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ABSTRACT. We characterize in algebraic terms an inequality in Sobolev spaces for a system of
differential operators with constant coefficients.
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1. INTRODUCTION

We are interested in the following inequality
k
(1.1) 3C > 0,|R(D)ul| < C ) |P(D)ull,Yu € CF(Q),
j=1

whereS = {P;(D);j = 1,..,k}, R(D) are linear differential operators of order m with
constant complex coefficients aoi° () is the space of infinitely differentiable functions with
compact supports in a bounded open@aif the Euclidian spac®”. By ||.|| we denote the
norm of the Hilbert spacé&?(Q) of square integrable functions.

Each differential operataP; (D) has a complete symba};(¢) such that

(1.2) P;(&) = pi (&) +¢;(&) +r;i(&) + ..,

wherep;(¢), ¢;(&) andr;(&) are the homogeneous polynomial partsiofé) in & € R™ of
orders, respectivelyp, m — 1 andm — 2.

It is well-known that the systerfi satisfies the inequality (1.1) for all differential operators
R(D) of order< m if and only if it is elliptic, i.e.

k
(1.3) _Z p;(€)] # 0,V € R™\ 0.
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In this paper we give an necessary and sufficient algebraic condition on the systean
that it satisfies the inequality (1.1) for all differential operatB()) of order< m — 1.

The estimatg (I]1) has been used in our wiork [1], without proof, in the study of local estimates
for certain classes of pseudodifferential operators.

2. THE RESuULTS

To prove the main theorem we need some lemmas. The first one gives an algebraic charac-
terization of the inequality (I} 1) based on a well-known result of Hormander [3].
Recall the Hormander function

(2.1) Pi(¢) = (Z

«

Pe) )) ;

whereP}*) () = ge e P (€). (seel[3]) .

Lemma 2.1. The inequality[(1]1) holds for evefy(D) of order< m — 1 if and only if
k
(2.2) 3C >0, [ <CY Pi(g),VE R
j=1

Proof. The proof of this lemma follows essentially from the classical one in the calse-of,
and it is based on Hormander’s inequality (see [3, p. 7]). O

The scalar product in the complex Euclidian sp&teof A = (ay, .., a;) andB = (by, .., by,)
is denoted as usually by - B = Zle a;b;, and the norm o>* by |-| .
Let, by definition,

k
(2.3) JANBP? = " laib; — biag[*.
1<j
The next lemma is a consequence of the classical Lagrange’s identity((see [2]).
Lemma2.2.LetA = (ay,..,a;) € C*and B = (by, .., b;,) € C*, then

Re(A- B))2 \Im (A- B)|* + |A A BJ
A Ely

(2.4) |At + B)* = <\A[ t+ Vt € R.

Proof. We have
|At + B> = (|A|t)” +2tRe(A- B) + |B)?

_ <|A\t+—Re(|i|' B>>2+ B? - (—Re(A'B))Z,

We obtain[(2.4) from the next classical Lagrange’s identity
|A]?|B)* = |Re (A~ B)]> + |Im(A- B)|* +|AABJ?.

For¢ € R™ we define the vector functions

(2.5) A(€) = (pu(§), -, pr(§)) and B(§) = (q1(§), -, ax(§))-
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Let
k
(2.6) == {w € S AW = D Ipsw) # o} ,

whereS™ ! is the unit sphere dk™, and
(2.7) F(t,€) = lgradA(€)” + |A)t + B[,

where|grad A€ = 35 [grad p;(€)|*.

Lemma 2.3. The inequality[(2]2) holds if and only if there exist no sequences of real numbers
t; — +oco andw; € S"! such that

(28) F(tj,wj) — 0.

Proof. Lett; be a sequence of real numbers and sequence of" !, using the homogeneity
of the functiong, ¢ andr, then [2.2) is equivalent to

L 2(m—1)
|:Jw]| — - 1 S C,
l; Bitjw;)?  F(tj,w;) +2 l; Re (pi(w;)-Ti(w;)) + x(w;)-O(5;)
wherey is a bounded function. Hence it is easy to see Lefnma 2.3. O

If w € = we define the functioss by

s | Im(A(w) -B(w))|2+\A(u))/\B(u))|2
w) = |gradA(w )

Theorem 2.4. The estimate (1]1) holds if and only if
(2.9) AC > 0,G(w) > C,Vw € =
Proof. All positive constants are denoted by If (2.9) holds then from[(2]4) an{l (2.7) we have

Re (A(w).B(w))
|A(w)]

The vector functiond is analytic and the sét is dense inS™~*, therefore by continuity we

obtain

(2.11) F(t,w) > C,Vt > 0,Yw € S" .

For¢ € R”, setw = é—‘ andt = |¢] in (2.11), as the vector functionsand B are homogeneous,

we obtain

(2.10) F(t,w) = (|A(w)| t+ ) + G(w) > C,Yw € Z,Vt > 0.

(&) + B + |gradA€)]* = C ¢ Ve e R,
and then, fo¢| > C, we have
k

212) Y (PO +lgradP(OF) + O ((1+ 1)) = CleP Y.

j=1
From the last inequality we easily gét (2.2) of Lemimg 2.1.

Suppose tha.9) does not hold, then there exists a sequercg such thatG(w;) — 0,
i.e.

(2.13) \gradA(w;)]> — 0,
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and
[T (A(w))-B(w;)]* + [A(w)) A Blw))|*
A(w;)]”

As S"~! is compact we can suppose thgt— w, € S"~'. Hence, from|(2.14) andl (3.4)
with ¢ = 0, we obtain

(2.14) — 0.

Re (A(w))-B(w)))

(2.15) — +|B(wp)]| -
Aoy )
From [2.13), due to Euler’s identity for homogeneous functions,
(2.16) Alwo) = 0.

Now if B(wy) = 0 thenF(t,wy) = 0, which contradicts (2]8)
Let B(wo) # 0, and suppose that

Re (A(wy)-B(w;))

(2.17) — — |B(wo)|,

| Aw;)| ’
then setting; = \féfﬁjif in (2.10), itis clear that; — +oo, S0, WithG(w;) — 0, F(t;,w;)
will converge to0, which contradicts] (2]8).

If
Re (Aw))-B(w;))
— +[B(wo)l,

| Alw;)| ’
then changingy; to —w; and using the homogeneity of the functiadsand 3, we obtain the
same conclusion. O
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