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ABSTRACT. The class of convex hydrodynamically normalized functions in a half-plane was
introduced by J. Stankiewicz. In this paper we introduce the general class of convex functions in
the upper half-plan® (not necessarily hydrodynamically normalized) and we obtain necessary
and sufficient conditions for an analytic functioniin to be convex univalent ifv.
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1. INTRODUCTION

We denote byD the upper half-plan¢z € C : Im (2) > 0}, by H the class of analytic func-
tions in D, and byH; the class of functiong € H satisfying:
(1.1) plim [f(2) = 2] =0.

The normalization[(1]1) is known in the literature as hydrodynamic normalization, being
related to fluid flows in Mechanics.

The notion of convexity for functions belonging to the clagswas introduced by J. Stankiewicz
and Z. Stankiewicz [([4]/]5]) as follows:

Definition 1.1. The functionf € H; is said to be convex if is univalent inD and f (D) is a
convex domain.
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We denote by}, (D) the class of convex functions satisfying the hydrodynamic normaliza-

tion (1.1).
J. Stankiewicz and Z. Stankiewicz obtained ([4], [5]) the following sufficient conditions for
a functionf € H; to be a convex function:

Theorem 1.1.If the functionf € H; satisfies:
f'(z) #£0, forall z€ D
and
/" (2)
f(2)

(1.2) Im >0, forall z € D,

then f is a convex function.

The class of analytic univalent functions in a half-plane has been studied by F.G. Avhadiev
[1] starting from the 1970’s. He examined the class of convex and univalent functions in a half
plane that are not hydrodynamically normalized, obtaining the following theorem:

Theorem 1.2.([1]) The functionf : D — C, analytic inD, is convex and univalent iPv if and
only if /' (i) # 0 and for anyz € D the following inequality holds:

Im (2z+ (211 L (Z>> >0,

/()
Another result that characterizes the convexity property for univalent functions in the half
plane that are not hydrodynamically normalized was obtained by the second author in [2].
After 1974, the year when Avhadiev’s paper was published, the only classes of univalent
functions in the half-plane that had been studied were the univalent functions hydrodynamically
normalized. We make the remark that the analytic representation of a geometric property (in
this case the convexity property) is not unique.

2. MAIN RESULTS

The functiony : U — D given by
1—u
7 +u
is a conformal mapping of the unit digk onto the upper half-plan®.

For0 < r < 1, the image of the disk/, = {z € C: |z| < r} undery is the diskD, =
{z€C:|z - 2| < R,}, where:

@ (u)

1472

o =T

(2.1) "
R 2r

Tl — 2

To see this, note that in polar coordinates: re', using the identity:
‘1 + re’”| = !1 + 7“6”|

we obtain:

d—ret 1472 2r (1 4 re~) 2r

1 — — 1 - = ,

1+rett 1—1r2 '(1+7°e”)(1—7’2) 1—r2

for anyr € (0,1) and anyt € [0, 27), which shows that the image undgerof the boundary of
the diskU.. is the boundary of the disk,.. Sincey (0) =i € D,, it follows thaty (U,.) = D,..
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Lemma 2.1. ([3]) The family of domain$DT}Te(071) has the following properties:

1) for any positive real numberfs < r < s < 1 we haveD, C D;
ii) for any complex number € D there exists, € (0,1) such thatz € D,, for any
r e (ry,l);
i) foranyz € D andr € (r,, 1) arbitrarily fixed, there exists, € U such that

z =2z + Ru,.
Moreover, we have the following equalities:
limu, = —1
r—1

liH%RT (1—|u)=Imz

Proof. i) Forany0 < r < s < 1 we have:
D, = ¢ (U,) Cp(Us) = Ds.
ii) For z € D we havep~!(z) € U, hence considering, = |¢ ! (z)| we haver, € (0, 1),
and for anyr € (r,, 1) we obtainz € ¢ (U,) = D,.
i) If z = X + Y is an arbitrarily fixed point inD,., » € (r., 1), then the complex number
u, = x, + 1y, given by:
Z— 2
R,
has the property that, | < 1. Using the relationg (2 1) we get:

2 1472 2
X+z'Y:1—TxT+i< L) )

Uy =

r2 1—1r2 1—7“2‘%

and therefore:

1_ 2
Ty = ! X,
2r
(1—r)Y = (1+712)
Yr = 9 5
T
hence it follows:
1—r2 1—r3)Y — (1 2
limur:hm( T)X+i( r) (L+77)
r—1 r—1 r 27a

ro1 1 — 2 472

o EPa-) 112
=1 Y (1 .

) 2r * ( T ) 2r
=2Y
=2Imz.

