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ABSTRACT. The lower bound of Cramér and Rao is generalized to pairs of families of probabil-
ity distributions, one of which is escort to the other. This bound is optimal for certain families,
calledφ-exponential in the paper. Their dual structure is explored. They satisfy a variational
principle with respect to an appropriately chosen entropy functional, which is the dual of a free
energy functional.
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1. I NTRODUCTION

The aim of this paper is to translate some new results of statistical physics into the language
of statistics. It is well-known that the exponential family of probability distribution functions
(pdfs) plays a central role in statistical physics. When Gibbs [6] introduced the canonical en-
semble in 1901 he postulated a distribution of energiesE of the form

(1.1) p(E) = exp(G− βE),

whereG is a normalization constant and where the control parameterβ is the inverse temper-
ature. Only recently [17], a proposal was made to replace (1.1) by a more general family of
pdfs. The resulting domain of research is known under the name of Tsallis’ thermostatistics.
Some of the pdfs of Tsallis’ thermostatistics are known in statistics under the name of Amari’s
α-family [3]. The latter have been introduced in the context of geometry of statistical manifolds
[8]. The appearance of the same family of pdfs in both domains is not accidental. The apparent
link between both domains is clarified in the present paper.

ISSN (electronic): 1443-5756

c© 2004 Victoria University. All rights reserved.

I am thankful to S. Abe who urged me to study the geometry of statistical distributions. I thank Dr. Ch. Vignat for pointing out ref. [13].

038-04

http://jipam.vu.edu.au/
mailto:Jan.Naudts@ua.ac.be
http://www.ams.org/msc/


2 JAN NAUDTS

The new notion introduced in Tsallis’ thermostatistics is that of pairs of families of pdfs, one
of which is theescort of the other [4]. Some basic concepts of statistics can be generalized by
replacing at well-chosen places the pdf by its escort. In particular, we show in the next section
how to generalize Fisher’s information and, correspondingly, how to generalize the well-known
lower bound of Cramér and Rao. Section 3 studies the statistical manifold of a family for which
there exists an escort family satisfying the condition under which the generalized Cramér-Rao
bound is optimal. This optimizing family has an affine geometry. Since this is usually the
characteristic property of an exponential family a generalization of the latter seems indicated.

Section 4 shows how a strictly positive non-decreasing functionφ of R+ determines a func-
tion which shares some properties with the natural logarithm and therefore is called below a
φ-logarithm. The inverse function is called theφ-exponential. In Section 5 it is used to de-
fine theφ-exponential family in the obvious way, by replacing the exponential functionexp by
theφ-exponential function. The standard exponential family is then recovered by the choice
φ(x) = x, theα-family of Amari byφ(x) = x(1+α)/2, the equilibrium pdfs of Tsallis’ thermo-
statistics by the choiceφ(x) = xq.

The next three sections are used to establish the dual parametrization of theφ-exponential
family and to discover the role of entropy functionals. Section 6 introduces a divergence of
the Bregman type. In Section 7 it is used to prove the existence of an information function (or
entropy functional) which is maximized by theφ-exponential pdfs. Section 8 introduces dual
parameters — in statistical physics these are energy and temperature. The paper ends with a
short discussion in Section 9.

There have been already some attempts to study Tsallis’ thermostatistics from a geometrical
point of view. Trasarti-Battistoni [15] conjectured a deep connection between non-extensivity
and geometry. He also gives general references to the use of geometric ideas in statistical
physics. Several authors [1, 16, 14] have introduced a divergence belonging to Csiszár’s class
of f -divergences, which leads to a generalization of the Fisher information metric adapted to
the context of Tsallis’ thermostatistics. The relation with the present work is unclear since here
the geometry is determined by a divergence of the Bregman type. Also the recent work of Abe
[2] seems to be unrelated.

2. ESTIMATORS AND ESCORT PDFS

Fix a measure spaceΩ, µ. Let M1(µ) denote the convex set of all probability distribution
functions (pdfs)p normalized w.r.t.µ

(2.1)
∫

Ω

dµ(x) p(x) = 1.

Expectations w.r.t.p are denoted byEp

Epf =

∫
Ω

dµ(x) p(x)f(x).

