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ABSTRACT. Inthis paper we obtain the Hyers-Ulam-Rassias stability for the functional equation

1
K i
whereK is a finite cyclic transformation group of the abelian gr¢ah +), acting by automor-

phisms ofGG. As a consequence we can derive the Hyers-Ulam-Rassias stability of the quadratic
and the additive functional equations.
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1. INTRODUCTION

In the book,A Collection of Mathematical Probleni82], S.M. Ulam posed the question of
the stability of the Cauchy functional equation. Ulam asked: if we replace a given functional
equation by a functional inequality, when can we assert that the solutions of the inequality lie
near to the solutions of the strict equation?

Originally, he had proposed the following more specific question during a lecture given before
the University of Wisconsin’s Mathematics Club in 1940.
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Given a groupG,, a metric group (>, d), a numbers > 0 and a mapping
f : G; — G2 which satisfies the inequaliy(f(zy), f(x)f(y)) < ¢ for all
x,y € (1, does there exist an homomorphigm G; — G, and a constant
k > 0, depending only oid/; andG, such thati(f(x), h(x)) < ke for all z in
Gl?
A partial and significant affirmative answer was given by D.H. Hylers [9] under the condition
thatG,; andG, are Banach spaces.
In 1978, Th. M. Rassias [18] provided a generalization of Hyers’s stability theorem which
allows the Cauchy difference to be unbounded, as follows:

Theorem 1.1.Let f : V — X be a mapping between Banach spaces and let1 be fixed.
If f satisfies the inequality

1z +y) = ) = )l < O=l” + [lyl]”)

forsomed > 0andforallz,y € V (z,y € V\ {0} if p < 0), then there exists a unique additive
mappingl : V. — X such that

[f(x) = T(@)] <

forallz e V (zx € V\ {0} ifp <0).
If, in addition, f(¢z) is continuous irt for each fixedr, thenT is linear.

20
2-2

[l[”

During the 27th International Symposium on functional equations, Th. M. Rassias asked the
question whether such a theorem can also be proved¥ot. Z. Gajda[7] following the same
approach as in [18], gave an affirmative answer to Rassias’ questipn=fdr. However, it was
showed that a similar result for the case- 1 does not hold.

In 1994, P. Gavrut [8] provided a generalization of the above theorem by replacing the func-
tion (z,y) — 6(||z||” + ||ly||") with a mappingp(z, y) which satisfies the following condition:

o0

22 e(2"x,2"y) < 00 or 22 ¢<2n+1,ﬁ><oo
n=0

n=0

for everyx, y in a Banach spackg.
Since then, a number of stability results have been obtained for functional equations of the
forms

(1.1) flz+y) =g(x) + h(y), z,y €@,
and
(1.2) flx+y)+ flz—y) = g(z) + h(y), z,y €@,

where(G is an abelian group. In particular, for the classical equations of Cauchy and Jensen, the
guadratic and the Pexider equations, the reader can be referred to [4] — [22] for a comprehensive
account of the subject.

In the papersl[24] - [31], H. Stetkaer studied functional equations related to the action by
automorphisms on a grouf of a compact transformation groug. Writing the action of
k€ Konz € G ask - x and lettingdk denote the normalized Haar measure lonthe
functional equationg (1.1) and (1.2) have the form

(1.3) /K [+ k-y)dk = g(z) + hy), 2.y € G,

whereK = {I} andK = {I, -1}, respectively] denoting the identity.
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The purpose of this paper is to investigate the Hyers-Ulam-Rassias stability of

1
(1.4) WZf(fo-y) = fx)+ fly), wy€eQG,
keK
whereK is a finite cyclic subgroup aflut(G) (the group of automorphisms 6f), | K| denotes
the order ofK’, andG is an abelian group.
The set up allows us to give a unified treatment of the stability of the additive functional
equation

(1.5) fleaty)=fl@)+fly), 2y€eQC,
and the quadratic functional equation
(1.6) flaty)+fle—y) =2f(=)+2f(y), 2y

In particular, we want to see how the compact subgrGugnters into the solutions formulas.

The stability problem for the quadratic equatipn [1.6) was first solved by Skofin [23]! In [4]
Cholewa extended Skof’s result in the following way, whétés an abelian group an#l is a
Banach space.

