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ABSTRACT. In this paper inequalities between univariate moments are obtained when the ran-
dom variate, discrete or continuous, takes values on a finite interval. Further some inequalities
are given for the moments of bivariate distributions.
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1. INTRODUCTION
Therth order momeni:. of a continuous random variate which takes values on the interval
[a, b] with pdf ¢(z) is defined as
b
(1.1) . = / " ¢(x)dx.

For a random variate which takes a discrete set of finite vatués= 1,2,...,n) with corre-
sponding probabilitieg; (i = 1,2,...,n), we define

(1.2) =Y pi].
=1
The power mean of orderis defined as
(1.3) M, = (u)""  for r #£0,
and
(1.4) M, = lim (W)™ for r=0.
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It may be noted here that/_,, M, andM; respectively define harmonic mean, geometric mean
and arithmetic mean.

Kapur [1] has reported the following bound fpf when . is prescribedy > s, and the
random variate, discrete or continuous, takes values in the infervélith « > 0,

(br _ ar) /L; + arbs _ asbr
bs — g8 '

Inequality [1.5) gives the condition which the given moment values must necessarily satisfy
in order to be the moments of a probability distribution in the given rdngl. Kapur [1]
was motivated by the consideration of maximizing the entropy function subject to certain con-
straints. But before maximizing the entropy function one has to see whether the given moment
values are consistent or not i.e whether there is any probability distribution which corresponds
to the given values of moments. If there is no such distribution then the efforts of finding out
the maximum entropy probability distribution will not produce any result and hence we should
not proceed to apply Lagrange’s or any other method to find the maximum entropy probability
distribution, [2].

Here we try to obtain a generalization of inequalijty [1.5) for the case whemed s can
assume any real value. This shall help us in deducing bounds between power means. This will
also provide us with an alternate proof of inequality 1.5) and enable us to tighten it when the
random variate takes a finite set of discrete values... . ., z,,.

In addition some inequalities between the moments of bivariate distributions are also ob-
tained.

(1.5) ()" < <

2. SOME ELEMENTARY |INEQUALITIES
We prove the following theorems:

Theorem 2.1.1f r is a positive real number angis any non zero real number with> s then

fora < x < b; with a > 0, we have

(b" —a") z° 4+ a"b® — a’b"
bs —a’

(2.1) "

IN

Y

and forx lying outside(a, b) we have
(" —a") x°+a"b® — a’b’
bs —a’ :
If r is a negative real number with > s then inequality[(2]1) holds far lying outside(a, b)
and inequality[(2.R) holds faf < = <b.

(2.2) 2

v

Proof. Consider the following functiorf (z) for positive real values of:

b" —a” a’b’ — a"b*
2.3 — 7 — s
(23) fla)=a" = e
wherer ands are real numbers such that> s ands # 0. The functionf(x) is continuous in
the intervalla, b] with > 0. Thenf’(x) is given by

(2.4) fl(z) =251 [rxr_s -5 (br — aT)} .

bs_as

f'(x) vanishes at = 0 andc, where

(2.5) c= [
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By Rolle’s theorem we have thaties in the intervala, b).

If r is a positive real number andis a negative real number with> s then f'(z) < 0 iff
x < c¢. This means thaf(x) decreases in the intervdl, ¢) and increases in the intervai, o).
Further, since: lies in the intervala, b) and f(a) = f(b) = 0, it follows that

(2.6) flz) <0 for a <ax <,
and forz lying outside(a, b)
(2.7) f(z) > 0.

On substituting the value of(z) from equation[(2]3) in inequalitief (2.6) arid (2.7), we obtain
inequalities[(2.]1) and (2.2) respectively.

If r is a negative real number with> s then f'(z) < 0iff x > ¢. This means thaf(x)
increases in the interval, ¢) and decreases in the inten(al co). Sincec lies in the interval
(a,b) and f(a) = f(b) = 0 it follows that inequality[(2.]7) holds far < = < b while inequality
(2.6) holds forz lying outside(a, b) and thus we get inequalities for the case whésinegative
real number. O

Theorem 2.2.For a < z < bwitha > 0, we have

(2.8) - < (b" —a") logx 4+ a"logh — b" log a
: x
- logb — loga ’

and forx lying outside(a, b), we have

(b" —a") logx 4+ a” logb—brloga

2.9 ">
(2.9) ¢ logh — loga

wherer is a real number.