Fix an open domainD of Rn. Consider a family of pdfspθ, parametrized withθ in D. The
notationEθ will be used instead ofEpθ

. Simultaneously, a second family of pdfs(Pθ)θ∈D is
considered. It is called theescort family. The notationFθ will be used instead ofEPθ

.
Recall that the Fisher information is given by

Ikl(θ) = Eθ

(
∂

∂θk
log(pθ)

) (
∂

∂θl
log(pθ)

)
(2.2)

=

∫
Ω

dµ(x)
1

pθ(x)

∂pθ

∂θk

∂pθ

∂θl
.
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PHI-EXPONENTIAL FAMILIES 3

A generalization, involving the two families of pdfs, is

(2.3) gkl(θ) =

∫
Ω

dµ(x)
1

Pθ(x)

∂pθ

∂θk

∂pθ

∂θl
.

Clearly, the expression coincides with (2.2) ifPθ = pθ.
The following definition is a slight generalization of the usual definition of an unbiased esti-

mator.

Definition 2.1. An estimator of the family(pθ)θ∈D is a vector of random variablesck with the
property that there exists a functionF such that

Eθck =
∂

∂θk
F (θ), k = 1, . . . , n.

The functionF will be called thescale function of the estimator.

The estimator is unbiased ifF (θ) = 1
2
θkθ

k so thatEθck = θk. The well-known lower bound
of Cramér and Rao can be written as

ukul
[
Eθckcl −

(
Eθck

)(
Eθcl

)][
ukvl ∂2F

∂θk∂θl

]2 ≥ 1

vkvlIkl(θ)
,

for arbitraryu andv in Rn.
A similar lower bound, involving the information matrixgkl instead of Fisher’sIkl, is now

formulated.

Theorem 2.1.Let be given two families of pdfs(pθ)θ∈D and(Pθ)θ∈D and corresponding expec-
tationsEθ and Fθ. Let c be an estimator of(pθ)θ∈D, with scale functionF . Assume that the
regularity condition

(2.4) Fθ
1

Pθ(x)

∂

∂θk
pθ(x) = 0

holds. Letgkl(θ) be the information matrix introduced before. Then, for allu andv in Rn is

(2.5)
ukul

[
Fθckcl −

(
Fθck

)(
Fθcl

)][
ukvl ∂2

∂θl∂θkF (θ)
]2 ≥ 1

vkvlgkl(θ)
.

The bound is optimal (in the sense that equality holds wheneveru = v) if there exist a normal-
ization functionZ > 0 and a functionG such that

(2.6)
∂

∂θk
pθ(x) = Z(θ)Pθ(x)

∂

∂θk

[
G(θ)− θlcl(x)

]
holds for allk in [1, . . . ,m], for all θ ∈ D, and forµ-almost allx. In that case,c is an estimator
of (Pθ)θ∈D with scale functionG

Fθck =
∂G

∂θk
.

Proof. Let

Xk =
1

Pθ

∂

∂θk
pθ and Yk = ck − Fθck.

From Schwartz’s inequality follows(
Fθu

kYkv
lXl

)2 ≤
(
Fθu

kYku
lYl

) (
Fθv

kXkv
lXl

)
.
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4 JAN NAUDTS

The l.h.s. equals, using (2.4),(
Fθu

kYkv
lXl

)2
=

(
ukvl ∂

∂θl
Eθck

)2

=

(
ukvl ∂2

∂θl∂θk
F (θ)

)2

.

The first factor of the r.h.s. equals

Fθu
kYku

lYl = ukul
[
Fθckcl −

(
Fθck

)(
Fθcl

)]
.

The second factor of the r.h.s. equals

Fθv
kXkv

lXl = vkvlgkl(θ).

This proves (2.5).
Assume now that (2.6) holds. Combining it with the regularity condition (2.4) shows thatc is

an estimator for the escort family, with scaling functionG. This makes it possible to write (2.6)
as

(2.7)
1

Z(θ)Pθ(x)

∂

∂θk
pθ(x) = Fθck − ck(x).

