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Abstract

A function f = u + iv defined in the domain D ⊂ C is harmonic in D if u, v are
real harmonic. Such functions can be represented as f = h + ḡ where h, g are
analytic in D. In this paper the class of harmonic functions constructed by the
Hadamard product in the unit disk, and properties of some of its subclasses are
examined.

2000 Mathematics Subject Classification: 30C45, 31A05.
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1. Introduction
Let U denote the open unit disk inC and letf = u + iv be a complex valued
harmonic function onU . Sinceu andv are real parts of analytic functions,f
admits a representationf = h + g for two functionsh andg, analytic onU .

The Jacobian off is given byJf (z) = |h′(z)|2 − |g′(z)|2. The necessary
and sufficient conditions forf to be local univalent and sense-preserving is
Jf (z) > 0, z ∈ U [1].

Many mathematicians studied the class of harmonic univalent and sense-
preserving functions onU and its subclasses [2, 5].

Here we discuss two classes obtained by the Hadamard product.
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2. The ClassP̃ 0
H(α)

LetPH denote the class of all functionsf = h+ḡ so thatRe f > 0 andf(0) = 1
whereh andg are analytic onU.

If the functionfz+fz = h′+g′ belongs toPH for the analytic and normalized
functions

(2.1) h(z) = z +
∞∑

n=2

anz
n and g(z) =

∞∑
n=2

bnz
n,

then the class of functionsf = h + g is denoted bỹP 0
H [5].

The function

(2.2) tα(z) = z +
1

1 + α
z2 + · · ·+ 1

1 + (n− 1)α
zn + · · ·

is analytic onU whenα is a complex number different from−1,−1
2
,−1

3
, . . . .

Forf ∈ P̃ 0
H , we denote, bỹP 0

H(α), the class of functions defined by

(2.3) F = f ∗ (tα + tα).

Heref ∗ (tα + tα) is the Hadamard product of the functionsf and tα + tα.
Therefore

F (z) = H(z) + G(z)(2.4)

= z +
∞∑

n=2

an

1 + (n− 1)α
zn +

∞∑
n=2

bn

1 + (n− 1)α
zn

= z +
∞∑

n=2

Anz
n +

∞∑
n=2

Bnzn, z ∈ U
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is in P̃ 0
H(α).

Conversely, ifF is in the form (2.4), with an, bn being the coefficients of
f ∈ P̃ 0

H , thenF ∈ P̃ 0
H(α).

Furthermore, ifα = 0, then asF = f , we haveP̃ 0
H(0) = P̃ 0

H . Moreover
P̃ 0

H(∞) = {I : I(z) ≡ z, z ∈ U} and sinceI ∈ P̃ 0
H , P̃ 0

H ∩ P̃ 0
H(α) 6= φ.

Theorem 2.1. If F ∈ P̃ 0
H(α) then there existsf ∈ P̃ 0

H so that

(2.5) α[zFz(z) + zFz(z)] + (1− α)F (z) = f(z).

Conversely, for any functionf ∈ P̃ 0
H , there existsF ∈ P̃ 0

H(α) satisfying (2.5).

Proof. Let F ∈ P̃ 0
H(α). If f ∈ P̃ 0

H , then since

αzt
′

α(z) + (1− α)tα(z) = t0(z),

asF = f ∗ (tα + tα) we obtain that

f(z) = α[f(z) ∗ (zt
′

α(z) + zt′
α(z))] + (1− α)[f(z) ∗ (tα(z) + tα(z))].

Therefore,
f(z) = α[zFz(z) + zFz(z)] + (1− α)F (z).

Conversely, forf ∈ P̃ 0
H , from (2.1), (2.2) and (2.5),

z+
∞∑

n=2

anz
n+

∞∑
n=2

bnzn = z+
∞∑

n=2

[1+(n−1)α]Anz
n+

∞∑
n=2

[1 + (n− 1)α]Bnzn.
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From these one obtains

(2.6) An =
an

1 + (n− 1)α
and Bn =

bn

1 + (n− 1)α
.