Proof. Consider the following functiorf (z) defined for positive real values of

(b" —a") b"loga — a"logb
2.10 =" — ——1 :
( ) fla) == logh —loga 0BT+ logb —loga
The functionf(z) is continuous in the intervad, b] wherea > 0. Thenf’(z) is given by
1 b" —a”
2.11 ") == |rg — ————
(2.11) fz) x [rx logb — log a} ’

and we have’(z) = 0 atz = ¢ where

1
b" —a” r
2.12 = :
(2.12) ¢ [r(logb—loga)]

By Rolle’s Theorem we have thatlies in the interval(a, b). Also f'(z) < 0iff < c¢. This
means thaif (x) decreases in the intervéd, ¢) and increases in the intervil, oo). Further,
sincec lies in the intervala, b) and f(a) = f(b) = 0 it follows that

(2.13) f(z) <0 for a <x <0,
and forzx lying outside(a, b) we have
(2.14) flz) >o0.

On substituting the value of(z) from equation[(2.10) in inequalities (2]13) and (2. 14) we
obtain inequalitieq (2]8) anf (2.9) respectively.
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3. INEQUALITIES BETWEEN MOMENTS

Theorem 3.1.Letr be a positive real number andoe any non zero real number with> s. If
a positive random variate takes values(i = 1,2,. .., n) in the interval[a, b], witha > 0, then
we have

(3.1) fh <

and

(br _ ar) :U’,s + arbs _ asbr
bs —a’

Y

,
T — T} ),us—i-xj 1T5 — T4

(3.2) [y > (2] :

wherej =2,3,....n

If a continuous random variate takes values in the intefwab], with a > 0, then the upper
bound for .. is given by the inequality (3.1) whereas the lower bound is given by following
inequality

(3.3) = ()"

Proof. It is seen thaj:!. can be expressed in termsdfin the following form :

Th — xl, THTL, — ToT], Th — X, TRTs, — TTE
(3.4) uiz(f )uﬁ : ﬁ+zpzx— e

Ty — T, Th — Th— X, Ty — Ty

wherea andg take one of the values among@2.. . ., n with o # . Without loss of generality

we can arrange values of the variate suchthatz; < 2, < --- <z, = b. If we takea = 1

andfs = nthenz; < z; < z, fori = 1,2,,...,n. It follows from (2.1) that the last term in
equation|(3.14) is negative and we conclude that the upper bound fsrgiven by inequality
(3.1). Further ifz, = z;_, andzg = z;, j = 2,3,...,n then each; lies outside(z;_,, z;)

and it follows from [(2.R) that the last term in equatipn {3.4) is positive and we conclude that the
lower bound fory,. is given by inequality[(3]2). It is also clear that equality in the inequalities

(3.1) and|(3.R) holds iff, = 2.

If the value ofy, coincides with one of?_, or z%, then from inequalit2) we have

(3.5) > ()"

Also if z;_; approaches;we get inequality[(3]5) and we conclude that for a continuous
random variate the lower bound fpf is given by inequality[(3]5). The upper bound fdrcan
be deduced from Theorem 2.1. Multiplying both sides of inequdlity (2.1) byjpdf we get,
on using the properties of definite integrals, inequality|(3.1). O

Theorem 3.2. Letr and s be negative real numbers with> s. If a positive random variate
takes values; (i = 1,2,...,n) in the intervalla, b], witha > 0, we have

(br _ CLT) uls + arbs _ asbr

(3.6) . > )
bs_as
and
(x — )us—l—x 15— x5 x
(3.7) p, < T
Tj— L5

wherej =2,3,....n
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If a continuous random variate takes values in the intefuab], with a > 0, the lower
bound fory,. is given by inequality (3]6) whereas the upper boundfois given by following
inequality:

(3.8) i < ()"

s

Proof. We again consider equatidn (B.4). If we take= 1 andj = n thenz; < z; < z,, for

i =1,2,...,n. Itfollows from Theorenj 2/1 that the last term in equatipn](3.4) is positive and
we conclude that the lower bound fpf is given by inequality[(3]6). Also ik, = x;_; and

rg = xj, j = 2,3,...,n then eachy, lies outside(z;_;, z;). It follows from Theorenj 2]1 that
the last term in equatiof (3.4) is negative and we conclude that the upper boyrjddajiven

by inequality [3.F). Also ifz;_, approaches; we get inequality[(3]8). The lower bound for
(.can be deduced from Theorém|2.1. Multiplying both sides of inequality (2.2) by(pdfwe

get, on using the properties of definite integrals, inequality (3.6). 0J

Theorem 3.3.For a random variate which takes values(i = 1,2,...,n) in the interval[a, ],
with a > 0, we have