Theorem 1.2.Letn > 0 be areal number and : G — E satisfies the inequality
(1.7) [fle+y)+ fle—y) —2f(x) =2f(y)| <n forall z,ycG.

Then for every: € G the limitg(z) = lim, .., X522 exists and; : G — FE is the unique
guadratic function satisfying

(1.8) f(z) — q(z)] < g, r€G.

In [5] Czerwik obtained a generalization of the Skof-Chelewa result.

Theorem 1.3.Letp # 2,0 > 0,6 > 0 be real numbers. Suppose that the functionf);, —
E, satisfies the inequality

[f(x+y)+ flz—y) —2f(x) =2f ()| <o+0(z]|” + |ly[|") forall z,ye Ey.
Then there exists exactly one quadratic functjan; — F, such that
[f(z) = q(z)|| < c+ kO[]
forall x € Eyif p > 0andforallz € E; \ {0} if p <0, where

o= Hfgo)ll, L — 4_22p andq(z) = lim, ., f(i:m)’ forp < 2.
f(2"z)

e c=0,k= 21%4 andq(z) = lim, o =5, forp > 2.

Recently, B. Bouikhalene, E. Elgorachi and Th. M. Rassias([1], [2]/and [3] proved the Hyers-
Ulam-Rassias stability of the functional equatipn{1.4) with= {1, o} (o is an automorphism
of G such thatr o o = I).

The results obtained in the present paper encompass results from [2] and [18] given in Corol-
lariesZ.5 an@ 216 below.

General Set-Up. Let K be a compact transformation group of an abelian topological group
(G, +), acting by automorphisms @f. We letdk denote the normalized Haar measurefon

and the action ok € K onz € G is denoted by: - . We assume that the functign— & - y

is continuous for alyy € G.

A continuous mapping : G — C is said to beK-quadratical if it satisfies the functional
equation

(1.9) /K a(a+ k- y)dk = g(x) + qly), @y €.

J. Inequal. Pure and Appl. Mat}8(3) (2007), Art. 89, 13 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 MOHAMED AIT SIBAHA , BELAID BOUIKHALENE, AND ELHOUCIEN ELQORACHI

WhenK is finite, the normalized Haar measutieon K is given by

1
/K ORJA = i S (k)

keK

foranyh : K — C, where| K| denotes the order df. So equation|(1]9) can in this case be
written

(1.10) |—[1(|Zq(rv+k-y) =q(z) +qy), zyed.
keK

2. MAIN RESULTS

Lety : G x G — R* be a continuous mapping which satisfies the following condition

(2.1) w<x,y>=§;2—"/l(/l(---/[(so [:H > (kiykiy - ki) -,

ij<ij+17 kLJ e{k17k27“'7k’ﬂ—1}

y + > (kikiy - ki) -y | dkadky ...k, < o0,
15 <ijt1, ki, €{k1,k2,....kn—1}
for all psuch thatl < p <n —1,forall z,y € G (uniform convergence). In what follows, we
sety(z) = ¢(x,z) andy(x) = ¢(x,z) forall x € G.
The main results of the present paper are based on the following proposition.
Proposition 2.1. Let G’ be an abelian group and lep : G x G — R™ be a continuous

control mapping which satisfies (2.1). Suppose fhat: — C is continuous and satisfies the
inequality

(2.2)

l@f@+kwﬂk—ﬂ@—f@WSW%w

for all z,y € G. Then, the formulg(z) = lim =) with

n an 1

(2.3) fo(z) = f(x) and f,(x) :/ foc1(x+k-x)dk forall n>1,
K
defines a continuous function which satisfies

(2.4) |f(x) —q(z)] <¢(r) and /K q(z + k- z)dk = 2¢q(x) forall =z € G.