Therefore,

F (z) = z +
∞∑

n=2

an

1 + (n− 1)α
zn +

∞∑
n=2

bn

1 + (n− 1)α
zn

= f(z) ∗ [tα(z) + tα(z)].

Corollary 2.2. A functionF = H + G of the form (2.4) belongs toP̃ 0
H(α), if

and only if

(2.7) Re{z(αH ′′(z) + αG′′(z)) + H ′(z) + G′(z)} > 0, z ∈ U.

Proof. If F = H + G ∈ P̃ 0
H(α), then from Theorem2.1

α[zH ′(z) + zG′(z)] + (1− α)[H(z) + G(z)] = h(z) + g(z) ∈ P̃ 0
H

andh′ + g′ ∈ PH . Hence

0 < Re{h′(z) + g′(z)}
= Re{αzH ′′(z) + αH ′(z) + (1− α)H ′(z)

+αzG′′(z) + αG′(z) + (1− α)G′(z)}
= Re{z(αH ′′(z) + αG′′(z)) + H ′(z) + G′(z)}.
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Conversely, if the functionF = H + G of the form (2.4) satisfies (2.7), then by
Theorem2.1, h′ + g′ ∈ PH and the function

f(z) = h(z) + g(z) = α[zH ′(z) + zG′(z)] + (1− α)(H(z) + G(z))

is from the class̃P 0
H . Hence by Theorem2.1, F = H + G ∈ P̃ 0

H(α).

Proposition 2.3. P̃ 0
H(α) is convex and compact.

Proof. Let F1 = H1 + G1, F2 = H2 + G2 ∈ P̃ 0
H(α) and letλ ∈ [0, 1]. Then

Re{z[α(λH ′′
1 (z) + (1− λ)H ′′

2 (z)ᾱ(λG′′
1(z) + (1− λ)G′′

2(z))]

+ λ[H ′
1(z) + G′

1(z)] + (1− λ)[H ′
2(z) + G′

2(z)]}
= λ Re{z[αH ′′

1 (z) + ᾱG′′
1(z)] + H ′

1(z) + G′
1(z)}

+ (1− λ) Re{z[αH ′′
2 (z) + ᾱG′′

2(z)] + H ′
2(z) + G′

2(z)}
> 0.

Hence, from Corollary2.2, λ F1 + (1 − λ)F2 ∈ P̃ 0
H(α). Therefore,P̃ 0

H(α) is
convex.

On the other hand, letFn = Hn + Gn ∈ P̃ 0
H(α) and letFn → F = H + G.

By Corollary2.2,

α[zH
′

n(z) + zG′
n(z)] + (1− α)[Hn(z) + Gn(z)] ∈ P̃ 0

H .

SinceP̃ 0
H is compact, [5],

α[zH
′
(z) + zG′(z)] + (1− α)[H(z) + G(z)] ∈ P̃ 0

H .

Hence, by Theorem2.1, F = H + Ḡ ∈ P̃ 0
H(α). Therefore,P̃ 0

H(α) is compact.
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Proposition 2.4. If F = H + G ∈ P̃ 0
H(α) and|z| = r < 1 then

−r + 2 ln(1 + r) ≤ Re{α[zH ′(z) + zG′(z)] + (1− α)[H(z) + G(z)]}
≤ −r − 2 ln(1− r).

Equality is obtained for the function (2.3) where

f(z) = 2z + ln(1− z)− 3z − 3 ln(1− z), z ∈ U.

Proof. From Theorem2.1, if F = H + G ∈ P̃ 0
H(α), then there existsf =

h + ḡ ∈ P̃ 0
H so that

α[zH
′
(z) + zG′(z)] + (1− α)[H(z) + G(z)] = f(z).