(0" —a") log My + a” logh — b" log a

3.9 <

(3.9) e < o b —Toga 7
and

(3.10) 1> (2] — j_,) log My + _ log x; — 2 log ;4

logx; —logx; 1
wherej = 2,3,...n, r is a real number and
(3.11) My =z al> - afn

n

For a continuous random variate which takes values in the intefedl] with a > 0 the up-
per bound fory,, is given by inequality (3]9) whereas the lower bound 4piis given by the

following inequality
(3.12) > (M)

Proof. It is seen thaj:/.can be expressed in termslo§ 1/, in the following form:

xh —a’ z" logxg — x% log x,,
(3.13) u. = B2 og My+ =2 %5~ Tp 08
log x5 — log x, logzs — log z,
n xl — a” 2% log x, — 2" log
+ZR~ x) — p__"o log z; + 598 o 08 L5
log x3 — log z, log x3 — log z,

Without loss of generality we can arrange values of the variate such that; < o < -+ <
r, = b. If we takea = landf = n thenz; < x; < x, fori = 1,2,...,n. It follows from
Theorenj 2. that last term in equati¢n (3.13) is negative and we conclude that the upper bound
for ... is given by inequality[(3]9). Also i, = z;_; andzg = x;, j = 2,3,...,n then each
x; lies outside(z;_y, z;). It follows from Theorenj 2]2 that the last term in equation (B.13) is
positive and we conclude that the lower bound/pis given by inequality{(3.10).

If the value of M, coincides with one of;_, or z; then from inequality[(3.]0) we have

(3.14) > (Mp)".
Also if z;_, approaches; we get inequality[(3.14) and we conclude that for the continuous
random variate the lower bound fpf is given by inequality[(3.14). The upper bound fdr

can be deduced from Theor¢m|2.2. Multiplying both sides of inequality (2.8) by @dfwe
get, on using the properties of definite integrals, inequdlity (3.9). O
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4. INEQUALITIES BETWEEN MOMENTS OF BIVARIATE DISTRIBUTIONS

The moments of a bivariate probability distribution are the generalizations of those of uni-
variate one and are equally important in the theory of mathematical statistics. For a discrete
probability distribution, ifp; is the probability of the occurrence of the pair of valdes v;)
i=1,2,...,n,the momenj.. about the origin is given by

(4.1) fng =Y Pijy;.
=1

We obtain a bound op! in the following theorem:

Theorem 4.1.Let ! be the moment of orderin = and of orders in y, about the origin(0, 0),
of a discrete bivariate probability distribution. The random variaieandy vary respectively
over the finite positive real intervals, b] and [, d]. If y},,, is the corresponding moment of
orderk in x andm in y such that > k, s > m andrm = ks then we must have by necessity,
(brds _ arcs) M;cm + arcsbkdm o akcmbrds

bedm — gkcem '
Proof. If u, v, « andj are positive real numbers with+ 5 = 1 then from Holder’s inequality

[31,

n n @ n B
(4.3) Zufvzﬁg <Zuz) <sz> )

We make the following substitutions,

(4.2) (fy) 77 < gLy <

k
(4.4) w; = pxtyl, vi=p; and o = tm
r+s
This gives,
(4.5) upof = pikyp'
Also,
a k+m
n n r+s
=1 =1
and

n B
(4.7 <Z vi) = 1.

i=1
From (4.3),[(4.5),[(4]6) and (4.7), we get

(4.8) Moy > (M) T

Fora <z <b,c<y<d,r>k, s>mandrm = ks, inequality (4.B) will remain valid if we
substituten = 2, u; = pia’c®, us = pPob"d®, vy = 1, Vo = po, v = ’jﬂg,

o bkdm _ akcm )

b1

and
xkym _ akcm

P2 = bkdm _akcm'