Furthermore, the continuous functigrwith the condition[(Z2.}4) is unique.
Proof. Replacingy by x in (2.9) gives

(2.5) [fi(z) = 2f(x)] =

and consequently

(2.6) |fo(z) = 2f1(2)] =

< ¢(x)

/Kf(x—i—k-x)dk—Zf(x)

/f1($+k:1-x)dk1—2/f(x+k:1-x)dk1
K K

< [\t hiea) =25+ ko)l
K

S/ o(x + ky - x)dk.
K
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Next, we prove that

fn(w) . fn—l(l')
mn 2n—1

_2—n/ / / (2 T+ Z (knkmkzp)x dklde--.dkn_l
KJK K

15 <ijy1, ki e{k1,k2,...kn_1}

(2.7)

foralln € N'\ {0}. Clearly [2.7) is true for the case= 1, since setting: = 1 in (2.7) gives
(2.5). Now, assume that the induction assumption is true ferN \ {0}, and consider

28)  [fun(x) — 2fu(x)] = /K ful + by - )by — 2 /K fos (2 + b - ),

< [ Vot b 2) = 2fucs(o o+ by )
K

Then
fn ('T) fn(m)
(2.9) 2—;1—&-1 on
fn($+kn :L') fn 1(x+kn-x)
< 2/ o = dk,,

> n+1// /SO T+ Z (kilkig"‘kip)'ilﬁ dklde-..dkn,

ij<ijt1, ki;€{k1,k2,....kn}

so that the inductive assumptidn (2.7) is indeed true for all positive integers. Hence;for
we get

fr() . fs()

(2.10) |75~ 7
fn 1 n( )
Z 2—;—4-1 n

gZZ(”H)/K---/KgO T+ S (kikiy ki) x| dky . dy,

15<ij41, kije{kl’kZ ~~~~~ kn}

which by assumptiorj (2.1) converges to zero (uniformly) @asds tend to infinity. Thus the

sequence of complex functiorﬂfgﬁf—) is a Cauchy sequence for each fixe¢ G and then this
sequence converges for each fixed G to some limit inC, which is continuous orx. We call
this limit ¢(z). Next, we prove that

ful@)
on

322—1/ ---/gp T+ > (kikiy ki) - @ | dEy ... dEy
=1 K K

15 <ij1 5 Kij e{k1,k2,...ki—1}

(2.11)

-

foralln € N\ {0}. We get the case of = 1 by (2.3)

(2.12) i) — 27 (2)] = /K fla+ k- o)k - 2f(x)| < p(a),
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so the induction assumption (2]11) is truefor 1. Assume tha{ (2.11) is true fare N\ {0}.
By using [2.9), we obtain

(2.13)  |fura(a) — 2" f(2)]
< fra(@) = 2/ (@) + 2/ fn(2) — 2" f(2))]

<//gp(l‘—|— Z (kl1k22klp)x> dk’ldkfgdkn
K K

ij<ijt1, ki; €{k1,k2;...kn}
n
+ 2n+1 § 2—l
=1

X / .. / 90 (x + Z (kilkig . 'kip) . x) dk‘ldkz . -dklfl
K K

ij<ijy1, kij€{k1 k2, ki—1}

so (2.11) is true for alh € N\ {0}. By lettingn — +oc, we obtain the first assertion ¢f (2.4).
We now shall show that satisfies the second assertion[of|2.4). By uding (2.2) we get

(2.14)

/Kf1(96 + ki - x)dky — fi(x) — fi(x)

/ / F@+ ka4 k- (24 by - 2))dkr s
KJK

K K

<),

§/ o(x + ky - x)dky.
K

/f(x+k1-93+k:2-(:v+k1-:B))dkrg—f(:)s+k:1-:v)—f(:v+k1-a:) dky
K

Make the induction assumption

(2.15)

/K Fule 4 k- 2)dk — 2. (2)

§/~u/(p o+ S hakiy ki) o | b,
K K

15 <ij+1, ki €{k1,k2,.. . kn}

which is true forn = 1 by (2.14). Fom + 1 we have

[ s 2 = 2010
K

/ / fn(aj + kn+l “x+ k- (.CE + kn-i—l : x)dkn-i-ldk - 2/ fn(x + kn+1 : m))dkn-&-l
KJK K

<),
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SL{/K'“/K“"G

+ ki1 T+ S (kikiy ki) - (@4 Fg x)) dky ... dk:n}dk;nH

iy <ij1, ki; €{k1k2,.. hn}
:/ / 90 ,_'L'+ E (k’“kmkzp)f[) dkl...dkn+1.
K K 7/]<Z_j+l7 kZJ e{k17k2 7777 kn+1}

Thus [2.15) is true for alk € N\ {0}. Now, in view of the conditior{ (2]1); satisfies the second
assertion of{ (2]4).