Since by [5, Proposition 2.2]

−r + 2 ln(1 + r) ≤ Re f(z) ≤ −r − 2 ln(1− r),

the proof is complete.

Proposition 2.5. If F = H + G ∈ P̃ 0
H(α) andRe α > 0, then there exists an

f ∈ P̃ 0
H so that

(2.8) F (z) =
1

α

∫ 1

0

ζ
1
α
−2f(zζ) dζ, z ∈ U.

Proof. Since

tα(z) =
1

α

∫ 1

0

ζ
1
α
−1 z

1− zζ
dζ, |ζ| ≤ 1, Re α > 0,
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and forf = h + g ∈ P̃ 0
H

h(z) ∗ z

1− zζ
=

h(zζ)

ζ
, g(z) ∗ z

1− zζ
=

g(zζ)

ζ
,

we have

H(z) = h(z) ∗ tα(z) =
1

α

∫ 1

0

ζ
1
α
−2h(zζ) dζ

and

G(z) = g(z) ∗ tα(z) =
1

α

∫ 1

0

ζ
1
α
−2g(zζ) dζ.

HenceF is type (2.8).

Theorem 2.6. If Re α > 0, thenP̃ 0
H(α) ⊂ P̃ 0

H . Further, for any0 < Re α1 ≤
Re α2, P̃ 0

H(α2) ⊂ P̃ 0
H(α1).

Proof. Let F ∈ P̃ 0
H(α) andRe α > 0. Then there existsf ∈ P̃ 0

H so that

F = H + G = f ∗ (tα + tα) = (h ∗ tα) + (g ∗ tα).

Hence,0 < Re{h′ + g′} = Re{h′ + g′} and sinceRe α > 0, Re{H ′ +G′} > 0,

andH(0) = 0, H ′(0) = 1, G(0) = G′(0) = 0 and henceF = H + G ∈ P̃ 0
H .

For0 < Re α1 ≤ Re α2, if F ∈ P̃ 0
H(α2), from Corollary2.2

0 < Re{z(α2H
′′(z) + α2G

′′(z)) + H ′(z) + G′(z)}
≤ Re{z(α1H

′′(z) + α1G
′′(z)) + H ′(z) + G′(z)}

we getF ∈ P̃ 0
H(α1).
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Remark2.1. For some values ofα, P̃ 0
H(α) ⊂ P̃ 0

H is not true. It is known [5,
Corollary 2.5] that the sharp inequalities

(2.9) |an| ≤
2n− 1

n
and |bn| ≤

2n− 3

n

are true. Hence, for example, the function

f(z) = z +
∞∑

n=2

2n− 1

n
zn +

∞∑
n=2

2n− 3

n
zn

belongs toP̃ 0
H . In this case

F (z) = z +
∞∑

n=2

2n− 1

n[1 + (n− 1)α]
zn +

∞∑
n=2

2n− 3

n[1 + (n− 1)α]
zn

belongs to the class̃P 0
H(α) for α ∈ C, α 6= −1/n, n ∈ N. However, forRe α ∈(

− |α|2
3

, 0
)

, α 6= −1,−1
2
, . . . as the coefficient conditions of̃P 0

H given in (2.9)

are not satisfied,F /∈ P̃ 0
H . Hence for eachα ∈ C with Re α ∈

(
− |α|2

3
, 0

)
,

α 6= −1,−1
2
, . . . , P̃ 0

H(α)− P̃ 0
H 6= φ.

Theorem 2.7.LetF = H + G ∈ P̃ 0
H(α). Then

(i) ||An| − |Bn|| ≤
2

n|1 + (n− 1)α|
, n ≥ 1
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(ii) If F is sense-preserving, then

|An| ≤
2n− 1

n

1

|1 + (n− 1)α|
, n = 1, 2, . . .

and

|Bn| ≤
2n− 3

n

1

|1 + (n− 1)α|
, n = 2, 3, . . .