In this way one obtains

(2.8) ukul
[
Fθckcl −

(
Fθck

)(
Fθcl

)]
=
ukulgkl(θ)

Z(θ)2
.

On the other hand we have
∂2

∂θl∂θk
F (θ) =

∂

∂θl
Eθck

=

∫
Ω

dµ(x)
∂pθ

∂θl
(x)ck(x)

= Z(θ)

∫
Ω

dµ(x)Pθ(x)ck(x)
∂

∂θk

[
G(θ)− θlcl(x)

]
= −Z(θ)

[
Fθckcl −

(
Fθck

)(
Fθcl

)]
.(2.9)

Together with (2.8) this shows equality in (2.5) wheneveru = v. �

It has not been investigated whether (2.6) is a necessary condition. For practical application
of the lower bound one has to assume thatc is also an estimator of the escort family(Pθ)θ∈D,
with scale functionG. The previous proposition shows that this is automatically the case when
(2.6) is satisfied.

Example 1. Let µ be the Lebesgue measure restricted to[0,+∞) and let

(2.10) pθ(x) =
2

θ

[
1− x

θ

]
+

with θ > 0 and[u]+ = max{u, 0}. The Fisher informationI(θ) is divergent. Hence, the usual
lower bound of Cramér and Rao is useless.

Consider now the escort family

(2.11) Pθ(x) =
1

θ
e−x/θ.

Then one calculates

(2.12) g(θ) =
4

θ2
(5e− 13).
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PHI-EXPONENTIAL FAMILIES 5

This fixes the r.h.s. of the inequality (2.5).
Let us estimateθ via its first moment, withc(x) = 3x. One hasEθc = θ, Eθc

2 = (3/2)θ2,
F (θ) = θ2/2, Fc = 3θ andFc2 = 18θ2. Then (2.5) boils down to

(2.13) Fc2 −
(
Fc

)2
= 9θ2 ≥ 1

4(5e− 13)
θ2 ' 0.4 θ2.

3. STATISTICAL M ANIFOLD

The well-known example of a family with optimal estimator is the exponential family

(3.1) pθ(x) = exp
(
G(θ)− θkck(x)

)
with

(3.2) G(θ) = − log

∫
Ω

dµ(x) e−θkck(x).

One sees immediately that

(3.3)
∂

∂θk
pθ(x) = pθ(x)

(
∂

∂θk
G(θ)− ck(x)

)
,

which is (2.7) withZ(θ) identically 1 and the escort pdfPθ equal topθ. This example motivates
also the geometric interpretation of (2.6), in the form (2.7), as a linear map between tangent
planes. The score variables∂ log pθ/∂θ

k of the standard statistical manifold are replaced by the
variables

(3.4)
1

Pθ(x)

∂

∂θk
pθ(x).

They are tangent vectors of the concave functionG(θ) − θlcl. The metric tensor of the latter
function is a constant random variable. The geometry of the manifold of random variables(
G(θ)− θlcl

)
θ∈D

is transferred onto the family of pdfs
(
pθ

)
θ∈D

.
Note that the score variables have vanishing expectationFθ. It is now obvious to define an

inner product of random variables by

〈A,B〉θ = FθAB.

Then one has 〈
1

Pθ

∂pθ

∂θk
,

1

Pθ

∂pθ

∂θl

〉
θ

= gkl(θ).

Let gkl(θ) denote the inverse ofgkl(θ) (assume it exists). Then a projection operatorπθ onto the
orthogonal complement of the tangent plane is defined by

πθA = A− gkl

〈
1

Pθ

∂pθ

∂θk
, A

〉
θ

1

Pθ

∂pθ

∂θl
− FθA.

If (2.6) is satisfied, then

πθ
∂

∂θl

1

Pθ

∂pθ

∂θk
= πθ

[
∂Z

∂θl
(Fθck − ck) + Z(θ)

∂2G

∂θk∂θl

]
=
∂Z

∂θl

[
Fθck − ck + glm(θ)〈 1

Pθ

∂pθ

∂θl
, ck〉θ

1

Pθ

∂pθ

∂θm

]
=
∂Z

∂θl

[
Fθck − ck −

1

Z(θ)Pθ

∂pθ

∂θk

]
= 0.
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6 JAN NAUDTS

This follows also immediately from

∂

∂θl

1

Pθ

∂pθ

∂θk
=

1

Z(θ)

∂Z

∂θl

1

Pθ

∂pθ

∂θk
+ Z(θ)

∂2G

∂θkθl
.