To demonstrate the uniqueness of the mappisigbject to[(2.]4), let us assume on the contrary
that there is another mappinf): G — C such that

f(2) — ¢'(2)] < ¥(z) and / (@ + k- 2)dk = 2¢/(z) forall = € G.
K
First, we prove by induction the following relation

Inlx) q(z)

2n
1
SQ—R/K.../Kw T+ > (hiskiy - hee) - @ | dky - dey.

i5<ij+1, ki €{k1,k2,... . kn}

(2.16)

Forn =1, we have

(2.17) [f1(z) = 2¢'(z)| =

/ f(x+k:-x)dk—/ q’(x+k:-x)dk‘
K K
< / U(z+ k- x)dk
K
so (2.16) is true fon = 1. By using the following

(2.18) |far1(z) — 2"/ (2)] =

/fn(x+k-a:)dk—2”/q'(:E—l—k:-a:)dk:‘
K K
< [ Mo+ k) = 2+ ko)l
K

we get the rest of the proof by proving that

1

_/.../w - 3 (hiskiy - Ky ) - | by . de,

2 Jk K j<iji1, ki, €{k1 k2, kn }

15 <lj41, ij 1:R25..4 n

converges to zero. In fact by setting

X:l'+ Z (k“klzk’lp)l'

ij<ijt1, ki €{k1,k2,....kn}
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it follows that

1
2_71/]{/1(1# 4 ST (ki ki) x| dk . d,

15 <ijy1, ki]- ef{ki,k2,...kn}

TR R
= — 2T @ X + kiki"'kiq - X
> | ) 2 s > (Kiy ki )

ij<ijy1, ki e{knt1,knt2,kntr_1}

Ak . . . Aoy }dkl . .dk,

+00
:22<n+’“>/ / ol z+ > (kiykiy - ki) - | dkey .. by
r=1 K K

15 <tj41, kij e{klsz ----- k'n#»r'fl}

“+oo
= > 2m/.~/<p T+ > (kiykiy ki) -2 | dky .. dkpyy.
K K

m=n-+1 ij<i]'+1, kij E{kl,k& ,,,,, kmfl}
In view of (2.1), this converges to zero, ge= ¢'. This ends the proof. O

Our main result reads as follows.

Theorem 2.2. Let K be a finite cyclic subgroup of the group of automorphisms of the abelian
group (G, +). Letp : G x G — R* be a mapping such that

(2.19) Q/J(x,y)zz(;’;:)n Yool > (irkiy ki) -

n=1 ki, skn—1€K 15 <ij+1; ki e{k1,..skn_1}

Y+ Z (kilkig"'kip) Y| <o,
ij<i]'+1; k}ije{k‘l ..... k‘nfl}
forall =,y € G. Suppose that : G — C satisfies the inequality

(2.20) % S Fo+k-y) - fl@) - )] < ola.y)

keK
forall z,y € G. Then, the limity(z) = lim, .. 22, with

an

(2.21) fo(z) = f(x) and f,(z) = % Z foi(x+k-x) forall n>1,
keK

exists for allx € GG, andq : G — C is the uniquek -quadratical mapping which satisfies

(2.22) |f(z) —q(x)| < ¢(x) forall z € G.
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Proof. In this case, the induction relations corresponding iq (2.7) [and|(2.11) can be written as
follows

fn(x> _ fnfl(x)
an 2n71

K

k1,..., kn_1€K ’L'j<7,'j+1; k‘ije{kl ,,,,, kn—l}

(2.23)

foranyn € N\ {0}.

ful@)

(224) |75

~ K]
s X oeler X Gk,

ki,...ki_1€K ij<ijy1; ki €{k1,kio1}

for all integersn € N\ {0}. So, we can easily deduce thdt:) = lim,, ., fgﬁf”) exists for

all z € G andq satisfies the inequality (2.22). Now, we will show thgis a K-quadratical
function. For allz, y € G, we have

