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ABSTRACT. The class of convex hydrodynamically normalized functions in a half-plane was
introduced by J. Stankiewicz. In this paper we introduce the general class of convex functions in
the upper half-planeD (not necessarily hydrodynamically normalized) and we obtain necessary
and sufficient conditions for an analytic function inD, to be convex univalent inD.
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1. I NTRODUCTION

We denote byD the upper half-plane{z ∈ C : Im (z) > 0}, byH the class of analytic func-
tions inD, and byH1 the class of functionsf ∈ H satisfying:

(1.1) lim
D3z→∞

[f (z)− z] = 0.

The normalization (1.1) is known in the literature as hydrodynamic normalization, being
related to fluid flows in Mechanics.

The notion of convexity for functions belonging to the classH1 was introduced by J. Stankiewicz
and Z. Stankiewicz ([4], [5]) as follows:

Definition 1.1. The functionf ∈ H1 is said to be convex iff is univalent inD andf (D) is a
convex domain.
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We denote byCH1 (D) the class of convex functions satisfying the hydrodynamic normaliza-
tion (1.1).

J. Stankiewicz and Z. Stankiewicz obtained ([4], [5]) the following sufficient conditions for
a functionf ∈ H1 to be a convex function:

Theorem 1.1. If the functionf ∈ H1 satisfies:

f ′(z) 6= 0, for all z ∈ D

and

(1.2) Im
f ′′ (z)

f ′ (z)
> 0, for all z ∈ D,

thenf is a convex function.

The class of analytic univalent functions in a half-plane has been studied by F.G. Avhadiev
[1] starting from the 1970’s. He examined the class of convex and univalent functions in a half
plane that are not hydrodynamically normalized, obtaining the following theorem:

Theorem 1.2. ([1]) The functionf : D → C, analytic inD, is convex and univalent inD if and
only if f ′ (i) 6= 0 and for anyz ∈ D the following inequality holds:

Im

(
2z +

(
z2 + 1

) f ′′ (z)

f ′ (z)

)
> 0.

Another result that characterizes the convexity property for univalent functions in the half
plane that are not hydrodynamically normalized was obtained by the second author in [2].

After 1974, the year when Avhadiev’s paper was published, the only classes of univalent
functions in the half-plane that had been studied were the univalent functions hydrodynamically
normalized. We make the remark that the analytic representation of a geometric property (in
this case the convexity property) is not unique.

2. M AIN RESULTS

The functionϕ : U → D given by

ϕ (u) = i
1− u

1 + u

is a conformal mapping of the unit diskU onto the upper half-planeD.
For 0 < r < 1, the image of the diskUr = {z ∈ C : |z| < r} underϕ is the diskDr =

{z ∈ C : |z − zr| < Rr}, where:

(2.1)


zr = i

1 + r2

1− r2
;

Rr =
2r

1− r2

.

To see this, note that in polar coordinatesu = reit, using the identity:∣∣1 + re−it
∣∣ =

∣∣1 + reit
∣∣

we obtain: ∣∣∣∣i1− reit

1 + reit
− i

1 + r2

1− r2

∣∣∣∣ =

∣∣∣∣ 2r (1 + re−it)

(1 + reit) (1− r2)

∣∣∣∣ =
2r

1− r2
,

for anyr ∈ (0, 1) and anyt ∈ [0, 2π), which shows that the image underϕ of the boundary of
the diskUr is the boundary of the diskDr. Sinceϕ (0) = i ∈ Dr, it follows thatϕ (Ur) = Dr.
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Lemma 2.1. ([3])The family of domains{Dr}r∈(0,1) has the following properties:

i) for any positive real numbers0 < r < s < 1 we haveDr ⊂ Ds;
ii) for any complex numberz ∈ D there existsrz ∈ (0, 1) such thatz ∈ Dr, for any

r ∈ (rz, 1);
iii) for anyz ∈ D andr ∈ (rz, 1) arbitrarily fixed, there existsur ∈ U such that

z = zr + Rrur.

Moreover, we have the following equalities:
lim
r→1

ur = −i

lim
r→1

Rr (1− |ur|) = Im z
.

