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Abstract

A generalization of the pre-Grüss inequality is presented. It is applied to esti-
mations of remainders of some quadrature formulas.
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1. Introduction
In recent years a number of authors have written about generalizations of Os-
trowski’s inequality. For example, this topic is considered in [1], [2], [5], [7],
[9] and [12]. In this way some new types of inequalities are formed, such
as inequalities of Ostrowski-Grüss type, inequalities of Ostrowski-Chebyshev
type, etc. An important role in forming these inequalities is played by the pre-
Grüss inequality. This paper develops a new approach to the topic obtaining
better results than the approach using the pre-Grüss inequality. It presents new,
improved versions of the mid-point and trapezoidal inequality. The mid-point
inequality is considered in [1], [2], [3], [7] and [9], while the trapezoidal in-
equality is considered in [4], [5], [7] and [9].

In [11] we can find the pre-Grüss inequality:

(1.1) T (f, g)2 ≤ T (f, f)T (g, g),

wheref, g ∈ L2(a, b) andT (f, g) is the Chebyshev functional:

(1.2) T (f, g) =
1

b− a

∫ b

a

f(t)g(t)dt− 1

(b− a)2

∫ b

a

f(t)dt

∫ b

a

g(t)dt.

If there exist constantsγ, δ, Γ, ∆ ∈ R such that

δ ≤ f(t) ≤ ∆ andγ ≤ g(t) ≤ Γ, t ∈ [a, b]

then, using (1.1), we get the Grüss inequality:

(1.3) |T (f, g)| ≤ (∆− δ)(Γ− γ)

4
.
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Specially, we have

(1.4) T (f, f) ≤ (∆− δ)2

4
.

Using the above inequalities we get the following inequalities:∣∣∣∣f (a + b

2

)
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣(1.5)

≤ (b− a)2

2
√

3

[
1

b− a
‖f ′‖2

2 −
(

f(b)− f(a)

b− a

)2
] 1

2

≤ (b− a)2

4
√

3
(Γ− γ)

wheref : [a, b] → R is an absolutely continuous function whose derivative
f ′ ∈ L2(a, b) andγ ≤ f ′(t) ≤ Γ, t ∈ [a, b] . As usual,‖·‖2 is the norm in
L2(a, b). Further,∣∣∣∣f(a) + f(b)

2
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣(1.6)

≤ (b− a)2

2
√

3

[
1

b− a
‖f ′‖2

2 −
(

f(b)− f(a)

b− a

)2
] 1

2

≤ (b− a)2

4
√

3
(Γ− γ)
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and ∣∣∣∣∣f(a) + 2f
(

a+b
2

)
+ f(b)

4
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣∣(1.7)

≤ (b− a)2

4
√

3

[
1

b− a
‖f ′‖2

2 −
(

f(b)− f(a)

b− a

)2
] 1

2

≤ (b− a)2

8
√

3
(Γ− γ)

where the functionf satisfies the above conditions. The inequalities (1.5)-(1.7)
are considered (and proved) in [2], [9] and [12].

In this paper we generalize (1.1). We use the generalization to improve the
above inequalities.
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2. Main Results
Lemma 2.1.Letf, g, Ψi ∈ L2(a, b), i = 0, 1, 2, ..., n, whereΨ0

i = Ψi(t)/ ‖Ψi‖2

are orthonormal functions. IfSn(f, g) is defined by

Sn(f, g) =

∫ b

a

f(t)g(t)dt−
n∑

i=0

∫ b

a

f(s)Ψ0
i (s)ds

∫ b

a

g(s)Ψ0
i (s)ds

then we have
|Sn(f, g)| ≤ Sn(f, f)

1
2 Sn(g, g)

1
2 .