As lim,_; 1 + |u,.| = 2, follows from the previous inequality, the final result follows
from the second part of iii), completing the proof.
O

The next theorem is obtained as a consequence of “the second coefficient inequality” for
univalent functions in the unit disk, due to Bieberbach:
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Theorem 2.2.1f g : U — C is analytic and univalent i/, then for anyz € U the following

inequality holds:

29" (2)

9 (2)
Using Lemma 2]1 we obtain the following result, which corresponds to the previous theorem

in the case of univalent functions in the half-plane:

‘—2 2 + (1 —12%) <4z

Theorem 2.3. ([3]) If the functionf : D — C is analytic and univalent in the half-plang,
then for anyz € D we have the inequality

. f"(2)
2.2 1 —Im(z
(22) () 5| <
The equality is satisfied for the function given by
fz) =2

at the point: = i.
We make the observation that a simple function sucf a® — C defined by

f(z) =z,

(where we consider a fixed branch of the logarithm for the square root) is univalent in the domain
D, f(D) is a convex domain, yet the functighis not considered to be convex in the sense of
Definition[1.] since it does not belong to the clé$s (f does not satisfy the hydrodynamic
normalization[(1.11)).

This observation suggested the idea that it is necessary to give up the hydrodynamic nor-
malization condition, a much too restrictive normalization. In this sense we propose a new
definition of convexity for analytic functions if, to include a larger class of analytic functions
in D, not necessarily hydrodynamically normalized:

Definition 2.1. A function f € H is said to be convex i if f is univalentinD and f(D) is
a convex domain.

We will denote byC' (D) the class of convex functions (in the sense of Definition 2.1). The
next theorem gives necessary and sufficient conditions for a fungtieri+ to belong to the
classC(D):

Theorem 2.4. For an analytic functionf : D — C, the following are equivalent:

) feC(D)
i) f'(iy) # 0foranyy > 1, and for anyr € (0,1) andz € D, the following inequality
holds:
o "
(2.3) Re m +1>0,
f'(2)
whereD, is the disk{z € C: |z — z,| < R,} and
1472
Zr = 1—,
1—1r2
(2.4)
2r
R, =
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Proof. Given the functionf € C(D), denote byA the convex domairf (D). The function
¢ : U — D given by

1—u
wW%%1+u

represents conformally the digkto the half-planeD, and for any- € (0, 1) we havey (U,.) =
D,.

The functionf o ¢ : U — C represents conformally the unit diskonto A = f(D). Since
the domainA is convex, it follows that the functiori o ¢ is convex and univalent in the unit
disk U, and hence represents conformally any digk(0 < r < 1), onto a convex domain.
Sincey (U,) = D,, it follows that for anyr € (0,1) the domainA, = f (D,) is convex. For
r € (0, 1) arbitrarily fixed, the functiory, : U — C given by

(2.5) gr (u) =f (Zr + RTU) )

wherez,, R, are given by[(2}4), represents conformally the disknto the convex domain,.
Using the results for convex and univalent functions in the unit disk, it follows that the domain
A, is convex if and only if

(2.6) 9, (0) = Rof'(2,) #0

and for anyu € U the following inequality holds:

zg! (u) 2R, f" (2 + Ryu)
- +1=Re

g, (u) [ (zr + Ryu)

Denotingz = z. + R,u, and observing that € U if and only if z € D,, the previous
inequality can be written as

(2.7) Re +1>0.

(z—2) " (2)
f'(2)
for anyz € D,, proving the necessity for condition (2.3).

Sincez, = iiZ;, forr € (0,1) we have:

1—r2

(2.8) Re +1>0,

1+ 72

1—r2

for anyr € (0,1) and thus the conditio (3.6) is equivalentftgiy) # 0 for anyy > 1.
Conversely, if i) holds, then for any arbitrarily fixede (0, 1) the functiong,(u) = f(z. +

R,u) is convex and univalent in the didKk. It follows that for anyr € (0,1) the domain

A, = g.(U) is convex, and sincé, = f (D,), it follows that the functionf is convex and

univalent in the domairD,, for anyr € (0,1). SincelJ,¢ ) Dr = D, it follows that the

function f is convex and univalent in the half-plahg completing the proof. O

> 1

|2, =

In the previous proof we obtained the following result:

Corollary 2.5. If the functionf : D — C is convex and univalent i, thenA, = f (D,) is a
convex domain for any € (0, 1).

