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ABSTRACT. The lower bound of Cramér and Rao is generalized to pairs of families of probabil-
ity distributions, one of which is escort to the other. This bound is optimal for certain families,
called ¢-exponential in the paper. Their dual structure is explored. They satisfy a variational
principle with respect to an appropriately chosen entropy functional, which is the dual of a free
energy functional.
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1. INTRODUCTION

The aim of this paper is to translate some new results of statistical physics into the language
of statistics. It is well-known that the exponential family of probability distribution functions
(pdfs) plays a central role in statistical physics. When Gibbs [6] introduced the canonical en-
semble in 1901 he postulated a distribution of energies the form

(1.1) p(E) = exp(G — BE),

where( is a normalization constant and where the control paranteigthe inverse temper-
ature. Only recently [17], a proposal was made to replace (1.1) by a more general family of
pdfs. The resulting domain of research is known under the name of Tsallis’ thermostatistics.
Some of the pdfs of Tsallis’ thermostatistics are known in statistics under the name of Amatri’s
a-family [3]. The latter have been introduced in the context of geometry of statistical manifolds
[8]. The appearance of the same family of pdfs in both domains is not accidental. The apparent
link between both domains is clarified in the present paper.
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2 JAN NAUDTS

The new notion introduced in Tsallis’ thermostatistics is that of pairs of families of pdfs, one
of which is theescort of the other[[4]. Some basic concepts of statistics can be generalized by
replacing at well-chosen places the pdf by its escort. In particular, we show in the next section
how to generalize Fisher’s information and, correspondingly, how to generalize the well-known
lower bound of Cramér and Rao. Sectiign 3 studies the statistical manifold of a family for which
there exists an escort family satisfying the condition under which the generalized Cramér-Rao
bound is optimal. This optimizing family has an affine geometry. Since this is usually the
characteristic property of an exponential family a generalization of the latter seems indicated.

Sectior{ 4 shows how a strictly positive non-decreasing functiohR ;. determines a func-
tion which shares some properties with the natural logarithm and therefore is called below a
¢-logarithm. The inverse function is called theexponential. In Sectiop|5 it is used to de-
fine theg-exponential family in the obvious way, by replacing the exponential funetiprby
the ¢-exponential function. The standard exponential family is then recovered by the choice
#(x) = x, thea-family of Amari by ¢(z) = 2(1+%)/2 the equilibrium pdfs of Tsallis’ thermo-
statistics by the choice(z) = z¢.

The next three sections are used to establish the dual parametrizationgeéxpenential
family and to discover the role of entropy functionals. Secfipn 6 introduces a divergence of
the Bregman type. In Sectipn 7 it is used to prove the existence of an information function (or
entropy functional) which is maximized by tlteexponential pdfs. Sectidr 8 introduces dual
parameters — in statistical physics these are energy and temperature. The paper ends with a
short discussion in Sectidn 9.

There have been already some attempts to study Tsallis’ thermostatistics from a geometrical
point of view. Trasarti-Battiston| [15] conjectured a deep connection between non-extensivity
and geometry. He also gives general references to the use of geometric ideas in statistical
physics. Several authors [1,/16,/ 14] have introduced a divergence belonging to Csiszar’s class
of f-divergences, which leads to a generalization of the Fisher information metric adapted to
the context of Tsallis’ thermostatistics. The relation with the present work is unclear since here
the geometry is determined by a divergence of the Bregman type. Also the recent work of Abe
[2] seems to be unrelated.

2. ESTIMATORS AND ESCORT PDFS

Fix a measure spade, u. Let M;(u) denote the convex set of all probability distribution
functions (pdfsp normalized w.r.tu

(2.1) | autaypte) 1.
Expectations w.r.tp are denoted b,
E,f = / dpa(z) pla) £ (2).

Fix an open domaiD of R™. Consider a family of pdfg,, parametrized witl# in D. The
notationE, will be used instead oE,,. Simultaneously, a second family of pdfsy)scp is
considered. Itis called th&cort family. The notatiorF, will be used instead dk p, .

Recall that the Fisher information is given by

(2.2) I (0) = Eg (%log(pe)) (%log(m)>

:/d (z) L 9ps Ops
Q a po(x) 06k 00"
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A generalization, involving the two families of pdfs, is

Opy O
(2.3) oul0) = [ auo) FT

Clearly, the expression coincides wifh (2.2Af = p,.
The following definition is a slight generalization of the usual definition of an unbiased esti-
mator.

