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Abstract

The class of convex hydrodynamically normalized functions in a half-plane was
introduced by J. Stankiewicz. In this paper we introduce the general class of
convex functions in the upper half-plane D (not necessarily hydrodynamically
normalized) and we obtain necessary and sufficient conditions for an analytic
function in D, to be convex univalentin D.
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We denote byD the upper half-plan¢z € C : Im (z) > 0}, by H the class of
analytic functions inD, and byH; the class of functiong € H satisfying:

1.1) lim [f(z)—z]=0.

D3>z—o0

The normalization.1) is known in the literature as hydrodynamic normal-
ization, being related to fluid flows in Mechanics.

The notion of convexity for functions belonging to the cldgswas intro-
duced by J. Stankiewicz and Z. StankiewicZ ([ 5]) as follows:

Definition 1.1. The functionf € H; is said to be convex if is univalent inD
and f (D) is a convex domain.

We denote by, (D) the class of convex functions satisfying the hydrody-
namic normalization(.1).

J. Stankiewicz and Z. Stankiewicz obtained ([ 5]) the following sufficient
conditions for a functiorf € H; to be a convex function:

Theorem 1.1.If the functionf € H; satisfies:
f'(z) #0, forall z€ D

and

@)
(1.2) I 702 >0, forall z € D,

then f is a convex function.
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The class of analytic univalent functions in a half-plane has been studied by
F.G. Avhadiev [] starting from the 1970’s. He examined the class of convex and
univalent functions in a half plane that are not hydrodynamically normalized,
obtaining the following theorem:

Theorem 1.2.([1]) The functionf : D — C, analytic inD, is convex and uni-
valent inD if and only if f' (i) # 0 and for anyz € D the following inequality
holds:

2 I (2))
Im (22+ (*+1) o) 0.

Another result that characterizes the convexity property for univalent func-
tions in the half plane that are not hydrodynamically normalized was obtained
by the second author ir].

After 1974, the year when Avhadiev’s paper was published, the only classes
of univalent functions in the half-plane that had been studied were the univalent
functions hydrodynamically normalized. We make the remark that the analytic
representation of a geometric property (in this case the convexity property) is
not unique.
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The functiony : U — D given by

1—u
7
1+u

¢ (u) =

is a conformal mapping of the unit digk onto the upper half-plan®.
For0 < r < 1, the image of the disk/, = {z € C: |z| < r} underyp is the
disk D, ={z € C: |z — z,| < R,}, where:

142

R PEPTE

(2.1) "
R 2r

T — 2

To see this, note that in polar coordinates: re', using the identity:
’1 + re_“‘ = }1 + reit‘
we obtain:

142
/L g
1—172

1 —ret
i -
1+ re

2r (L4re”™™) | 2r
(14 reit) (1 —7r2)| 1 —r2
foranyr € (0,1)and anyt € [0, 27), which shows that the image undeof the

boundary of the disk’. is the boundary of the disk,.. Sincey (0) =i € D,,
it follows thaty (U,) = D,.
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Lemma 2.1. ([3])The family of domaing D, },, ;, has the following proper-
ties:

i) for any positive real numbefs< r < s < 1 we haveD, C D;

ii) for any complex number € D there exists, € (0, 1) such that: € D,,
foranyr € (., 1);

i) foranyz € D andr € (r,,1) arbitrarily fixed, there exists, € U such
that

z =z, + Ru,.
Moreover, we have the following equalities:
limu, = —1
r—1

lmR, (1= fu,]) =Imz

Proof.

i) Forany0 < r < s < 1 we have:

D, = QO(UT> C SO(US) = D,.

i) Forz € D we havep~!(z) € U, hence considering, = |¢~! ()| we
haver, € (0,1), and for anyr € (r,, 1) we obtainz € ¢ (U,) = D,.
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i) If z = X + Y is an arbitrarily fixed point inD,., » € (r,,1), then the

complex number, = z, + iy, given by:
2= 2
R,
has the property that,.| < 1. Using the relationsA 1) we get:

9 1402 9
X iV = — i
1—1r2

Uy =

1— 72 1—r?
and therefore: Convex Functions in a
1-— 7’2 Half-plane
Ty = X,
2r Nicolae N. Pascu and
(1 _ 7’2) Y — (1 + 7”2) Nicolae R. Pascu
Yr = 9 >
T
hence it follows: Title Page
2 2 2
hmur:hm(l_r)X+Z'(1_T)Y_(1+T) Contents
r—1 r—1  2r 2r
= —i, 44 44
and | >
lirr% R, (1 — |ur|2) Go Back
o = P =) 20— )Y — (142 Close
= lim . :
r—11 — 72 Ar2 Quit
2 2 2
1-— 1-—
— lim 2|” ( T)+Y(1—|—r2)— r Page 7 of 18
r—1 2r 2r
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As lim, ;1 + |u,| = 2, follows from the previous inequality, the final
result follows from the second part of iii), completing the proof.

