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Abstract

A generalization of the pre-Griiss inequality is presented. It is applied to esti-
mations of remainders of some quadrature formulas.
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In recent years a number of authors have written about generalizations of Os-
trowski’s inequality. For example, this topic is considerediip [Z], [5], [ 1],

[9] and [L7]. In this way some new types of inequalities are formed, such
as inequalities of Ostrowski-Griss type, inequalities of Ostrowski-Chebyshev
type, etc. An important role in forming these inequalities is played by the pre-
Gruss inequality. This paper develops a new approach to the topic obtaining
better results than the approach using the pre-Gruss inequality. It presents new,

A Generalization of the

improved versions of the mid-point and trapezoidal inequality. The mid-point Pre-Griiss Inequality and
mequ_allt_y is cor15|dere_d int], [2], [2], [7] and [2], while the trapezoidal in- gﬁggﬁmﬁgﬁﬂ;
equality is considered ir’], [5], [ 7] and [7].
In [11] we can find the pre-Griiss inequality: Nenad Ujevie
2
(1.1) T(f,9)" <T(f,1)T(9,9), Title Page
wheref, g € Ly(a,b) andT'(f, g) is the Chebyshev functional: Contents
1 1 b b <« >
1.2 T = — t)g(t)dt — —— t)dt dt.
A2 T(9)= = [ f0ait == [ s0ar [ e .
If there exist constants, 5, ', A € R such that Go Back
6 < f(t)<Aandy <g(t) <T,t€ [a,b] Close
then, using {.1), we get the Gruss inequality: Quit
(A 5)(F ) Page 3 of 20
(13) T(f,9)| < ———.
J. Ineq. Pure and Appl. Math. 3(1) Art. 13, 2002

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:ujevic@pmfst.hr
http://jipam.vu.edu.au/

Specially, we have

(L.4) r(.p< B8

Using the above inequalities we get the following inequalities:

(L5) ‘f (“2”’) v-a- | bf(t)dt'

(b—af | 1 e (fO) = f@)]
<0 [b_anfuz—(ﬁ)]

(b—a)’
W(F -7)

where f : [a,b] — R is an absolutely continuous function whose derivative
f" € Ly(a,b) andy < f'(t) < I',t € [a,b]. As usual,||-||, is the norm in
Ls(a,b). Further,

(1.6) M(b—a)—/ f(t)dt‘

2
<O [ (14219

(b—a)
4\/3 (F_’y)

[

<

N|=

<
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and

fla) +2f (3°) + f(b
4

(1.7) )(b—a)—/ F(t)dt

[

b—a?| 1 o (f0O)—fla)\*|
<L [b_aHng—(—b_a )]

(b—a)?
( - 7) A Generalization of the
8\/§ Pre-Gruss Inequality and

<
Applications to some
where the functiory satisfies the above conditions. The inequalitie8)¢(1.7) Quadrature Formulae
are considered (and proved) if],[[9] and [LZ].
In this paper we generalizé (). We use the generalization to improve the
above inequalities.
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Lemma2.l.Letf, g, V; € Ly(a,b),i=0,1,2,...,n, where®? = U,(t)/ | T,
are orthonormal functions. 1f,,(f, ¢) is defined by

5.0 = [ 1) dt—Z/f ps)as [ gto)ut(epas

a

then we have

1S (f,9)| < Su(f, £)2Sn(g,9)2.
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The proof follows by the known inequality holding in inner product spaces Pre-Griiss Inequality and
H Applications to some
( ) <'a >) Quadrature Formulae

n 2

<$ay> - Z <$a li> <li7y>

=0
n n Title Page
2 2 2 2
< <||x|| - Z|<$7lz>| ) (Hy” - ZW%?JH ) J Contents
i=0 i=0

wherez,y € H and{l;},_,, is an orthonormal family i/, i.e., (;, ;) = d;; « dd
fori,j € {0,...,n}. < >
We here use only the case= 1. We choosel(t) = 1/vb—a, ¥y(t) =

Nenad Ujevic

U (t) and denotes; (g, h) = Sy(g, h) such that Go Back
b Close
@ suto.n = [ oo~ [ gwar [ Qui
Page 6 of 20
—/ U%Uﬁ/h®%wﬁ
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whereg, h, U € Ly(a,b), Uo(t) = ¥(t)/ | ¥, and

b
(2.2) / U(t)dt = 0.
Lemma 2.2. With the above notations we have

(2.3) Su (g, h)| < Su(g,g)?Su(h, h).