The proof follows by the known inequality holding in inner product spaces
(H, 〈·, ·〉)∣∣∣∣∣〈x, y〉 −

n∑
i=0

〈x, li〉 〈li, y〉

∣∣∣∣∣
2

≤

(
‖x‖2 −

n∑
i=0

|〈x, li〉|2
)(

‖y‖2 −
n∑

i=0

|〈li, y〉|2
)

,

wherex, y ∈ H and{li}i=0,n is an orthonormal family inH, i.e., (li, lj) = δij

for i, j ∈ {0, . . . , n}.
We here use only the casen = 1. We chooseΨ0

0(t) = 1/
√

b− a, Ψ1(t) =
Ψ(t) and denoteS1(g, h) = SΨ(g, h) such that

(2.1) SΨ(g, h) =

∫ b

a

g(t)h(t)dt− 1

b− a

∫ b

a

g(t)dt

∫ b

a

h(t)dt

−
∫ b

a

g(t)Ψ0(t)dt

∫ b

a

h(t)Ψ0(t)dt
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whereg, h, Ψ ∈ L2(a, b), Ψ0(t) = Ψ(t)/ ‖Ψ‖2 and

(2.2)
∫ b

a

Ψ(t)dt = 0.

Lemma 2.2. With the above notations we have

(2.3) |SΨ(g, h)| ≤ SΨ(g, g)
1
2 SΨ(h, h)

1
2 .

It is obvious that

(2.4) SΨ(g, h) = (b− a)T (g, h)−
∫ b

a

g(t)Ψ0(t)dt

∫ b

a

h(t)Ψ0(t)dt

so thatSΨ(g, h) is a generalization of the Chebyshev functional.
We also define the functions:

(2.5) Φ(t) =


t− 2a+b

3
, t ∈

[
a, a+b

2

]
t− a+2b

3
, t ∈

(
a+b
2

, b
]

and

(2.6) χ(t) =


t− 5a+b

6
, t ∈

[
a, a+b

2

]
t− a+5b

6
, t ∈

(
a+b
2

, b
]
.

It is not difficult to verify that

(2.7)
∫ b

a

Φ(t)dt =

∫ b

a

χ(t)dt = 0
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and

(2.8) ‖Φ‖2
2 = ‖χ‖2

2 =
(b− a)3

36
.

We define

(2.9) Φ0(t) =
Φ(t)

‖Φ‖2

, χ0(t) =
χ(t)

‖χ‖2

.

Integrating by parts, we have

Q(f ; a, b) =

∫ b

a

Φ0(t)f
′(t)dt(2.10)

=
2√

b− a

[
f(a) + f

(
a + b

2

)
+ f(b)− 3

b− a

∫ b

a

f(t)dt

]
and

P (f ; a, b)(2.11)

=

∫ b

a

χ0(t)f
′(t)dt

=
1√

b− a

[
f(a) + 4f

(
a + b

2

)
+ f(b)− 6

b− a

∫ b

a

f(t)dt

]
.

Remark 2.1. It is obvious that

(2.12) SΨ(g, g) = (b− a)T (g, g)−
(∫ b

a

g(t)Ψ0(t)dt

)2

≤ (b− a)T (g, g).
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Theorem 2.3. (Mid-point inequality) LetI ⊂ R be a closed interval anda, b ∈
Int I, a < b. If f : I → R is an absolutely continuous function whose derivative
f ′ ∈ L2(a, b) then we have

(2.13)

∣∣∣∣f (a + b

2

)
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣ ≤ (b− a)
3
2

2
√

3
C1,

where

(2.14) C1 =

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a
− [Q(f ; a, b)]2

} 1
2

andQ(f ; a, b) is defined by (2.10).

Proof. We define

(2.15) p(t) =


t− a, t ∈

[
a, a+b

2

]
t− b, t ∈

(
a+b
2

, b
]
.

Then we have

(2.16)
∫ b

a

p(t)dt = 0

and

(2.17) ‖p‖2
2 =

∫ b

a

p(t)2dt =
(b− a)3

12
.
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We now calculate

(2.18)
∫ b

a

p(t)Φ(t)dt

=

∫ a+b
2

a

(t− a)

(
t− 2a + b

3

)
dt +

∫ b

a+b
2

(t− b)

(
t− a + 2b

3

)
dt = 0.

Integrating by parts, we have∫ b

a

p(t)f ′(t)dt =

∫ a+b
2

a

(t− a)f ′(t)dt +

∫ b

a+b
2

(t− b)f ′(t)dt(2.19)

= f

(
a + b

2

)
(b− a)−

∫ b

a

f(t)dt.