That the derivatives of the score variables are linear combinations of the score variables and the
constant random variable is usually the characteristic feature of the exponential family. This is
a motivation to introduce a generalized notion of exponential family.

4. φ-LOGARITHMS AND φ-EXPONENTIALS

In the next section the notion of exponential family is generalized to a rather large class of
families of pdfs. This is done by replacing the exponential function by some other function
satisfying a minimal number of requirements. The latter function will be called a deformed
exponential and will be denotedexpφ. This has the advantage that the resulting expressions
look very familiar, resembling those of the exponential family.

Fix an increasing functionφ of [0,+∞), strictly positive on(0,+∞). It is used to define the
φ-logarithmlnφ by

(4.1) lnφ(u) =

∫ u

1

dv
1

φ(v)
, u > 0.

Clearly, lnφ is a concave function which is negative on(0, 1) and positive on(1,+∞). The
inverse of the functionlnφ is denotedexpφ. It is defined on the range oflnφ. The definition
can be extended to all ofR by puttingexpφ(u) = 0 if u is too small andexpφ = +∞ if u is
too large. In caseφ(u) = u for all u then lnφ coincides with the natural logarithm andexpφ

coincides with the exponential function.
Givenφ, introduce a functionψ of R by

ψ(u) = φ
(
expφ(u)

)
if u is in the range oflnφ

= 0 if u is too small

= +∞ if u is too large.(4.2)

Clearly isφ(u) = ψ(lnφ(u)) for all u > 0.

Proposition 4.1. One has for allu in R

0 ≤ expφ(u) = 1 +

∫ u

0

dvψ(v)

=

∫ u

−∞
dvψ(v) ≤ +∞.(4.3)

Proof. First consider the case that[0, u) belongs to the range oflnφ. Then a substitution of
integration variablesv = lnφ(w) is possible. One finds, usingdv/dw = 1/φ(w) andψ(v) =
φ
(
expφ(v)

)
= φ(w), ∫ u

0

dvψ(v) =

∫ expφ(u)

1

dw

= expφ(u)− 1.

Usingexpφ(−∞) = 0 one concludes (4.3).
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In caseM = supv lnφ(v) is finite andu ≥M thenψ(v) = +∞ for v ∈ [M,u]. One has∫ u

0

dvψ(v) ≥
∫ M

0

dvψ(v)

=

∫ +∞

1

dw

= +∞.

But also the l.h.s. of (4.3) is infinite. Hence the equality holds.
Finally, if m = infv lnφ(v) is finite andu ≤ m thenψ(v) = 0 holds forv ≤ m. Hence∫ u

0

dv ψ(v) =

∫ m

0

dv ψ(v) =

∫ 0

1

dw = −1.

This ends the proof. �

Proposition 4.2. The functionexpφ is continuous on the open interval of points where it does
not diverge.

Proof. Letm andM be as in the proof of the previous proposition. Thenexpφ is differentiable
on (m,M). If m = −∞ this ends the proof. Ifm is finite then it suffices to verify thatexpφ(u)
is continuous inu = m. But this is straightforward. �

Example 2. Let φ(u) = uq with q > 0. This function is increasing and strictly positive on
(0,+∞). Hence, it defines aφ-logarithm which will be denotedlnq and is given by

lnq(u) =

∫ u

1

dv
1

vq

=
u1−q − 1

1− q
if q 6= 1

= log(u) if q = 1.

This deformed logarithm has been introduced in the context of nonextensive statistical physics
in [18]. The inverse function is denotedexpq and is given by

expq(u) =
[
1 + (1− q)u]

1/(1−q)
+ .

The functionψ is then given by

ψ(u) =
[
1 + (1− q)u]

q/(1−q)
+ .