J. Inequal. Pure and Appl. Mathb(4) Art. 86, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

INEQUALITIES BETWEEN MOMENTS OFPROBABILITY DISTRIBUTIONS 7

These substitutions give

(brds . arcs) xkym + arcsbkdm _ akcmbrds
4.9 "yt < .
( ) Ty = bkdm _ akcm
Without loss of generality we can have that the random variate take valves; < xy <
<z, =bandc =y <y < -+ <y, = dthereforea < z; < bandc < y; < d,
i =1,2,...,n. From inequality[(4.9), it follows that

(bd® — a"c®) aky™ + a"cbFd™ — aFcmbrd®

Ty < T — ,
or
i Paty < (brd® —a"e®) Yoi, Pafyp" + (a7 cbFd™ — aFembrd®) Yo7 Py
T bkdm — akem ’
or

(brds o CLTCS) ’u%m + arcsbkdm _ ak’cmbrds
bedm — gkcem :
Inequality [4.2) also holds for the continuous bivariate distributions. The upper bound in in-

equality [4.2) is a consequence of inequality[(4.9). Multiplying both sides of ineqyality (4.9) by
joint pdf ¢(x, y) and integrating over the corresponding limits, we get the maximum value of

u.. where
b d b d
MLSZ/ / "y é(x,y)dedy  and //Qﬁ(x,y)dxdy:l.

Now consider,

fys <

R YA A T
(fa fc fdl’dy) <fa fc gdxd:U) a Jc Yy a Jc g Y

b d o 6

S// 5 df + — dg ]dxdy
o Jo | [] [T fdedy ] [T gdedy

=1

wherea + = 1 and f andg are positive functions. We therefore have

(4.10) /ab/cdfagﬁd:c dy < (/ab/cdfdxdy)a(/ab/cdgdxdy>ﬁ,

and make the following substitutions,

. B _k+m
f—xy ¢(xvy)ag_¢<xay) and a = r+s :

Inequality [4.10) then yields the minimum value;df.. O

5. APPLICATIONS OF RESULTS

On using the results derived in Sect|gn 3 and giving particular valuesals it is possible
to derive a host of results connecting the Harmonic méan Geometric mean), Arithmetic
mean (A) and Root mean squaré) when one of the means is given and the random variate
takes the prescribed set of positive valugsrs, . . ., x,.
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If we putr = +1 ands = —1 we get inequalities betwee# and H, if we putr = 0 and
s = —1 we get inequalities betweer and H, and so on. Root mean squdgecorresponds to
r = 2. In particular the following inequalities are obtained from the general result,

(5.1) (-1 +2;) A— 20257 <R < [(a+b) A—ab]?,
(5.2) b g Tt
' a+b—A_ _I'j_l—f-l'j—A’
T —x; Tj— a:'falc-
(5.3) (b* a7 <G < (o)
rjx; (rjm1 +x5) ]2 ab (a + b) 2
(5.4) |:$?_1+$j—lxj+$?_ ) }} ]] §R§[a2+ab+b2—T ,
Ti 12, ab
(5.5) () = DT < A cah - 2
(5.6) [If{fj(H—xjfl)x%—ll(Ij—H)] H(%‘*l’cjfl) <G < [bb(H—a)aa(b—H)} S (C=D]
J J— — — )
1 G QZ? Z; z? 1 b2 2
/i R A G b\a
(5.7) o <> (@) R o os($) (5)
log zfil - = log © ’
N
log (£)* log (f;)
(5.8) Ogc(g) < H< e,
log ()" (3) log (:5:)7 (%)"
log (35) 7 (3)" log ()" (2)"
Fji-1 g a G)
Tj—1 g a
(5.10) Rtab _y BHoam
' a+b — T x4z
j j
ab (a +b) zi1xj (-1 + x))
5.11 H< ST A J
(®.11) a?+ab+0? - R~ T2l tajar; o - RY
and
R?-2? | o2-R?
e T
(5.12) b q?e? <G <, v

wherej = 2,3,...,n.
We now deduce the result that the power mé#nis an increasing function af. If r is
positive ands is any real number with > s then from inequality[(3]3) we have
1 1
(5.13) (k) = (k)"
or M, > M;
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If r is a negative real number with> s we again get inequality (5.1.3) from inequalify (3.8).
From inequality [(3.12) we hav&l, > M, for r > 0, and M, < M, for r < 0. Hence we
conclude that the power mean of orads an increasing function of. In particular, we get that

M_y < My < My < M.
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