Remark 2.6. In [2] the second author introduced the subcla$gD) of the class of convex
univalent functions as follows:

Definition 2.2. ([2]) We say that the analytic functiofi: D — C belongs to the class| (D)
if for any z € D we have:

(2.9) f'(2) #0
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and

Re ZJ{i ”(S) +1>0,
(2.10)

@)

I 72) >0

It is known that if the functiory : U — C is convex and univalent in the unit digk, with
the Taylor series expansion:
g(z)=z4ay® +---,
then|az| < 1. The class of convex and univalent functions in the unit disk, normalized by
f(0) = f'(0) — 1 =0is denoted by
The above property for functions belonging to the cl@ssas the following important con-
sequence:

Theorem 2.7. If the functiong : U — C belongs to the clas€’, then for anyz € U the

following inequality holds:

29" (2)

9 (2)
Using this result we obtain a differential characterization of the al&d3) of convex and

univalent functions in the half-plane:

‘—2 2 + (1 —12%) <2z

Theorem 2.8.If the functionf : D — C belongs to the clas€'(D), then for anyz € D we
have the inequality:

/()
/' (2)
Proof. If the function f belongs toC'(D), by Corollary{2.5 it follows that\, = f(D,) is a
convex domain for any € (0, 1).

The functiong, given by formula[(2.5) represents conformally the unit disknto g, (U) =
A,, and since), is a convex domain, it follows that the functign is convex and univalent.

The function
gr(u) — 97"(0) _ f(zr + Rru) — f(zr)

9,(0) R, f'(z)
is therefore convex and univalentine U, normalized byg, (0) = ¢.(0) — 1 = 0 for any
r € (0,1). By Theoren] 27 it follows that for any € (0,1) and anyu € U the following
inequality holds:

(2.11) <1.

i—Im(z)

"
7'+ Ryu)
Givenz € D, by Lemmd 2. there exists € (0,1) such that for any fixed € (r., 1), there
isu, € U such that = 2, + R,u, € D, and

(2.12) =2 Jul* + (1 = [uf?)

limu, = —1,
r—1

lin% (1 —u.]) R = Im 2.
Considering: = u, in the inequality[(2.T2) and passing to the limit with- 1, we obtain:

~if"(9)]

—2 4 2Im(z) )| S
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Sincez € D was arbitrarily chosen, we have shown that for ang D the following
inequality holds:

i —Im(2) /()

and the theorem is proved. O
The next result is an important consequence of Theprem 2.8:

Corollary 2.9. If the functionf : D — C is convex and univalent in the half-plaig then for
anyz € D we have the inequality:

f// (Z)
2.13 Im > 0.
=19 ae)
Proof. If the function f is convex and univalent in the half-plade by the inequality[(2.1]1)
given by Theore8, it follows that for anye D, the pointw = Im (z) 22 belongs to the

(2)
disk centered at with radiusl. Since this disk belongs to the upper half-plane, it follows that
for anyz € D the inequality[(2.133) holds. O

Remark 2.10. The result in the previous corollary was obtained, using different methods, by
F.G. AvhadievI[1].

Example 2.1. The functionf : D — C given by
f(z) =2
is convex and univalent for anye [—1,0)U(0, 1], since the functiorf is analytic and univalent

in D, and the domainsy (D) = {2z € C:arg(z) € (0,an)}, fora € (0,1), and f (D) =
{z € C:arg(z) € (am,0)}, fora € (—1,0), are convex.

The following inequalities hold:

(z—2) f"(2) z— 2z
— 24+ 1=(a—-1 1
Re 7 + (a —1)Re . +
_alZ?—|z|(a—1)Imz
El
a 9 s a—1
:W (Rez)” + (Im 2)* — |2, Im z | .
z
Let us observe that if € [—1,0), then for any- € (0, 1), we have the following inequality:
-1
(Re2)? + (Im2)? — ¢ |2 Im 2z < 0,

for any z in the disk centered dt*~2*| with radius“-2*!. Since

a—1

20| > |20,

this disk is contained in the disk,, and hence by Theorem 2.4 it follows that foe [—1,0)
we havef € C(D).
Fora € (0, 1] we have:
(z—z) f"(2) Im z
7(2) +l=a—(a—1)[z] 22]
for anyr € (0,1) and for anyz € D, and therefore by Theorelm 2.4 the functipibelongs to
the class” (D) for a € (0, 1] as well.

Re >0
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Applying Theoreni 12 to the same functignwe obtain:

2 " 2 _
(2 —i-,l)f (2) 9+ 1m (z2+1)(a—1)
/' (2) z
= 2|y [(a + 1) |2]* = (a — 1)] >0
foranyz € D, if and only ifa € [—1, 1]. The conditionf’ () is satisfied fora # 0, hence it
follows thatf € C'(D) for anya € [—1,0) U (0, 1].
Trying to apply the result due to J. Stankiewicz, we can seeftiat’y,, (D) for any value

of a € [-1,0) U (0, 1] since the considered functigisatisfies the hydrodynamic normalization
just fora = 1, but in this case
f/l (Z)

[ (2)
and the condition obtained by J. Stankiewicz is not satisfied. We therefore have the inclusion

Im |22 +

Im

=0,
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