]

The next theorem is obtained as a consequence of “the second coefficient
inequality” for univalent functions in the unit disk, due to Bieberbach:

Theorem 2.2.1f g : U — C is analytic and univalent it/, then for any: € U
the following inequality holds:

Convex Functions in a

Half-plane
/!
-2 |Z|2 + (1 — |Z|2) 29 (Z) <4 |Z| . Nicolae N. Pascu and
9/ (Z) Nicolae R. Pascu
Using Lemma2.1 we obtain the following result, which corresponds to the _
previous theorem in the case of univalent functions in the half-plane: Tite Page
Theorem 2.3.([3]) If the functionf : D — C is analytic and univalent in the Contents
half-planeD, then for any: € D we have the inequality 44 (33
" 4 }
(2.2) i—tm(z) 3| <o
f1(2) Go Back
The equality is satisfied for the function given by Close
Quit
fz) =2
Page 8 of 18
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We make the observation that a simple function sucli a® — C defined

by
f(z) =z,

(where we consider a fixed branch of the logarithm for the square root) is uni-
valent in the domairD, f(D) is a convex domain, yet the functighis not
considered to be convex in the sense of Definitiohsince it does not belong
to the clas$t; (f does not satisfy the hydrodynamic normalizatiri)).

This observation suggested the idea that it is necessary to give up the hydro-

dynamic normalization condition, a much too restrictive normalization. In this Conveﬁ Fllfmcltions ina
. . . . . alf-plane

sense we propose a new definition of convexity for analytic functions, ito

include a larger class of analytic functionsiin not necessarily hydrodynami- Nicolae N. Pascu and

; Nicolae R. Pascu
cally normalized:

Definition 2.1. A functionf € H is said to be convex ifv if f is univalent in
D and f(D) is a convex domain.

We will denote byC'(D) the class of convex functions (in the sense of Def-
inition 2.1). The next theorem gives necessary and sufficient conditions for a < >
function f € H to belong to the clas§'(D):

Title Page

Contents

< >
Theorem 2.4. For an analytic functionf : D — C, the following are equiva-
lent: Go Back
i) fe C(D); Close
i) f'(iy) # 0foranyy > 1, and for anyr € (0,1) andz € D, the following Quit
inequality holds: Page 9 of 18
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whereD, is the disk{z € C: |z — z,| < R,} and

142
2y = 1—,
1—1r2
(2.4)
2r
R, = .
1—1r2

Proof. Given the functionf € C(D), denote byA the convex domairf (D).
The functiony : U — D given by
d1—u

S0<u>:l1—|—u

represents conformally the digk to the half-planeD, and for anyr € (0, 1)
we havep (U,) = D,.

The functionf o ¢ : U — C represents conformally the unit digk onto
A = f(D). Since the domain\ is convey, it follows that the functioffi o ¢ is
convex and univalent in the unit digk, and hence represents conformally any
disk U, (0 < r < 1), onto a convex domain. Singe(U,.) = D,, it follows that
foranyr € (0,1) the domainA, = f (D,) is convex. For € (0, 1) arbitrarily
fixed, the functiory, : U — C given by

(2.5) 9r (w) = f (2 + Ryu),

where z,., R, are given by 2.4), represents conformally the digk onto the
convex domaim,.. Using the results for convex and univalent functions in the
unit disk, it follows that the domaig,. is convex if and only if

(2.6) 9, (0) = R f'(2) # 0
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and for anyu € U the following inequality holds:

+1>0.

zg! (u) 2R, f" (2, + Ryu)
2.7 Re +1=Re
@) 7 (W) 7' G + Rot)

Denotingz = z,. + R,u, and observing that € U ifand only if z € D,, the
previous inequality can be written as

(2= =) ' (2)
Re—%)

foranyz € D,, proving the necessity for conditiof.().
Sincez, = i1t forr € (0,1) we have:

(2.8) +1>0,

1+ 72
1— 172

|z.| = > 1
for anyr € (0,1) and thus the conditior2(6) is equivalent tof’(iy) # 0 for
anyy > 1.

Conversely, if i) holds, then for any arbitrarily fixede (0, 1) the function
g-(u) = f(z. + R,u) is convex and univalent in the digk. It follows that for
anyr € (0,1) the domainA, = ¢,(U) is convex, and sinca, = f (D,), it
follows that the functionf is convex and univalent in the domain,, for any

€ (0,1). Sincel, (1) D- = D, it follows that the functiorf is convex and
univalent in the half- plan@ completing the proof. ]

In the previous proof we obtained the following result:
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Corollary 2.5. If the functionf : D — C is convex and univalent iy, then
A, = f(D,)is a convex domain for anye (0, 1).

Remark 2.1. In [2] the second author introduced the subcl&sg D) of the
class of convex univalent functions as follows:

Definition 2.2. ([2]) We say that the analytic functiofi: D — C belongs to
the class”; (D) if for any z € D we have:

(2.9) f(z)#0
and
zf" (2)
Re ) +1>0,
(2.10)
)
I 72) > 0.