Example 3. Let φ(x) = dxe, the smallest integer not smaller thanx. This piecewise constant
function is increasing and strictly positive on(0,+∞). Hence,lnφ is piecewise linear. The
functionψ is given by

ψ(x) = 0 if x ≤ −1

= φ(1 + x) otherwise.

Theφ-exponentialexpφ is also piecewise linear and satisfies

expφ(x) = 0 if x ≤ −1.
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8 JAN NAUDTS

5. THE φ-EXPONENTIAL FAMILY

Let φ be given as in the previous section. Fix a measure spaceΩ, µ and a set of random
variablesck, k = 1, . . . , n. Theφ-exponential family of pdfs

(
pθ

)
θ∈D

is defined by

(5.1) pθ(x) = expφ

(
G(θ)− θkck(x)

)
.

The domainD is an open set ofθ for whichG(θ) exists such that (5.1) is properly normalized,
i.e.pθ ∈M1(µ). The distributions (5.1) are the equilibrium pdfs of generalized thermostatistics
as introduced in [11, 12].

Proposition 5.1. The functionG(θ) is concave onD.

Proof. Assumeθ, η andλθ + (1 − λ)η in D for someλ in [0, 1]. Then, using the convexity of
expφ,

expφ

(
λG(θ) + (1− λ)G(η)−

[
λθk + (1− λ)ηk

]
ck(x)

)
≤ λpθ(x) + (1− λ)pη(x).

Hence ∫
Rn

dµ(x) expφ

(
λG(θ) + (1− λ)G(η)−

[
λθk + (1− λ)ηk

]
ck(x)

)
≤ 1.

Compare this with∫
Rn

dµ(x) expφ

(
G(λθ + (1− λ)η)−

[
λθk + (1− λ)ηk

]
ck(x)

)
= 1.

Sinceexpφ is increasing one concludes that

λG(θ) + (1− λ)G(η) ≤ G(λθ + (1− λ)η).

This means thatG is concave. �

Proposition 5.2. Letψ be determined byφ via (4.2). If the integral

Z(θ) =

∫
Ω

dµ(x)ψ
(
G(θ)− θkck(x)

)
converges for allθ ∈ D, then

(
pθ

)
θ∈D

has an escort family
(
Pθ

)
θ∈D

, given by

Pθ(x) =
1

Z(θ)
φ
(
pθ(x)

)
if pθ(x) > 0

= 0 otherwise.

Condition (2.6) is satisfied.

Proof. One has

φ
(
pθ(x)

)
= φ

(
expφ

(
G(θ)− θkck(x)

))
= ψ

(
G(θ)− θkck(x)

)
.

Becauseφ
(
pθ(x)

)
cannot be zero forµ-almost allx one concludes thatZ(θ) > 0 and thatPθ is

properly normalized.
From the properties of the functionexpφ follows immediately that

∂

∂θl
pθ(x) = ψ

(
G(θ)− θkck(x)

) ∂
∂θl

(
G(θ)− θmcm(x)

)
= Z(θ)Pθ(x)

∂

∂θl

(
G(θ)− θmcm(x)

)
.

This proves that
(
Pθ

)
θ∈D

satisfies (2.6). �
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Example 2 continued. Let φ(u) = uq as in Example 2 above. The pdfspθ are given by

(5.2) pθ(x) =
[
1 + (1− q)

(
G(θ)− θkck(x)

)]1/(1−q)

+
,

for θ in a suitable domainD. The escort probabilities are

(5.3) Pθ(x) =
1

Z(θ)

[
1 + (1− q)

(
G(θ)− θkck(x)

)]q/(1−q)

+

with

Z(θ) =

∫
Ω

dµ(x)
[
1 + (1− q)

(
G(θ)− θkck(x)

)]q/(1−q)

+

(assuming convergence of these integrals). The family
(
pθ

)
θ∈D

coincides with Amari’sα-
family [3], with α given byα = 2q − 1.

Example 1 continued. Example 1 is theq = 0-limit of Example 2. Letφ(u) = 1 for all u > 0.
Then

lnφ(u) = u− 1

expφ(u) = [1 + u]+

ψ(u) = 1 if u > −1;

= 0 otherwise.