Proof. i) For any0 < r < s < 1 we have:

Dr = ϕ (Ur) ⊂ ϕ (Us) = Ds.

ii) For z ∈ D we haveϕ−1(z) ∈ U , hence consideringrz = |ϕ−1 (z)| we haverz ∈ (0, 1),
and for anyr ∈ (rz, 1) we obtainz ∈ ϕ (Ur) = Dr.

iii) If z = X + iY is an arbitrarily fixed point inDr, r ∈ (rz, 1), then the complex number
ur = xr + iyr given by:

ur =
z − zr

Rr

has the property that|ur| < 1. Using the relations (2.1) we get:

X + iY =
2r

1− r2
xr + i

(
1 + r2

1− r2
+

2r

1− r2
yr

)
and therefore: 

xr =
1− r2

2r
X,

yr =
(1− r2) Y − (1 + r2)

2r
,

hence it follows:

lim
r→1

ur = lim
r→1

(1− r2)

2r
X + i

(1− r2) Y − (1 + r2)

2r
= −i,

and

lim
r→1

Rr

(
1− |ur|2

)
= lim

r→1

2r

1− r2
· 4r2 − |z|2 (1− r2)

2
+ 2(1− r4)Y − (1 + r2)

2

4r2

= lim
r→1

−|z|
2 (1− r2)

2r
+ Y

(
1 + r2

)
− 1− r2

2r
= 2Y

= 2 Im z.

As limr→1 1 + |ur| = 2, follows from the previous inequality, the final result follows
from the second part of iii), completing the proof.

�

The next theorem is obtained as a consequence of “the second coefficient inequality” for
univalent functions in the unit disk, due to Bieberbach:
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Theorem 2.2. If g : U → C is analytic and univalent inU , then for anyz ∈ U the following
inequality holds: ∣∣∣∣−2 |z|2 +

(
1− |z|2

) zg′′ (z)

g′ (z)

∣∣∣∣ ≤ 4 |z| .

Using Lemma 2.1 we obtain the following result, which corresponds to the previous theorem
in the case of univalent functions in the half-plane:

Theorem 2.3. ([3]) If the functionf : D → C is analytic and univalent in the half-planeD,
then for anyz ∈ D we have the inequality

(2.2)

∣∣∣∣i− Im (z)
f ′′ (z)

f ′ (z)

∣∣∣∣ ≤ 2.

The equality is satisfied for the function given by

f (z) = z2

at the pointz = i.
We make the observation that a simple function such asf : D → C defined by

f(z) =
√

z,

(where we consider a fixed branch of the logarithm for the square root) is univalent in the domain
D, f(D) is a convex domain, yet the functionf is not considered to be convex in the sense of
Definition 1.1 since it does not belong to the classH1 (f does not satisfy the hydrodynamic
normalization (1.1)).

This observation suggested the idea that it is necessary to give up the hydrodynamic nor-
malization condition, a much too restrictive normalization. In this sense we propose a new
definition of convexity for analytic functions inD, to include a larger class of analytic functions
in D, not necessarily hydrodynamically normalized:

Definition 2.1. A function f ∈ H is said to be convex inD if f is univalent inD andf(D) is
a convex domain.

We will denote byC(D) the class of convex functions (in the sense of Definition 2.1). The
next theorem gives necessary and sufficient conditions for a functionf ∈ H to belong to the
classC(D):

Theorem 2.4.For an analytic functionf : D → C, the following are equivalent:

i) f ∈ C(D);
ii) f ′(iy) 6= 0 for anyy > 1, and for anyr ∈ (0, 1) andz ∈ Dr the following inequality

holds:

(2.3) Re
(z − zr) f ′′ (z)

f ′ (z)
+ 1 > 0,

whereDr is the disk{z ∈ C : |z − zr| < Rr} and

(2.4)


zr = i

1 + r2

1− r2
,

Rr =
2r

1− r2
.
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Proof. Given the functionf ∈ C(D), denote by∆ the convex domainf (D). The function
ϕ : U → D given by

ϕ (u) = i
1− u

1 + u

represents conformally the diskU to the half-planeD, and for anyr ∈ (0, 1) we haveϕ (Ur) =
Dr.