It is known that if the functiory : U — C is convex and univalent in the unit
disk U, with the Taylor series expansion:

g(z)=z+ap* +---,

then|ay| < 1. The class of convex and univalent functions in the unit disk,
normalized byf(0) = f'(0) — 1 = 0 is denoted by’

The above property for functions belonging to the cl@dsas the following
important consequence:
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Theorem 2.6. If the functiong : U — C belongs to the clas€’, then for any
z € U the following inequality holds:

29" (2)
9'(2)

Using this result we obtain a differential characterization of the d4d3)
of convex and univalent functions in the half-plabe

Theorem 2.7.1f the functionf : D — C belongs to the clas§'(D), then for
anyz € D we have the inequality:

'_2 1217+ (1= |2]*)

<2|z|.

/" (2)
f(z)
Proof. If the function f belongs ta” (D), by Corollary2.5it follows thatA, =
f(D,) is a convex domain for any € (0, 1).

The functiong, given by formula 2.5) represents conformally the unit disk

U onto g, (U) = A,, and sinceA, is a convex domain, it follows that the
function g, is convex and univalent. The function

gr(u) B gr(o) _ f(Zr + Rru) B f(zr)
9:(0) R, f'(z)
is therefore convex and univalentine U, normalized by, (0) = ¢.(0)—1 =0

for anyr € (0,1). By Theorem2.6 it follows that for anyr € (0,1) and any
u € U the following inequality holds:

"
uR,.f"(z + Ryu) <2l
f'(zr + Ryu)

(2.11) <1.

i —Im(2)

(2.12) —2u)* + (1= [uf?)

Convex Functions in a
Half-plane

Nicolae N. Pascu and
Nicolae R. Pascu

Title Page

Contents
44 44
< >
Go Back
Close
Quit
Page 13 of 18

J. Ineq. Pure and Appl. Math. 4(5) Art. 102, 2003
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:n.pascu@unitbv.ro
mailto:
mailto:
mailto:pascun@greenmtn.edu
http://jipam.vu.edu.au/

Givenz € D, by Lemma2.1there exists:, € (0, 1) such that for any fixed
r € (r,, 1), thereisu, € U such that = z, + R,u, € D, and

limu, = —1,

r—1

lirr{ (1—|u,|) R =Imz.

Consideringu = u, in the inequality £.12 and passing to the limit with
r — 1, we obtain:
—if"(z)

f'(2)
Sincez € D was arbitrarily chosen, we have shown that for any D the
following inequality holds:

‘—2 +2Im(z2)

f”(Z)
f'(2)

and the theorem is proved. O

— 9

i — Im(z)

The next result is an important consequence of Thed@ém

Corollary 2.8. If the functionf : D — C is convex and univalent in the half-
plane D, then for anyz € D we have the inequality:

(@)
(2.13) I 5> 0,
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Proof. If the function f is convex and univalent in the half-plarig, by the
inequality Q.//l]) given by Theoren?.7, it follows that for anyz € D, the point
w = Tm (2) L2 belongs to the disk centerediasith radiusl. Since this disk

belongs to the upper half-plane, it follows that for anye D the inequality
(2.13 holds. ]

Remark 2.2. The result in the previous corollary was obtained, using different

methods, by F.G. AvhadieV][
Example 2.1. The functionf : D — C given by

f(z) = 2",

is convex and univalent for anye [—1,0) U (0, 1], since the functiorf is ana-
lytic and univalentinD, and the domainsf (D) = {z € C : arg (z) € (0,am)},
fora € (0,1), and f (D) = {z € C: arg(z) € (am,0)}, fora € (—1,0), are
convex.

The following inequalities hold:

(z —2) f" (%)

zZ— 2

R l=(a—1)R 1
e 702) + (a—1)Re —
a2 —|z|(a—1)Imz
Kk

a—1

L (Re2)? + (Im 2)? —

= o |z, Im 2| .
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Let us observe that ifi € [—1,
following inequality:

0), then for anyr € (0,1), we have the

-1
(Re2)* + (Im 2)? — |z,|Im z < 0,

for anyz in the disk centered M with radius @=Lz "“' . Since

a —

2a

this disk is contained in the disk,, and hence by Theoreth4 it follows that
fora € [-1,0) we havef € C(D).
Fora € (0,1] we have:

=2 f"G) oy
f’(Z) +1= ( 1)|r| >0

22|
foranyr € (0,1) and for any: € D, and therefore by Theoreth4the function
f belongs to the classS(D) for a € (0, 1] as well.
Applying Theoreml.2to the same functiorf, we obtain:

Z+D ()] m(z2+1) (a—1)
—f’ ) =2y+1 .
= |z[72y [(a +1) |z]2 — (a — 1)} > 0

12| > |20,

Re

Im |2z +

foranyz € D, ifand only ifa € [—1,1]. The conditionf’ (i) is satisfied for
a # 0, hence it follows thaf € C(D) foranya € [—1,0) U (0, 1].
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Trying to apply the result due to J. Stankiewicz, we can seeftlrat’;,, (D)
for any value of: € [—1,0) U (0, 1] since the considered functighsatisfies the
hydrodynamic normalization just far= 1, but in this case

/()
f'(2)

and the condition obtained by J. Stankiewicz is not satisfied. We therefore have
the inclusionCy, (D) € C(D).

Im =0,
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