Equality occurs for the functions of type (2.3) where

f(z) =
2z

1− z
+ ln(1− z)− 3z̄ − z̄2

1− z̄
− 3 ln(1− z̄), z ∈ U.

Proof. By (2.6),

||An| − |Bn|| =
1

|1 + (n− 1)α|
||an| − |bn|| .

Also by [5, Theorem 2.3], we have

||an| − |bn|| ≤
2

n

the required results are obtained.
On the other hand, from (2.6) and from the coefficient relations iñP 0

H given
in (2.9), we obtain the coefficient inequalities for̃P 0

H(α).
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3. The ClassPH(β, α)

Let f = h + g for analytic functions

h(z) = 1 +
∞∑

n=1

anz
n and g(z) =

∞∑
n=1

bnz
n

on U. The classPH(β) of all functions withRe f(z) > β, 0 ≤ β < 1 and
f(0) = 1 is studied in [5].

Let us consider the function

(3.1) kα(z) = 1+
1

1 + α
z + · · ·+ 1

1 + nα
zn + · · · , α ∈ C, α 6= −1,−1

2
, . . .

which is analytic onU.

Forf ∈ PH(β), let us denote the class of functions

(3.2) F = f ∗ (kα + kα) = (h ∗ kα) + (g ∗ kα) = H + G,

by PH(β, α). If α = 0, then sinceF = f , PH(β, 0) = PH(β).

Therefore,

F (z) = H(z) + G(z)(3.3)

= 1 +
∞∑

n=1

an

1 + nα
zn +

∞∑
n=1

bn

1 + nα
zn

= 1 +
∞∑

n=1

Anz
n +

∞∑
n=1

Bnzn, z ∈ U
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Theorem 3.1. If F ∈ PH(β, α) then there exists anf ∈ PH(β), so that

(3.4) α[zFz(z) + zFz(z)] + F (z) = f(z).

Conversely, forf ∈ PH(β), there is a solution of (3.4) belonging toPH(β, α).

Proof. Sincek0(z) = αzk′α(z) + kα(z), for f ∈ PH(β), using the fact that,
f = f ∗ (k0 + k0),

f(z) = α[f(z) ∗ (zk′α(z) + zk′α(z))] + [f(z) ∗ (kα(z) + kα(z))]

is obtained. Hence, forF ∈ PH(β, α)

f(z) = α[zFz(z) + zFz(z)] + F (z).

Conversely, letf = h + g ∈ PH(β) be given by (3.4). Hence, we can write

(3.5) h(z) = αzH ′(z) + H(z), g(z) = αzG′(z) + G(z).

From the system (3.5) the analytic functionsH andG are in the form

H(z) = 1 +
∞∑

n=1

an

1 + nα
zn = h(z) ∗ kα(z),

G(z) =
∞∑

n=1

bn

1 + nα
zn = g(z) ∗ kα(z).

Hence the functionF = H + G belongs to the classPH(β, α).
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Corollary 3.2. The necessary and sufficient conditions for a functionF of form
(3.3) to belong toPH(β, α) are

(3.6) Re{z(αH ′(z) + αG′(z)) + H(z) + G(z)} > β, z ∈ U.

Proof. If F ∈ PH(β, α) then by Theorem3.1,

β < Re{f(z)}
= Re{α[zFz(z) + zFz(z)] + F (z)}
= Re{z(αH ′(z) + αG′(z)) + H(z) + G(z)}, z ∈ U.

Conversely, if a functionF = H + G of form (3.3) satisfies (3.6), then

zαH ′(z) + H(z) + αzG′(z) + G(z) ∈ PH(β).

Hence, from Theorem3.1, we haveF = H + Ḡ ∈ PH(β, α).

Proposition 3.3. If F ∈ PH(β, α), Re α > 0 then there exists anf ∈ PH(β) so
that

(3.7) F (z) =
1

α

∫ 1

0

t
1
α
−1f(zt)dt, z ∈ U.

The converse is also true.