Definition 2.1. An estimator of the family (py)gcp is a vector of random variableg with the
property that there exists a functidgnsuch that

0
00k
The functionF' will be called thescale function of the estimator.

Egck: F(Q), k’zl,...,n.

The estimator is unbiased #(6) = %Qkﬂ"f so thatEyc;, = 0. The well-known lower bound

of Cramér and Rao can be written as
uFul [Egckcl — (]Egck) (Egcl)} S 1

)

for arbitraryu andv in R”.
A similar lower bound, involving the information matriy, instead of Fisher'dy;, is now
formulated.

Theorem 2.1.Let be given two families of pdfsy)scp and(Fy)ecp and corresponding expec-
tationsEy andFy. Letc be an estimator ofpg)gcp, With scale functiont”. Assume that the
regularity condition

1 0
Femwl’e(@
holds. Letgy;(0) be the information matrix introduced before. Then, foralindv in R™ is
ukul [Fgckcl — (Fgck) (F@Cl)} > 1

kol sl FO)]  von(®)

(2.4) =0

(2.5)

The bound is optimal (in the sense that equality holds whenewen) if there exist a normal-
ization functionZ > 0 and a function such that

0 0

(2.6) %Pe(l’) = Z(Q)Pe(m)% [G(0) — 0 ci(a)]
holds forallkin [1,...,m|, forall § € D, and foru-almost allz. In that caseg is an estimator
of (Py)ecp With scale functiorz
Focr, = 8_G
00k
Proof. Let
X, = iipg and Y, = ¢, — Focy..
Py 06

From Schwartz’s inequality follows

(Fout Yo' X)) < (Fou*Vi'V) (Fpo" Xp' X)) .
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The L.h.s. equals, using (2.4),

2
(F@UkYkUle) 2 = <ukvl iEng>

The first factor of the r.h.s. equals
Fou*YiulY; = ufu! [F@CkCl — (F@Ck) (]Fgcl)] )
The second factor of the r.h.s. equals
Fov* X' X; = %0l g1 (6).
This proves[(2)5).
Assume now thaf (2}6) holds. Combining it with the regularity condition (2.4) shows that

an estimator for the escort family, with scaling functi@n This makes it possible to writg (2.6)
as

1 0
(2.7) 20 Py (a) aekpg(x) = Fycr, — c(x).
In this way one obtains
k| uFul gy (0)
(28) uu [FQCkCl — (Féck) (]FQCZ)} = W

On the other hand we have
0? 0
aoiger T 0) = ap

dpe
= [ auta) @)t

= 7(0) /Qdu(x) Pg(x)ck(x)% [G(0) — 0'ci ()]

(29) = —Z(@) []F@CkCl — (]Fgck) (]Fgcl)} .
Together with|(2.8) this shows equality [n (2.5) whenevet v. O

It has not been investigated whether [2.6) is a necessary condition. For practical application
of the lower bound one has to assume that also an estimator of the escort fam{li)gcp,
with scale functiorG. The previous proposition shows that this is automatically the case when
(2.8) is satisfied.

Example 1. Let i be the Lebesgue measure restrictefitg-oc) and let

(2.10) w() =3 [1-3]

with 6 > 0 and[u|+ = max{u,0}. The Fisher informatiod (¢) is divergent. Hence, the usual
lower bound of Cramér and Rao is useless.
Consider now the escort family

Eqcy,

1
(2.11) Py(z) = ge*x/e.
Then one calculates
4
(2.12) g(0) = ﬁ(Se —13).
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This fixes the r.h.s. of the inequalify (2.5).
Let us estimaté via its first moment, withe(z) = 3z. One hafEyc = 0, Eyc® = (3/2)6?,

F(0) = 6*/2, Fc = 30 andFc* = 186. Then [2.5) boils down to

1

- 9?2 ~0406°%
(e —13)0 =040

(2.13) Fé — (Fe)” = 962 >

3. STATISTICAL MANIFOLD

The well-known example of a family with optimal estimator is the exponential family