(2.25) i 2 file k-9 = @)~ A)
keK
1 1
= | — — T k- k‘1' i k -
K1 i 2 A+ ko) k)
1 1
—ﬁag%f®+h-@—ﬁag;f@+h-w
1 1
= Wkezf(mk;f((erkl'fﬂ)Jrk'<y+k1’y))

-G X G tka) = g Y S+ )

ki1eK kieK
1
< —
< TR 2

kieK

|_[1(|Zf((x+k1-x)+k~(y+k1'y))
keK

— St k) = fly+ki-y)

1
< = Z@($+kl'xay+kl'y>‘
K| o=,
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Make the induction assumption

keK

1
< @R, 2 90[“ 2. (hukyooky) oy

which is true forn = 1 by (2.26). By using

|T1<| D Iale+ ke y) = ful@) = faly)

keK
1 1 ,
= WZ@ZE&@*‘WZJ‘H?'($+k‘y))
wek ' ek
1 / 1 /
ek keK
1 1 , ,
= WZWZ%—N’H‘]@ rt k- (y+k-y))
wek ' kek
1 / 1 /
—rg7 D Fa @ K w) = o D7 faa(y K )
It K e

_an—l(w+k/'x+k'(y+k/'y))_fn—1(x+k,'x)_fn—1<y+k7/'y)

we get the resulf (2.26) for att € N\ {0}. Now, in view of the condition[(2.19); is a
K-quadratical function. This completes the proof. O

Corollary 2.3. Let K be a finite cyclic subgroup of the group of automorphisms,déts > 0.
Suppose that : G — C satisfies the inequality

(2.27) D f@+ky) = [K|f(@) = K| f(y)| <6

keK

forall z,y € G. Then, the limig(z) = lim, ., 22, with
1

(2.28) folw) = f(x) and fu(e) = 1 Y faalz+k-x) for n>1
keK

exists for allr € G, andq : G — C is the uniquek -quadratical mapping which satisfies

(2.29) f(z) — qlz)] < % forall z € G.
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Corollary 2.4. Let K be a finite cyclic subgroup of the group of automorphisms of the normed
.I-ID, letd > 0 andp < 1. Suppose thaf : G — C satisfies the inequality

(2.30) me (@ +k-y) = flx) = fly)| < OUzl” + llyll")

keK

forall z,y € G. Then, the limig(z) = nmnﬂo In@) \with

(2.31) folz) = f(z) and fa(z) |an z+k-z) for n>1

IR
eK
exists for allr € G, andq : G — C is the uniquek -quadratical mapping which satisfies

(2.32) [f(x) —q(x)]

p

> 20

n=1 kiyeers kn—1€K

v+ 3 (ikiy -+ ki) -

i5<iji1; ki e{k1,....kn-1}

forall z € G.

Corollary 2.5 ([18]). Let K = {I},0 > 0 andp < 1. Suppose thaf : G — C satisfies the
inequality

(2.33) [f(@+y) = flx) = f)l < o[ + lyl")

for all z,y € G. Then, the limigy(z) = lim,, ., 2%, with

(2.34) fu(x) = f(2"2) for n e N\ {0}

exists for allx € G, andq : G — Cis the unique additive mapping which satisfies

(2.35) (o) — (o) < 2

Corollary 2.6 ([2]). Let K = {I,0}, wherea : G — (G is an involution ofG, and let
¢ : G x G — [0,00) be a mapping satisfying the condition

forall z € G.

[e.e]

(2.36) v(z,y) =) 277" M[p(2"x, 2"y)

n=0
+ (2" = Dp2" o + 2" to(x), 2"y + 2" o (y))] < o0
forall z,y € G. Letf : G — C satisfy

(2.37) [fx+y)+ fle+oy) —2f(x) —2f(y)] < ¢z, y)

for all x,y € G. Then, there exists a unique solutipn G — C of the equation
(2.38) q(z +y) +q(z+o(y) =2q(x) +2(y) z,y€C

given by

(2.39) al@) = lim 27 f(2"0) + (2" = (2" a4+ 2" o(x))}
which satisfies the inequality

(2.40) [f(x) = q()] < ¢z, z)

forall x € G.

Remark 2.7. We can replace in Theorgm .2 the condition thias a finite cyclic subgroup by
the condition thaf< is a compact commutative subgroupAdt(G).
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