One has

pθ(x) =
2

θ

[
1− x

θ

]
+

= expφ

(
2

θ
− 1− 2x

θ2

)
.

This is aφ-exponential family with parameterΘ = 1/θ2, estimatorc(x) = 2x and scale function
G(Θ) = 2

√
Θ. The escort probabilities, making inequality (2.5) optimally satisfied, are given

by

PΘ(x) =
1

θ
I0≤x≤θ.

The information matrixg(Θ) equalsθ4/3. Further isFΘc = θ andFΘc
2 = 4θ2/3 and

∂

∂Θ
F (Θ) = EΘc = 2θ/3 = 2/3

√
Θ.

It is now straightforward to verify that the inequality (2.5) is optimally satisfied.

6. DIVERGENCES

Divergences of the Bregman type are needed for what follows. In the form given below they
have been introduced in [9].

Fix a strictly positive increasing functionφ of [0,+∞). Introduce

(6.1) Dφ(p||p′) =

∫
Ω

dµ(x)

∫ p(x)

p′(x)

du [lnφ(u)− lnφ(p
′(x))] .

Dφ(p||p′) ≥ 0 follows becauselnφ is an increasing function. Also convexity in the first argu-
ment follows becauselnφ is an increasing function.

Let
(
pθ

)
θ∈D

beφ-exponential. Then infinitesimal variation of the divergenceDφ(p||p′) re-
produces the metric tensorgkl(θ), up to a scalar function. Indeed, one has

∂

∂θk
Dφ(pθ||pη)

∣∣
η=θ

= 0

∂

∂ηk
Dφ(pθ||pη)

∣∣
η=θ

= 0
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and
∂2

∂θk∂θl
Dφ(pθ||pη)

∣∣∣∣
η=θ

=
∂

∂θk

∫
Ω

dµ(x)
[
lnφ

(
pθ(x)

)
− lnφ

(
pη(x)

)] ∂

∂θl
pθ(x)

∣∣∣∣
η=θ

=

∫
Ω

dµ(x)
1

φ
(
pθ(x)

) [
∂

∂θk
pθ(x)

] [
∂

∂θl
pθ(x)

]
=

1

Z(θ)
gkl(θ).

Similar calculations give

− ∂2

∂θk∂ηl
Dφ(pθ||pη)

∣∣∣∣
η=θ

=
∂2

∂ηk∂ηl
Dφ(pθ||pη)

∣∣∣∣
η=θ

=
1

Z(θ)
gkl(θ).

7. I NFORMATION CONTENT

In [10] the definition of a deformed logarithm contains the additional condition that the inte-
gral ∫ 0

1

du lnφ(u) =

∫ 1

0

du
u

φ(u)
< +∞

converges. This condition is needed in the definition of entropy functional / information content
based on the deformed logarithm. Introduce another strictly increasing positive functionχ by

χ(v) =

[∫ 1/v

0

du
u

φ(u)

]−1

The motivation for introducing this function comes from the fact that it satisfies the following
property.

Lemma 7.1.

(7.1)
d

dv
v lnχ(1/v) = − lnφ(v)−

∫ 1

0

du
u

φ(u)
.

Proof.

d

dv
v lnχ(1/v) = lnχ(1/v)− 1

vχ(1/v)

=

∫ 1/v

1

du
1

χ(u)
− 1

v

∫ v

0

du
u

φ(u)

=

∫ 1/v

1

du

∫ 1/u

0

dz
z

φ(z)
− 1

v

∫ v

0

du
u

φ(u)

= −
∫ v

1

du
1

u2

∫ u

0

dz
z

φ(z)
− 1

v

∫ v

0

du
u

φ(u)

= −
∫ 1

0

dz
z

φ(z)
− lnφ(v),

which is the desired result. �

Define the information content (also called entropy functional)Iφ(p) of a pdfp in M1(µ) by

Iφ(p) =

∫
Ω

dµ(x) p(x) lnχ(1/p(x))
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whenever the integral converges. Using the lemma one verifies immediately thatIφ(p) is a
concave function ofp. A short calculation gives

Iφ(p) =

∫
Ω

dµ(x) p(x)

∫ 1/p(x)

1

du
1

χ(u)

=

∫
Ω

dµ(x) p(x)

∫ p(x)

1

1

χ(1/v)
d

1

v

=

∫
Ω

dµ(x) p(x)

∫ p(x)

1

[∫ v

0

du
u

φ(u)

]
d

1

v

=

∫
Ω

dµ(x) p(x)

[
1

p(x)χ
(
1/p(x)

) − 1

χ(1)
− lnφ

(
p(x)

)]

= − 1

χ(1)
−

∫
Ω

dµ(x)

∫ p(x)

0

du lnφ(u).