(3.1) po(x) = exp (G(6) — 8" cy(x))
with
(3.2) G(0) = —log / dp(x) e en@),
Q
One sees immediately that
0 0
(3.3) ng(x) = pp(x) (wG(H) — ck(x)) ,

which is (2.7) withZ(6) identically 1 and the escort pdf, equal top,. This example motivates

also the geometric interpretation ¢f (2.6), in the foim|(2.7), as a linear map between tangent
planes. The score variabl@sog py /06" of the standard statistical manifold are replaced by the
variables

(3.4) L 9

%wm(%’)-
They are tangent vectors of the concave functitid) — 6'c;. The metric tensor of the latter
function is a constant random variable. The geometry of the manifold of random variables
(G(9) — b'c1) ., is transferred onto the family of pdfgy),,_,-

Note that the score variables have vanishing expectatont is now obvious to define an
inner product of random variables by

(A, B)g = FyAB.

Then one has

1 0p 1 0pe\ _ 9)

Py 00k Py o/, T
Let g*'(6) denote the inverse af,(#) (assume it exists). Then a projection operatponto the
orthogonal complement of the tangent plane is defined by

1 Opg 1 Ope
_ N A et a - re
WQA—A qg <P989k7A>9 Pg 891 F@A
If (.6) is satisfied, then
o 1op, _ [0Z 82G
g7y ok = g o~ ) + 20) 55
07 im gy, L ODo 1 Opy
=50 [ka —Ccp+g (@(EW,%ME%}
92 g 1 Ope
a0t |t Z(0) Py 06%
=0.
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This follows also immediately from

O 1op 1 0210w 0 0°C
90! Py 00% — Z(6) 00" Py 00* 06keL
That the derivatives of the score variables are linear combinations of the score variables and the
constant random variable is usually the characteristic feature of the exponential family. This is
a motivation to introduce a generalized notion of exponential family.

4. $-LOGARITHMS AND ¢-EXPONENTIALS

In the next section the notion of exponential family is generalized to a rather large class of
families of pdfs. This is done by replacing the exponential function by some other function
satisfying a minimal number of requirements. The latter function will be called a deformed
exponential and will be denotedp,. This has the advantage that the resulting expressions
look very familiar, resembling those of the exponential family.

Fix an increasing function of [0, +00), strictly positive on(0, +00). It is used to define the
¢-logarithmln, by

(4.1) Ing(u) = /1“ dv ﬁ, u > 0.

Clearly, In, is a concave function which is negative @n 1) and positive on1, +occ). The
inverse of the functionn, is denotecexp,. It is defined on the range dfi,. The definition
can be extended to all & by puttingexp,,(u) = 0 if v is too small ancxp, = +oo if u is
too large. In case(u) = u for all v thenln, coincides with the natural logarithm amedp,,
coincides with the exponential function.

Giveng, introduce a function) of R by

V(u) = ¢(expy(u)) if wisin the range ofin,
=0 if u is too small
(4.2) = +00 if u is too large

Clearly is¢(u) = ¢ (Ing(u)) for all u > 0.

Proposition 4.1. One has for alks in R

0 <expy(u) =1+ /u dv)(v)
0

(4.3) :/ dvp(v) < +oo.

—00

Proof. First consider the case thit u) belongs to the range dfi;,. Then a substitution of
integration variables = In,(w) is possible. One finds, usinty/dw = 1/¢(w) andy(v) =

¢(expy(v)) = ¢(w),
/Ou dvy(v) = /jxp(b(w dw

= exp,(u) — 1.
Usingexp,,(—oo) = 0 one concludes (4.3).
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In caseM = sup, In,(v) is finite andu > M theny(v) = +oo for v € [M, u]. One has

[fawr= [ " avo(v)

+00
= / dw
1

= +400.

But also the I.h.s. of (4]3) is infinite. Hence the equality holds.
Finally, if m = inf, In,(v) is finite andu < m theny(v) = 0 holds forv < m. Hence

/Oudw(v) :/Omdw(m :/10dw: 1

This ends the proof. O

Proposition 4.2. The functiorexp,, is continuous on the open interval of points where it does
not diverge.

Proof. Letm and M be as in the proof of the previous proposition. Thep, is differentiable
on(m, M). If m = —oc this ends the proof. Ifn is finite then it suffices to verify thatxp,, (u)
is continuous iy = m. But this is straightforward. O

Example 2. Let ¢(u) = u? with ¢ > 0. This function is increasing and strictly positive on
(0,400). Hence, it defines a-logarithm which will be denoteth, and is given by

“ 1
lnq(u):/l dv —

v4
l—q_l
LT ifg#£1
l—gq
= log(u) if g=1.