It is obvious that

NI

b b
(24)  Su(g.h) = (b—a)T(g,h) — / oL / Bt Wo(t)dt

so thatSy (g, h) is a generalization of the Chebyshev functional.
We also define the functions:

i~ 22, te [o5

(2.5) O(t) =

t- 2 e (5]
and

t- ot e fa,%5]
(2.6) X(t) =

It is not difficult to verify that

2.7) /bq)(t)dt - /bx(t)dt ~0
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and

2 2 (b— G)B
(2.8) 2[5 = [Ix]l; = BT
We define
d(t) x(t)
@9) o0 =Ty, X0 =y,

Integrating by parts, we have

b
(2.10) Q(f;a,b) = / Do(t) S (1)t

_ 2 [f(a)Jrf (a;b) +f<b>—%/abf<t>dt]

b—a
and

(2.11) P(f;

a,b)
- / Yolt) f/(£)dt
1

Remark 2.1. It is obvious that

@12) Suls.9) = (0~ T(s.0) ~ ([ a0attar)

2

<

= {f(a) +4f <a;b> + £(b) - %/abf(t)dt] |

(b—a)T(g,9).

A Generalization of the
Pre-Gruss Inequality and
Applications to some
Quadrature Formulae

Nenad Ujevic

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 8 of 20

J. Ineq. Pure and Appl. Math. 3(1) Art. 13, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:ujevic@pmfst.hr
http://jipam.vu.edu.au/

Theorem 2.3. (Mid-point inequality) Letl C R be a closed interval and, b €
IntI,a <b.If f: I — Risanabsolutely continuous function whose derivative

f € Ly(a,b) then we have

2

(2.13) ’f (’” b) (b—a) — /abf(t)dt‘ < (52—\/%)30

where

[f(b) — f(a)]?

(2.14) Cy = {Hf’”; i e Q(f;a, b)]Q}

andQ(f;a,b) is defined byZ.10).
Proof. We define

t—a, t€ [a, aTJ“b]
(2.15) p(t) =

t—0b, te (0.

Then we have

(2.16) /bp(t)dt —0
and

b 3
@17) ol = | ptepan = C

1

[N
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We now calculate

(218)/
:/ (t—a)(t—2a;b)dt+/ib(t—b)(t—a—;%)dtzo.

2

Integrating by parts, we have

a+b b A Generalization of the
2

b . -
@10 [snrwn = [T u-arma- / (t= ey i

b
at Quadrature Formulae

_ f (a + b) b o a / Nenad Ujevic

Using 2.16), (2.18 and .19 we get Title Page
b Contents
(220) Sa(p.f) = / ()1 01 = = [ ot / I “«
b
- [ s / p()o(t)at < >
b ¢ b ‘ Go Back
_ (a;r ) (b—a) — / F(t)dt. Close
From (.20 and @.3) it follows that Quit

Page 10 of 20

ey |1 () 6-a- [ o] < sr.0)ksa0
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From 2.16-(2.18 we get

b
(2.22)  So(p,p) = ||p||§—ﬁ (/ p(t)dt>

_(b—a)®
12
We also have
A Generalization of the
Pre-Gruss | li d
(2.23) CY = Su(f, f). i e b
. ) Quadrature Formulae
From 2.21)-(2.23 we easily find that{.13 holds. O e
Remark 2.2. Itis not difficult to see thatd. 13 is better than the first estimation
in (1.5. Title Page
Theorem 2.4. (Trapezoidal inequality) Under the assumptions of Theazesn SO
we have
fla) + f(b) ’ (b—a)? - -
a)+ f(b / b—a)2
2.24 =~ (b—a)— t)dt| < Cy, < >
ey MO0 [ <,
Go Back
where
Close

N

(2:29) @:{Wﬁ‘ugi%ﬂrﬁﬂﬁmmﬂ Quit

Page 11 of 20
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Proof. Let p(t) be defined byZ.15. We calculate