This implies that

Iφ(p)− Iφ(p
′) = −

∫
Ω

dµ(x)

∫ p(x)

p′(x)

du lnφ(u),

and hence

(7.2) Dφ(p||p′) = Iφ(p
′)− Iφ(p)−

∫
Ω

dµ(x)
(
p(x)− p′(x)

)
lnφ

(
p′(x)

)
.

This relation links the divergenceDφ(p||p′) with the information functionIφ(p).
The following result shows that theφ-exponential family is a conditional maximizer ofIφ. It

also shows that the scale functionF is the Legendre transform of the information contentIφ

Theorem 7.2. Let
(
pθ

)
θ∈D

beφ-exponential, with estimatorc and scale functionsF andG.
Then there exists a constantF0 such that

(7.3) F (θ) = F0 + min
p∈M1(µ)

{Epθ
kck − Iφ(p)}.

The minimum is attained forp = pθ. In particular, F (θ) is a concave function ofθ and pθ

maximizesIφ(p) under the constraint that

Epθ
kck = Eθθ

kck.

Proof. Let us first show that for any pdfp

(7.4) Epθ
kck − Iφ(p) ≥ Eθθ

kck − Iφ(pθ).

One has∫
Ω

dµ(x)
(
p(x)− pθ(x)

)
lnφ

(
pθ(x)

)
=

∫
Ω

dµ(x)
(
p(x)− pθ(x)

) [
G(θ)− θkck

]
= −(Ep − Eθ)θ

kck.

Hence, (7.2) becomes now

Dφ(p||pθ) = Iφ(pθ)− Iφ(p) + (Ep − Eθ)θ
kck.

But one has alwaysDφ(p||pθ) ≥ 0. Therefore, (7.4) follows.
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Next calculate, using the lemma,

∂

∂θk
Iφ(pθ) =

∫
dµ(x)

(
− lnφ

(
pθ(x)

)
−

∫ 1

0

du
u

φ(u)

)
∂

∂θk
pθ(x)

=

∫
dµ(x)

(
−G(θ) + θlcl(x)−

∫ 1

0

du
u

φ(u)

)
∂

∂θk
pθ(x)

=

∫
dµ(x)

(
θlcl(x)

) ∂

∂θk
pθ(x)

=
∂

∂θk

(
Eθθ

lcl
)
− Eθck.

Becausec is an estimator with scale functionF one obtains

∂

∂θk

(
Eθθ

lcl − Iφ(pθ)
)

=
∂

∂θk
F (θ).

Hence there exists a constantF0 for which

(7.5) F (θ) = F0 + Eθθ
lcl − Iφ(pθ).

In combination with (7.4) this results in (7.3). �

Without restriction one can assumeF0 = 0. In statistical physics the functionF (θ) is free
energy divided by temperature.

Example 4. Let φ(u) = u2−q/q, with 0 < q < 2. This is of course only a re-parametrization
of Example 2, which is done to recover expressions found in the literature. The deformed
logarithm is given by

lnφ(u) =
q

q − 1
(uq−1 − 1) if q 6= 1

= log(u) if q = 1.

One obtainsχ(v) = vq and hence

(7.6) Iφ(p) =

∫
dµ(x) p(x)

1− p(x)q−1

q − 1
.

This is the entropy functional proposed by Tsallis [17] as a basis for nonextensive thermostatis-
tics, and reported earlier in the literature by Havrda and Charvat [7] and by Daróczy [5]. The
corresponding expression for the divergence is

Dφ(p||p′) =
1

q − 1

∫
dµ(x) p(x)

[
p(x)q−1 − p′(x)q−1

]
−

∫
dµ(x) [p(x)− p′(x)] p′(x)q−1.