This deformed logarithm has been introduced in the context of nonextensive statistical physics
in [18]. The inverse function is denotedp, and is given by

expy(u) = [1+ (1 - q)u]i/(l_q).

The functiony is then given by
(u) = [L+ (1 - qulf"77.

Example 3. Let ¢(x) = [z], the smallest integer not smaller thanThis piecewise constant
function is increasing and strictly positive @6, +oco). Hence,ln, is piecewise linear. The
functionv is given by

P(z) =0 if v < -1
=¢(l+x) otherwise

The ¢-exponentiabxp, is also piecewise linear and satisfies

expy(r) =0 if 2 < —1.
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5. THE ¢-EXPONENTIAL FAMILY

Let ¢ be given as in the previous section. Fix a measure sfageand a set of random
variablescy, k = 1, ..., n. Theg-exponential family of pdfgpy),_, is defined by

(5.1) po() = expy (G(0) = 0 cx(w)).
The domainD is an open set of for which G(6) exists such thaf (5.1) is properly normalized,

i.e.py € M (). The distributions[(5]1) are the equilibrium pdfs of generalized thermostatistics
as introduced in [11, 12].

Proposition 5.1. The function&(#) is concave orD.

Proof. Assumef), n and\d + (1 — A)n in D for someA in [0, 1]. Then, using the convexity of
€XP g,

exp, (AG(0) + (1 = NG (n) — (M + (1 = Ni*]er(@)) < Apg(e) + (1 = A)p, ().
Hence

/ ) expy (AG(O) + (1= NGOn) — W+ (1= N e(a)) < 1.

Compare this with

/ dp(z) expy (G()\Q +(1—=MNn) — [)\Qk +(1-— )\)nk} ck(x)) =1.
Sinceexp, is increasing one concludes that
AGO)+ (1 —=NG(n) <G+ (1= N)n).
This means that7 is concave. O
Proposition 5.2. Lett be determined by via (4.2). If the integral

2(0) = [ an(a)0(G16) = (a)

converges for alb € D, then(py),_,, has an escort familyP),,_,, given by
1 .
Py(r) = Te)cb(pe(if)) if po(z) >0
=0 otherwise
Condition [2.6) is satisfied.

Proof. One has
gzﬁ(p@(x)) = ¢(exp¢ (G(@) — chk(x)))
=1 (G(0) — 0" cy(z)).

Because)(py(x)) cannot be zero for-almost allz one concludes that (¢) > 0 and that?; is
properly normalized.
From the properties of the functiemp,, follows immediately that

9 o(w) = H(GO) — @) 7 (GO) — 87, (2)

= Z(0)Poa) 0 (G(0) — 07 ()

This proves thaf 7)) ,_, satisfies). O
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Example[2 continued. Let ¢(u) = u? as in Exampl¢[2 above. The pdfgare given by

(5.2) po(z) = [1+ (1 — q)(G(8) — B eu(w))] /"7,
for 6 in a suitable domai). The escort probabilities are

1 /(1—q)
(5.3) Py(z) = 70 [1+ (1= q)(G(0) — OFci()]T "
with

26) = | duta) [1+ (1= ) (G(0) ~ 6ar(x))] V"
Q
(assuming convergence of these integrals). The farfily sep Coincides with Amari'sa-
family [3], with « given bya = 2¢ — 1.
Example[] continued. Examplée 1 is theg = 0-limit of Example/ 2. Letp(u) = 1 for all u > 0.
Then
Ing(u) =u—1
expy () = [1+ul.
(u) =1 if u>—1,
=0 otherwise

2 T 2 2x
W(‘”Za[“ﬂfequs(a—l—ﬁ)-

This is ag-exponential family with parameté = 1/6?, estimator(x) = 2x and scale function
G(©) = 2v/6. The escort probabilities, making inequali2.5) optimally satisfied, are given
by

One has

1
P@(l’) = EHOSJCSQ.

The information matrixy(©) equalsd?/3. Further isFoc = 6 andFec? = 46%/3 and

d
55 F(©) =Eec =20/3 = 2/3v0.

It is now straightforward to verify that the inequalify (R.5) is optimally satisfied.