The functionf ◦ ϕ : U → C represents conformally the unit diskU onto∆ = f(D). Since
the domain∆ is convex, it follows that the functionf ◦ ϕ is convex and univalent in the unit
disk U , and hence represents conformally any diskUr (0 < r < 1), onto a convex domain.
Sinceϕ (Ur) = Dr, it follows that for anyr ∈ (0, 1) the domain∆r = f (Dr) is convex. For
r ∈ (0, 1) arbitrarily fixed, the functiongr : U → C given by

(2.5) gr (u) = f (zr + Rru) ,

wherezr, Rr are given by (2.4), represents conformally the diskU onto the convex domain∆r.
Using the results for convex and univalent functions in the unit disk, it follows that the domain
∆r is convex if and only if

(2.6) g′r (0) = Rrf
′ (zr) 6= 0

and for anyu ∈ U the following inequality holds:

(2.7) Re
zg′′r (u)

g′r (u)
+ 1 = Re

zRrf
′′ (zr + Rru)

f ′ (zr + Rru)
+ 1 > 0.

Denotingz = zr + Rru, and observing thatu ∈ U if and only if z ∈ Dr, the previous
inequality can be written as

(2.8) Re
(z − zr) f ′′ (z)

f ′ (z)
+ 1 > 0,

for anyz ∈ Dr, proving the necessity for condition (2.3).
Sincezr = i1+r2

1−r2 , for r ∈ (0, 1) we have:

|zr| =
1 + r2

1− r2
> 1

for anyr ∈ (0, 1) and thus the condition (2.6) is equivalent tof ′(iy) 6= 0 for anyy > 1.
Conversely, if ii) holds, then for any arbitrarily fixedr ∈ (0, 1) the functiongr(u) = f(zr +

Rru) is convex and univalent in the diskU . It follows that for anyr ∈ (0, 1) the domain
∆r = gr(U) is convex, and since∆r = f (Dr), it follows that the functionf is convex and
univalent in the domainDr, for any r ∈ (0, 1). Since

⋃
r∈(0,1) Dr = D, it follows that the

functionf is convex and univalent in the half-planeD, completing the proof. �

In the previous proof we obtained the following result:

Corollary 2.5. If the functionf : D → C is convex and univalent inD, then∆r = f (Dr) is a
convex domain for anyr ∈ (0, 1).

Remark 2.6. In [2] the second author introduced the subclassC1(D) of the class of convex
univalent functions as follows:

Definition 2.2. ([2]) We say that the analytic functionf : D → C belongs to the classC1(D)
if for any z ∈ D we have:

(2.9) f ′ (z) 6= 0
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and

(2.10)


Re

zf ′′ (z)

f ′ (z)
+ 1 > 0,

Im
f ′′ (z)

f ′ (z)
> 0.

It is known that if the functiong : U → C is convex and univalent in the unit diskU , with
the Taylor series expansion:

g (z) = z + a2z
2 + · · · ,

then |a2| ≤ 1. The class of convex and univalent functions in the unit disk, normalized by
f(0) = f ′(0)− 1 = 0 is denoted byC.

The above property for functions belonging to the classC has the following important con-
sequence:

Theorem 2.7. If the functiong : U → C belongs to the classC, then for anyz ∈ U the
following inequality holds:∣∣∣∣−2 |z|2 +

(
1− |z|2

) zg′′ (z)

g′ (z)

∣∣∣∣ ≤ 2 |z| .

Using this result we obtain a differential characterization of the classC(D) of convex and
univalent functions in the half-planeD:

Theorem 2.8. If the functionf : D → C belongs to the classC(D), then for anyz ∈ D we
have the inequality:

(2.11)

∣∣∣∣i− Im (z)
f ′′ (z)

f ′ (z)

∣∣∣∣ ≤ 1.

Proof. If the functionf belongs toC(D), by Corollary 2.5 it follows that∆r = f (Dr) is a
convex domain for anyr ∈ (0, 1).

The functiongr given by formula (2.5) represents conformally the unit diskU ontogr(U) =
∆r, and since∆r is a convex domain, it follows that the functiongr is convex and univalent.
The function

gr(u)− gr(0)

g′r(0)
=

f(zr + Rru)− f(zr)

Rrf ′(zr)

is therefore convex and univalent inu ∈ U , normalized bygr(0) = g′r(0) − 1 = 0 for any
r ∈ (0, 1). By Theorem 2.7 it follows that for anyr ∈ (0, 1) and anyu ∈ U the following
inequality holds:

(2.12)

∣∣∣∣−2 |u|2 +
(
1− |u|2

) uRrf
′′(zr + Rru)

f ′(zr + Rru)

∣∣∣∣ ≤ 2 |u| .