(2.26) /

_ /aﬁb(t—a) (t— 5a6+ b) dt+/ib(t—b) (t— az5b> dt

(b—a)’
24

Integrating by parts, we have

(2.27) /f (t)dt|

+

— /a (t - 5(1; b) f(t)dt + /; (t _— E5b) f(t)dt

S ORRIIC RN [UP g

Using .16, (2.19), (2.26), (2.27) and @.8) we get

a%wwﬂm=/m>
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f(a—l—b) b—a) /f

_g f(a) +4f6 D HIO) /f dt]
:—%(b—a)w—l—%/a o

From 2.3) and @.29) it follows that

b
ez9) [0 [ o] <2570 00
We have

@30) s = ol - ([ stor)

_(b—a)’
48

and

(2.31) Cy =S (f. ).
From 2.29-(2.31) we easily getZ.24).

Remark 2.3. We see thatd.24) is better than the first estimation id.g).
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We now consider a simple quadrature rule of the form

(2.32) f<a)+2f(%)+f (b—a)— /f

1 a+b fla)+ f(b) /

3k ( 2) 4 L (0t = R().

It is not difficult to see that4.32) is a convex combination of the mid-point
guadrature rule and the trapezoidal quadrature rule. S]int [is shown that
(2.32 has a better estimation of error than the well-known Simpson quadrature

rule (when we estimate the error in terms of the first derivafivef integrand
f). We here have a similar case.

Theorem 2.5. Under the assumptions of Theorén3we have

fla) +2f (45°) + f(b) o)
(2.33) i . /f ot f o
where
(2.34) Cy = ]\f’]\g_w

(e () )|
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Proof. We define

(2.35)

(2.36)

We easily find that

(2.37)

1, te [a,‘%b}
-1, te (“TH’,b}
n(t)

t) = —=.
) =Tl

b
[ ot =o, il =b-a.

Let p(¢) be defined by4.15. Then we have

(2.38)

We also have

(2.39)

/p@mmﬁ:

b
/fwmwﬁ

a+b

LQQ—@ﬁ—/b

(b—a)?
4

—ﬂ@+%(

(t — b)dt

a+b

2
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From 2.37)-(2.39 we get

(2.40)  S,(f'p) = /() dt——/f dt/

2
_b P ¢ [—f@ +2f (“ ; b) - f(b)}
_S@r2A IO, / oyt

From 2.3) and @.40 it follows that

(2.41) ‘f()”f( )+f(>b—a /f t)dt

4

We now calculate

b
@42) 8,0 =l - = ([ st

-
48
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We also have
(2.43) C3=S,(f', ).

From 2.41)-(2.43 we easily getZ.33. ]

Remark 2.4. It is not difficult to see thatA.33) is better than the first estimation

in (1.7).

Finally, in [17] we can find the next inequality

A Generalization of the
Pre-Gruss Inequality and

a+b Applications to some
(2_44) 'f(a) + 4f (%) + f(b) (b . CL) o /b f(t)dt < ( — a)2 (F . ’7), Quadrature Formulae
0 @ Nenad Ujevic

wheref : I — R, (I C Risanopen intervaly < b, a,b € I) is a differentiable
function, f’ is integrable and there exist constantd’ € R such thaty < Title Page
f'it) <T,te€]a,b].

Contents
Inequality @.44) is a variant of the Simpson’s inequality. On the other hand,
we have « dd
Fla) +27 (252) + £ (0 b - a? )
(2.45) A (b—a)— / ft)dt] < W (I — ). Go Back
Close
Inequality ¢.45 follows from (2.33), since Quit
2
2.46) s, < 0-0) (<57 ep el
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and @.46) follows from (2.4) and (L.4).
Form 2.44) and .45 we see that the simple 3-point quadrature rdl&?
has a better estimation of error than the well-known 3-point Simpson quadrature
rule. Note that the estimations are expressed in terms of the first deriyative
of integrand.
Finally, the following remark is valid.

Remark 2.5. The considered case = 1 illustrates how to apply Lemma 1

to quadrature formulas. It is also shown that the derived results are better
than some recently obtained results. We can use Leghfni@ derive further
improvements of the obtained results. However, in such a case we must require

b
/ g®)Wi(t)dt =0,i=0,1,2,...,n.

Thus, the construction of such a finite sequefié¢}; can be complicated.
However, if we really need better error bounds, without taking into account
possible complications, then we can apply the procedure described in this sec-
tion.
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