6. DIVERGENCES

Divergences of the Bregman type are needed for what follows. In the form given below they
have been introduced inl[9].
Fix a strictly positive increasing functiamof [0, +oc). Introduce

p(z)
6.) Daloll) = [ ante) [ du o) — mo(p')

Dy(pllp") > 0 follows becausén, is an increasing function. Also convexity in the first argu-
ment follows becausk, is an increasing function.

Let (pg)eeD be ¢-exponential. Then infinitesimal variation of the divergedegp||p’) re-
produces the metric tensgy;(6), up to a scalar function. Indeed, one has

0
g7 Dowollpy)|, 4 =0

0
a—Mch(Pern)\n:e =0
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and
82
Shagi Do Pellpn) - -9

= [ sy L] [

1
= mgm(e)-
Similar calculations give
0? 0? 1
— Al =——D = 0).
D0k o(Dal|pn) s oFon s(pollpy) o Z(Q)gkl( )

7. INFORMATION CONTENT

In [10] the definition of a deformed logarithm contains the additional condition that the inte-

gral
0 1
u
/1 du Ing(u) :/0 dum < 400

converges. This condition is needed in the definition of entropy functional / information content
based on the deformed logarithm. Introduce another strictly increasing positive fupdiion

x(v) = [/Ol/v du %] B

The motivation for introducing this function comes from the fact that it satisfies the following
property.

Lemma 7.1.
d ! U
(7.1) @Ulnx(l/v) = —1Iny(v) —/0 du o)
Proof.
d In, (1 In, (1
@U nX( /U) nX( /U> ( /U)
/v 1 1 u
= dy —— — — d
/ “xw UA “¢<
1/u kN 1 U
1 U
du — d - = du ——
/ ¢ ./ o(2) UA ()
= /0 dz — qzﬁ(z) —Ing(v),
which is the desired result. O

Define the information content (also called entropy functiodgly) of a pdfp in M, (1) by

%@:AM@MWMWWW
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whenever the integral converges. Using the lemma one verifies immediately, thats a
concave function op. A short calculation gives

1/p(x)
%wzémmmm[ m?%
dp

=[;<mmmlmgﬁﬁ¢§
_ /Q du(z) plz) /1 P [ /0 " du %] d%
- [ ant@)pta) 1 :

[p(x)x(l/p(x)) ~x(1)

- _ﬁ — /Qd,u(:z:) /Op(z) du Ing(u).

<Mm—mm:—/

— Ing (p(:):))]

This implies that

p(z)
dp(x) / du Ing(u),
p

Q /(z)
and hence
(7.2) Dy(pllp") = I(p') — Is(p) — /Qdu(x) (p(z) =P (x)) Ing (p(2)).

This relation links the divergende,,(p||p’) with the information functior,(p).
The following result shows that theexponential family is a conditional maximizer 6f. It
also shows that the scale functiénis the Legendre transform of the information contént

Theorem 7.2. Let (pg)eeD be ¢-exponential, with estimatar and scale functiong” and G.
Then there exists a constafg such that

(7.3) F(0) = Fy + min {E,0%c; — I,(p)}.
pEMa(p)
The minimum is attained fgr = py. In particular, F'(9) is a concave function of and p
maximized ,(p) under the constraint that
]Epgkck = Eg&kck.

Proof. Let us first show that for any pdf

(74) ]E,,chk — ]¢(p) Z ]E@dgkck — Id)(pg).
One has
/Q du(z) (p(x) — po(z)) Ing (po(x)) = /Q du(z) (p(z) — po(x)) [G(6) — 0 cy]

= —(Ep — ]Eg)&kck.
Hence,[(7.R) becomes now

Dy(pllpe) = I5(po) — Lo(p) + (B, — Eg)0%cy.
But one has alway®,(p||ps) > 0. Therefore,[(7]4) follows.
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Next calculate, using the lemma,
etoton) = [ auto) (=1 (o) [ au—ts) Lot
- / dp(z) (—G(e)wlcl(x) - /0 du ﬁ) %pe(w)

0
l
a l

= W (Ege Cl> — Egck.

Because: is an estimator with scale functidn one obtains
0 ; 0
0% (Eg0'c; — Is(po)) = WFW)-

Hence there exists a constdntfor which
(75) F(H) = FO + ]Eg@lcl — I¢(p9)
In combination with[(7.}4) this results ip (7.3). O

Without restriction one can assunig = 0. In statistical physics the functiof(¢) is free
energy divided by temperature.