Using (2.16), (2.18) and (2.19) we get

SΦ(p, f ′) =

∫ b

a

p(t)f ′(t)dt− 1

b− a

∫ b

a

p(t)dt

∫ b

a

f ′(t)dt(2.20)

−
∫ b

a

f ′(t)Φ0(t)dt

∫ b

a

p(t)Φ0(t)dt

= f

(
a + b

2

)
(b− a)−

∫ b

a

f(t)dt.

From (2.20) and (2.3) it follows that

(2.21)

∣∣∣∣f (a + b

2

)
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣ ≤ SΦ(f ′, f ′)
1
2 SΦ(p, p)

1
2 .
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From (2.16)-(2.18) we get

SΦ(p, p) = ‖p‖2
2 −

1

b− a

(∫ b

a

p(t)dt

)2

−
(∫ b

a

p(t)Φ0(t)dt

)2

(2.22)

=
(b− a)3

12
.

We also have

(2.23) C2
1 = SΦ(f ′, f ′).

From (2.21)-(2.23) we easily find that (2.13) holds.

Remark 2.2. It is not difficult to see that (2.13) is better than the first estimation
in (1.5).

Theorem 2.4. (Trapezoidal inequality) Under the assumptions of Theorem2.3
we have

(2.24)

∣∣∣∣f(a) + f(b)

2
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣ ≤ (b− a)
3
2

2
√

3
C2,

where

(2.25) C2 =

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a
− [P (f ; a, b)]2

} 1
2

andP (f ; a, b) is defined by (2.11).
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Proof. Let p(t) be defined by (2.15). We calculate∫ b

a

p(t)χ(t)dt(2.26)

=

∫ a+b
2

a

(t− a)

(
t− 5a + b

6

)
dt +

∫ b

a+b
2

(t− b)

(
t− a + 5b

6

)
dt

=
(b− a)3

24
.

Integrating by parts, we have∫ b

a

f ′(t)χ(t)dt|(2.27)

=

∫ a+b
2

a

(
t− 5a + b

6

)
f ′(t)dt +

∫ b

a+b
2

(
t− a + 5b

6

)
f ′(t)dt

=
f(a) + 4f

(
a+b
2

)
+ f(b)

6
(b− a)−

∫ b

a

f(t)dt.

Using (2.16), (2.19), (2.26), (2.27) and (2.8) we get

(2.28) Sχ(f ′, p) =

∫ b

a

p(t)f ′(t)dt− 1

b− a

∫ b

a

f ′(t)dt

∫ b

a

p(t)dt

−
∫ b

a

p(t)χ0(t)dt

∫ b

a

f ′(t)χ0(t)dt
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= f

(
a + b

2

)
(b− a)−

∫ b

a

f(t)dt

− 3

2

[
f(a) + 4f(a+b

2
) + f(b)

6
(b− a)−

∫ b

a

f(t)dt

]

= −1

2
(b− a)

f(a) + f(b)

2
+

1

2

∫ b

a

f(t)dt.

From (2.3) and (2.28) it follows that

(2.29)

∣∣∣∣f(a) + f(b)

2
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣ ≤ 2Sχ(f ′, f ′)
1
2 Sχ(p, p)

1
2 .

We have

Sχ(p, p) = ‖p‖2
2 −

1

b− a

(∫ b

a

p(t)dt

)2

−
(∫ b

a

p(t)χ0(t)dt

)2

(2.30)

=
(b− a)3

48

and

(2.31) C2
2 = Sχ(f ′, f ′).

From (2.29)-(2.31) we easily get (2.24).

Remark 2.3. We see that (2.24) is better than the first estimation in (1.6).
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We now consider a simple quadrature rule of the form

(2.32)
f(a) + 2f

(
a+b
2

)
+ f(b)

4
(b− a)−

∫ b

a

f(t)dt

=
1

2

[
f

(
a + b

2

)
+

f(a) + f(b)

2

]
(b− a)−

∫ b

a

f(t)dt = R(f).

It is not difficult to see that (2.32) is a convex combination of the mid-point
quadrature rule and the trapezoidal quadrature rule. In [5] it is shown that
(2.32) has a better estimation of error than the well-known Simpson quadrature
rule (when we estimate the error in terms of the first derivativef ′ of integrand
f ). We here have a similar case.

