<1,

(@ @)t Qo n - (a2,021¢)0
9 ;% (:9)7 = (219)%

1

NI

[91(z,a); qloe [92(7, 9); dloo [91(2,0); dloo [92(2, )5 q)oo

(az; q)2 (9z:9)% (bz;9)2 (gz:0)%
+ [92 (.1', q); Q]oo(ZS Q)OO(QZ; Q)oo ) An Inequality About  ¢-Series
Proof. Noting that Mingjin Wang
Z (@ 0)n(b:)n ?”(?;Q)”z" >0 and —<a?’ bz;g)oo > 0, Title Page
n=0 ol I Contents
we have
<« 33
2.9) i (@ @)n(: @), (22,2 q)c ) X
—~ (g9 (z9)%
oo Go Back
<3 (@ @n(0:@)n (2,02 ¢)o —
T = (@) (z:9)% Close
0o Quit
_ {(a;q)n B (aZ;q)oo} {(b; Dn (bZ;q)oo} n
| (@G9)n (05D] (@) (¢210) Page 13 of 16
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:i ( 1 @)oo . ’ i Qn o (025 ) oo L2
“—1(q 423 q)oo (G Dn (42500
Using the Cauchy inequality and.¢), we have
— () (g2:9) (@ Dn (9700
1
< i [ a; q n Z;q)oo:|2zn ? An Inequality About g-Series
- n— Q7 n Z;Q)OO Mingjin Wang
RCOMEN.
T (42 0)w o Title Page
1 Contents
91(, a) Q]oo [92(7,9); doo | ) °
_ (az;q)3, (g239)2 « dd
) [02(7,0); dloo (2300 (423 @)oo S .
Go Back
L Close
[91(2,b); dloe [92(2,0); ) | ] ° .
(b2;9)% (42 9)% il

P 14 of 16
[92(2, 0); @loo (23 )0 (475 @)oo EloE 1 0

J. Ineq. Pure and Appl. Math. 7(4) Art. 136, 2006
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:wmj@jpu.edu.cn
http://jipam.vu.edu.au/

[91(7,a); 4o [92(2,9); oo
(az;q)% (4739)2 (bz;9)% (g2;9)2%

NG

[91(7,0); 4o [92(2,4); dloo

[92(%,9); oo (%5 @) 00 (075 @) oo
Combining ¢.9) and ¢.10) gives

- (@ Dn(0: @O _n - (02,07 ¢)c
2 (¢:9)2 = (z9)%

n=0 !

N

[91<x7 a)3 q]oo [92(377 Q)S Q]oo
(az;q)2% (g2 9)% (bz;9)% (g7 9)%

+

N

[91(2,0); dloo [92(2, )5 q)oo

[92(2, 9); @)oo (23 @)oo (725 @) o

This is the inequality we seek.
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