Proof. Since

kα(z) =
1

α

∫ 1

0

t
1
α
−1 1

1− zt
dt, Re α > 0,
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and forf = h + g ∈ PH(β),

h(z) ∗ 1

1− zt
= h(zt) and g(z) ∗ 1

1− zt
= g(zt),

we obtain

H(z) = h(z) ∗ kα(z) =
1

α

∫ 1

0

t
1
α
−1h(zt)dt

and

G(z) = g(z) ∗ kα(z) =
1

α

∫ 1

0

t
1
α
−1g(zt)dt.

Therefore,F = H + G is of type (3.7).

Theorem 3.4.LetF ∈ PH(β, α). Then

(i) ||An| − |Bn|| ≤
2(1− β)

|1 + nα|
, n ≥ 1

(ii) If F is sense- preserving, then forn = 1, 2, . . .

|An| ≤
(1− β)(n + 1)

|1 + nα|
and |Bn| ≤

(1− β)(n− 1)

|1 + nα|
.

Equality is valid for the functions of type (3.2) where

(3.8) f(z) = Re

{
1 + (1− 2β)z

1− z

}
+ i Im

{
1 + z

1− z

}
.
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Proof. LetF ∈ PH(β, α). Then from (3.3), as the coefficient relation forPH(β)
is

||an| − |bn|| ≤ 2(1− β)

[5, Proposition 3.4], the required inequalities are obtained.
On the other hand, from (3.3), as the coefficient relations forPH(β) are

|an| ≤ (1− β)(n + 1) and |bn| ≤ (1− β)(n− 1)

the required inequalities are obtained.

Proposition 3.5. If F = H + G ∈ PH(β, α), then forX = {η : |η| = 1} and
z ∈ U,

H(z) + G(z) = 2(1− β)

∫
|η|=1

kα(ηz) dµ(η).

Hereµ is the probability measure defined on the Borel sets onX.

Proof. From [5, Corollary 3.3] there exists a probability measureµ defined on
the Borel sets onX so that

h(z) + g(z) =

∫
|η|=1

1 + (1− 2β) zη

1− zη
dµ(η).

Taking the Hadamard product of both sides bykα(z), we get

H(z) + G(z)

=

∫
|η |=1

{(
kα(z) ∗ 1

1− zη

)
+ (1− 2β)η

(
kα(z) ∗ z

1− zη

)}
dµ(η)
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=

∫
|η|=1

{
kα(ηz) + (1− 2β)η

kα(ηz)

η

}
dµ(η).

Theorem 3.6. If Re α ≥ 0, thenPH(β, α) ⊂ PH(β). Further if 0 ≤ Re α1 ≤
Re α2, thenPH(β, α2) ⊂ PH(β, α1).

Proof. Let F ∈ PH(β, α) andRe α ≥ 0. Then asRe{h′ + g′} > β, we have
Re{H ′ + G′} > β andF (0) = 1. HenceF ∈ PH(β). Further as0 ≤ Re α1 ≤
Re α2, for F ∈ PH(β, α2)

β < Re{z(α2H
′(z) + α2G

′(z)) + H(z) + G(z)}
< Re{z(α1H

′(z) + α1G
′(z)) + H(z) + G(z)}.

Therefore, by Corollary3.2, F ∈ PH(β, α1).

Forf ∈ PH , the classBH(α) consisting of the functionsF = f ∗ (kα + kα)
is studied in [2]. The relation between the classesPH(β, α) andBH(α) is given
as follows.

Proposition 3.7. For Re α ≥ 0, PH(β, α) ⊂ BH(α).

Proof. If F ∈ PH(β, α) then there exists anf ∈ PH(β) so thatF = f ∗ (kα +
kα). SinceRe f(z) > β, f(0) = 1 and0 ≤ β < 1, Re f(z) > 0. Hence,
f ∈ PH . By the definition ofBH(α), F ∈ BH(α).
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