Theorem 2.5.Under the assumptions of Theorem2.3we have

(2.33)

∣∣∣∣∣f(a) + 2f
(

a+b
2

)
+ f(b)

4
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ (b− a)
3
2

4
√

3
C3,

where

(2.34) C3 =

[
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a

− 1

b− a

(
f(a)− 2f

(
a + b

2

)
+ f(b)

)2
] 1

2

.
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Proof. We define

(2.35) η(t) =


1, t ∈

[
a, a+b

2

]
−1, t ∈

(
a+b
2

, b
] ,

(2.36) η0(t) =
η(t)

‖η‖2

.

We easily find that

(2.37)
∫ b

a

η(t)dt = 0, ‖η‖2
2 = b− a.

Let p(t) be defined by (2.15). Then we have∫ b

a

p(t)η(t)dt =

∫ a+b
2

a

(t− a)dt−
∫ b

a+b
2

(t− b)dt(2.38)

=
(b− a)2

4
.

We also have

(2.39)
∫ b

a

f ′(t)η(t)dt = −f(a) + 2f

(
a + b

2

)
− f(b).
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From (2.37)-(2.39) we get

Sη(f
′, p) =

∫ b

a

p(t)f ′(t)dt− 1

b− a

∫ b

a

f ′(t)dt

∫ b

a

p(t)dt(2.40)

−
∫ b

a

p(t)η0(t)dt

∫ b

a

f ′(t)η0(t)dt

= f

(
a + b

2

)
(b− a)−

∫ b

a

f(t)dt

− b− a

4

[
−f(a) + 2f

(
a + b

2

)
− f(b)

]
=

f(a) + 2f
(

a+b
2

)
+ f(b)

4
(b− a)−

∫ b

a

f(t)dt.

From (2.3) and (2.40) it follows that

(2.41)

∣∣∣∣∣f(a) + 2f
(

a+b
2

)
+ f(b)

4
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣∣
≤ Sη(f

′, f ′)
1
2 Sη(p, p)

1
2 .

We now calculate

Sη(p, p) = ‖p‖2
2 −

1

b− a

(∫ b

a

p(t)dt

)2

−
(∫ b

a

p(t)η0(t)dt

)2

(2.42)

=
(b− a)3

48
.
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We also have

(2.43) C2
3 = Sη(f

′, f ′).

From (2.41)-(2.43) we easily get (2.33).

Remark 2.4. It is not difficult to see that (2.33) is better than the first estimation
in (1.7).

Finally, in [12] we can find the next inequality

(2.44)

∣∣∣∣∣f(a) + 4f
(

a+b
2

)
+ f(b)

6
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ (b− a)2

12
(Γ− γ),

wheref : I → R, (I ⊂ R is an open interval,a < b, a, b ∈ I) is a differentiable
function, f ′ is integrable and there exist constantsγ, Γ ∈ R such thatγ ≤
f ′(t) ≤ Γ, t ∈ [a, b].

Inequality (2.44) is a variant of the Simpson’s inequality. On the other hand,
we have

(2.45)

∣∣∣∣∣f(a) + 2f
(

a+b
2

)
+ f(b)

4
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ (b− a)2

8
√

3
(Γ− γ).

Inequality (2.45) follows from (2.33), since

(2.46) Sη(f
′, f ′) ≤ (b− a)

(
Γ− γ

2

)2
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and (2.46) follows from (2.4) and (1.4).
Form (2.44) and (2.45) we see that the simple 3-point quadrature rule (2.32)

has a better estimation of error than the well-known 3-point Simpson quadrature
rule. Note that the estimations are expressed in terms of the first derivativef ′

of integrand.
Finally, the following remark is valid.

Remark 2.5. The considered casen = 1 illustrates how to apply Lemma2.1
to quadrature formulas. It is also shown that the derived results are better
than some recently obtained results. We can use Lemma2.1 to derive further
improvements of the obtained results. However, in such a case we must require∫ b

a

g(t)Ψ0
i (t)dt = 0, i = 0, 1, 2, ..., n.

Thus, the construction of such a finite sequence{Ψ0
i }

n
0 can be complicated.

However, if we really need better error bounds, without taking into account
possible complications, then we can apply the procedure described in this sec-
tion.
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