Givenz ∈ D, by Lemma 2.1 there existsrz ∈ (0, 1) such that for any fixedr ∈ (rz, 1), there
is ur ∈ U such thatz = zr + Rrur ∈ Dr and

lim
r→1

ur = −i,

lim
r→1

(1− |ur|) Rr = Im z.

Consideringu = ur in the inequality (2.12) and passing to the limit withr → 1, we obtain:∣∣∣∣−2 + 2 Im(z)
−if ′′(z)

f ′(z)

∣∣∣∣ ≤ 2.
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Sincez ∈ D was arbitrarily chosen, we have shown that for anyz ∈ D the following
inequality holds: ∣∣∣∣i− Im(z)

f ′′(z)

f ′(z)

∣∣∣∣ ≤ 1,

and the theorem is proved. �

The next result is an important consequence of Theorem 2.8:

Corollary 2.9. If the functionf : D → C is convex and univalent in the half-planeD, then for
anyz ∈ D we have the inequality:

(2.13) Im
f ′′ (z)

f ′ (z)
> 0.

Proof. If the functionf is convex and univalent in the half-planeD, by the inequality (2.11)
given by Theorem 2.8, it follows that for anyz ∈ D, the pointw = Im (z) f ′′(z)

f ′(z)
belongs to the

disk centered ati with radius1. Since this disk belongs to the upper half-plane, it follows that
for anyz ∈ D the inequality (2.13) holds. �

Remark 2.10. The result in the previous corollary was obtained, using different methods, by
F.G. Avhadiev [1].

Example 2.1.The functionf : D → C given by

f (z) = za,

is convex and univalent for anya ∈ [−1, 0)∪(0, 1], since the functionf is analytic and univalent
in D, and the domains:f (D) = {z ∈ C : arg (z) ∈ (0, aπ)}, for a ∈ (0, 1), andf (D) =
{z ∈ C : arg (z) ∈ (aπ, 0)}, for a ∈ (−1, 0), are convex.

The following inequalities hold:

Re
(z − zr) f ′′ (z)

f ′ (z)
+ 1 = (a− 1) Re

z − zr

z
+ 1

=
a |z2| − |zr| (a− 1) Im z

|z|2

=
a

|z|2

[
(Re z)2 + (Im z)2 − a− 1

a
|zr| Im z

]
.

Let us observe that ifa ∈ [−1, 0), then for anyr ∈ (0, 1), we have the following inequality:

(Re z)2 + (Im z)2 − a− 1

a
|zr| Im z < 0,

for anyz in the disk centered ati(a−1)|zr|
2a

with radius(a−1)|zr|
2a

. Since

a− 1

2a
|zr| ≥ |zr| ,

this disk is contained in the diskDr, and hence by Theorem 2.4 it follows that fora ∈ [−1, 0)
we havef ∈ C(D).

Fora ∈ (0, 1] we have:

Re
(z − zr) f ′′ (z)

f ′ (z)
+ 1 = a− (a− 1) |zr|

Im z

|z2|
> 0

for anyr ∈ (0, 1) and for anyz ∈ D, and therefore by Theorem 2.4 the functionf belongs to
the classC(D) for a ∈ (0, 1] as well.
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Applying Theorem 1.2 to the same functionf , we obtain:

Im

[
2z +

(z2 + 1) f ′′ (z)

f ′ (z)

]
= 2y + Im

(z2 + 1) (a− 1)

z

= |z|−2 y
[
(a + 1) |z|2 − (a− 1)

]
> 0

for anyz ∈ D, if and only if a ∈ [−1, 1]. The conditionf ′ (i) is satisfied fora 6= 0, hence it
follows thatf ∈ C(D) for anya ∈ [−1, 0) ∪ (0, 1].

Trying to apply the result due to J. Stankiewicz, we can see thatf /∈ CH1 (D) for any value
of a ∈ [−1, 0)∪ (0, 1] since the considered functionf satisfies the hydrodynamic normalization
just fora = 1, but in this case

Im
f ′′ (z)

f ′ (z)
= 0,

and the condition obtained by J. Stankiewicz is not satisfied. We therefore have the inclusion
CH1 (D) ( C(D).
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