By Theorem 7.2, the pdfpθ minimizes ‘free energy’Epθ
kck− Iφ(p). But note that, due to the

re-parametrization,pθ is not given by (5.2), but equals

pθ =
[
1 + (1− q′)

(
G(θ)− θkck(x)

)]q′/(1−q′)

+

with q′ = 1/q. The latter expression coincides with that of the escort pdf (5.3), withq replaced
by q′ and with incorporation of the normalizationZ(θ) into the scale functionG(θ). The Tsal-
lis literature [19] associates with each pdfp an escort pdfP by the relationP ∼ pq. Then,
expression (7.6) is optimized under the constraint thatEP ck have given values. The resulting
formalism differs slightly from the present one.
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8. DUAL COORDINATES

Introduce dual coordinates

(8.1) ηk = Eθck =
∂F

∂θk
.

Assume (2.6) holds. Then, one obtains from (2.9)

∂ηk

∂θl
=

∂

∂θl
Eθck

=
∂2

∂θl∂θk
F (θ)

= −Z(θ)
[
Fθckcl −

(
Fθck

)(
Fθcl

)]
= − 1

Z(θ)
gkl(θ).

To obtain the last line aφ-exponential family has been assumed. This relation implies

(8.2)
∂θk

∂ηl

= −Z(θ)gkl(θ).

These are the orthogonality relations between the two sets of coordinatesθ andη. Next we
derive the dual relation of (8.1).

Proposition 8.1. Let
(
pθ

)
θ∈D

beφ-exponential. Assume the regularity condition (2.4) is satis-
fied. Then

(8.3) θk =
∂

∂ηk

Iφ(pθ).

Proof. One calculates (assume integration and partial derivative can be interchanged), using
Lemma 7.1,

∂

∂θk
Iφ(pθ) = −

∫
Ω

dµ(x)

[
lnφ

(
pθ(x)

)
+

∫ 1

0

du
u

φ(u)

]
∂

∂θk
pθ(x)

= −
∫

Ω

dµ(x)

[
G(θ)− θlcl(x) +

∫ 1

0

du
u

φ(u)

]
∂

∂θk
pθ(x)

=

∫
Ω

dµ(x) θlcl(x)
∂

∂θk
pθ(x).

To obtain the last line the regularity condition has been used. Use now thatpθ satisfies (2.6).
One obtains

∂

∂θk
Iφ(pθ) = Z(θ)Fθθ

lcl(Fθck − ck)

= −Z(θ)θlglk(θ).

In combination with (8.2) this gives

∂

∂ηl

Iφ(pθ) =

(
∂

∂θl
Iφ(pθ)

)
∂θk

∂ηl

= (−Z(θ)θmgml(θ))

(
− 1

Z(θ)
gkl(θ)

)
= θl.

�
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Equation (8.3) is the dual relation of (8.1). Expression (7.5) can now be written as

(8.4) F (θ) + E(η) = θkηk

with E(η) = Iφ(pθ).

9. DISCUSSION

The present paper introduces generalized exponential families, and calls themφ-exponential
because they depend on the choice of a strictly positive non-decreasing functionφ of (0,+∞).
Several properties, known to hold for the exponential family, can be generalized. The paper
starts with a generalization of the well-known lower bound of Cramér and Rao, involving the
concept of escort probability distributions. See Theorem 2.1. It is shown that theφ-exponential
family optimizes this generalized lower bound. The metric tensor, which generalizes the Fisher
information, depends on both the family of pdfs and the escort family, and determines the
geometry of the statistical manifold.

The final part of the paper deals with the dual structure of the statistical manifold, which sur-
vives in the more general context ofφ-exponential families. It is shown in Theorem 7.2 that the
φ-exponential family satisfies a variational principle with respect to a suitably defined entropy
functional. The well-known duality of statistical physics, between energy and temperature and
between entropy and free energy, is recovered.

Throughout the paper the number of parametersn has been assumed to be finite. A non-
parametrized approach to statistical manifolds is found in [13]. The extension of the present
work to this more abstract context has not been considered.
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