Example 4. Let ¢(u) = u?~9/q, with 0 < ¢ < 2. This is of course only a re-parametrization
of Example[ 2, which is done to recover expressions found in the literature. The deformed
logarithm is given by

Ing(u) = qi%(uql —1) if g #1
= log(u) if g =1.
One obtaing((v) = v? and hence
(7.6) L) = | du(a:)p(x)%.

This is the entropy functional proposed by Tsallis|[17] as a basis for nonextensive thermostatis-
tics, and reported earlier in the literature by Havrda and CharVvat [7] and by Dardczy [5]. The
corresponding expression for the divergence is

Dutplls) = = [ (o)) o) = )] = [ duta) pte) = )2

By Theoren} 7., the pdfy minimizes ‘free energyE,0*c;, — Is(p). But note that, due to the
re-parametrizatiorn is not given by[(5.R), but equals

po = [1+ (1= ¢)(G(0) = Fer(w))] 1"

with ¢’ = 1/q¢. The latter expression coincides with that of the escort[pdf (5.3), guiéplaced
by ¢’ and with incorporation of the normalizaticf(6) into the scale functio(¢). The Tsal-
lis literature [19] associates with each pdan escort pdfP by the relationP ~ p?. Then,
expression[(7]6) is optimized under the constraint Byat, have given values. The resulting
formalism differs slightly from the present one.
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8. DUAL COORDINATES

Introduce dual coordinates

oF
(8.1) me = Egcy, = 90k
Assume((2.6) holds. Then, one obtains fr¢m](2.9)
8nk 0
60 ~ g
82
= goiae” )
= —Z(Q) [Fgckcl — (F90k> (F@Cl)}
1
= _mgklw)-
To obtain the last line a-exponential family has been assumed. This relation implies
0%
8.2 — = —Z(0)g"(0).
8.2) o = ~2(0)8"0)

These are the orthogonality relations between the two sets of coordihata$n. Next we
derive the dual relation of (8.1).

Proposition 8.1. Let (pg)eeD be ¢-exponential. Assume the regularity conditi2.4) is satis-
fied. Then

o
8.3 OF = —1 .

Proof. One calculates (assume integration and partial derivative can be interchanged), using

Lemmg 7.1,
0

%Lb(pe) = - /Q dp(z) {1% (po()) + /0 ' ﬁ} P ()
— _/Qdu(a:) {G(H) —Qlcl(x)—l—/oldu ﬁ} %pe(ﬂf)
:/Qdu(x) 9161(:16)%109(95)-

To obtain the last line the regularity condition has been used. Use nowtisatisfies[(2]6).
One obtains

0

%Lb(p@) = Z(@)Fg@lcl(Fgck — Ck)

= —Z(G)Glglk(é’).
In combination with[(8.R) this gives

0 0 00k
“7 Y v
S-1,(m) ( a ¢(P9)> -

(- Z(0)0" g 9)) (—mg“w))
—yy
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Equation|(8.B) is the dual relation ¢f (8.1). Express[on|(7.5) can now be written as
(8.4) F(0) + E(n) = 0"
with £(n) = I, (ps)-

9. DISCUSSION

The present paper introduces generalized exponential families, and calls-tgmonential
because they depend on the choice of a strictly positive non-decreasing functigf, +oo).
Several properties, known to hold for the exponential family, can be generalized. The paper
starts with a generalization of the well-known lower bound of Cramér and Rao, involving the
concept of escort probability distributions. See Thedrern 2.1. It is shown thatelponential
family optimizes this generalized lower bound. The metric tensor, which generalizes the Fisher
information, depends on both the family of pdfs and the escort family, and determines the
geometry of the statistical manifold.

The final part of the paper deals with the dual structure of the statistical manifold, which sur-
vives in the more general context@fexponential families. It is shown in Theorém]7.2 that the
¢-exponential family satisfies a variational principle with respect to a suitably defined entropy
functional. The well-known duality of statistical physics, between energy and temperature and
between entropy and free energy, is recovered.

Throughout the paper the number of parametetsas been assumed to be finite. A non-
parametrized approach to statistical manifolds is found_in [13]. The extension of the present
work to this more abstract context has not been considered.
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