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Abstract

This note studies how certain problems in quantum theory have motivated some
recent research in pure Mathematics in matrix and operator theory. The math-
ematical key is that of a commutator. We introduce the notion of the pair (A, B)
of operators having the Fuglede-Putnam’s property in the ideal of all compact
operators. The characterization of this class leads us to generalize some recent
results. We also give some applications of these results.
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Let H denote a separable infinite-dimensional complex Hilbert space. Let

LH)DK(H)DC,D F(H)

(0 < p < ) denote, respectively, the class of all bounded linear operators,

the class of compact operators, the Schagtefass, and the class of finite rank

operators orf{. All operators herein are assumed to be linear and bounded. Let

I, 5 Il denote, respectively, th&,- norm and theC(H)-norm. LetZ be a
proper bilateral ideal of (H). It is well known that ifZ # {0}, thenKC(H) D
T D F(H). For A,B € L(H) we define the generalized derivation 5 as
follows

oap(X)=AX - XB

for X € L(H) (sothatds 4 = d4). In[1, Theorem 1.7], J. Anderson shows that
if Ais normal and commutes with then,

(1.1) 1T = (AX = XA)|| = |7,

forall X € £(H). In [11] we generalized this inequality, showing that if the
pair (A, B) has the Fuglede-Putnam’s property (in particularlibnd B are
normal operators) and7 = T'B, then for all.X € L(H),

1T = (AX = XB)|| = |[T]|.

The related inequalityl( 1) was obtained by P.J. Maherj, Theorem 3.2] show-
ing that if A is normal andAT = T'A, wherel’ € C,, then
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1T = (AX = XA, = [T,

forall X € L(H), whereC, is the von Neumann-Schatten class,
1 < p < oo and||-[|, its norm. In [L7] we generalized P.J. Maher’s result,
proving that if the paifA, B) has the Fuglede-Putnam’s propefyP)c, , then

1T = (AX = XB)[, > IT1],

forall X € £L(H), and for alll’ € C, Nkerd p. In [9] F. Kittaneh shows that
if the pair (A, B) has the Fuglede-Putnam’s propertyd(H ) then

1T = (AX = XB)[l, > T,

forall X € £L(H), and for allT € I Nkerds . In order to generalize these
results, we prove that if the pdir, B) has the ' P) i) property (the Fuglede-
Putnam’s property itiC(H)), then

1T = (AX = XB)| = [Tl

forall X € IC(H) andforallT' € K(H)Nkerdu . Thatis, the zero generalized
commutator is the generalized commutatokif¥/) of 7.

A.H. Almoadjil [2] shows that ifA is normal and for evenyX € L(H),
A?2X = XA? andA3X = X A3, thenAX = XA. However F. Kittaneh ]
generalizes the Almoadjil's theorem by choosifngand B* subnormal. There
are of course other co-prime pairs of powersdodnd B, such a® and2n + 1
or 3 and2n + 1 (with 3 and2n + 1 co-prime), for which a similar result can be
proved. Notice here that for such co-prime powersiaind B, the hypothesis
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that the pair(A, B) has the(F'P)x ) property implies that’y ,(X) = 0 for
some integefn > 1, and the conclusiotX € kerd 4 g is a consequence of the
following general result: Let; ; denote ann—times application ob4 5. If
the pair(A, B) has the(F'P) ) property and’y z(X) = 0 for some integer
m > 1,thends p(X) = 0.
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We begin by the following definition of the orthogonality in the sense of G.

Birkhoff [ 3] which generalizes the idea of orthogonality in Hilbert space.

Definition 2.1. Let C be the field of complex numbers and lebe a normed
linear space. Let,y € E. If ||z — \y|| > ||\y|| for all A € C, thenz is said to
be orthogonal tq,. Let F and G be two subspaces if. If ||z + y|| > ||y||, for

all x € Fandforally € G, thenF'is said to be orthogonal t6r.

Definition 2.2. LetA, B € L(H). We say thatthe paitA, B) satisfieg ' P) i,
if AC = CB whereC € K(H) impliesA*C = CB*.

Theorem 2.1.Let A, B € L(H). If AandB are normal operators, then
15 = (AX = XB)l[, = 15/l
forall X € £L(H) and forallS € kerd, 5 N K(H).

Proof. Let S = U | S| be the polar decomposition &f whereU is an isometry
such thaker U = ker |S|. Since

1U*S]le < 11U Ml 151loe = 1Sl
forall S € K(H),
21) 5= (AX = XB)| 2 sup|(U"[S = (AX = XB)]en, pn)|

= sup([|S| — U*(AX — XB)]¢n, ¢n)
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for any orthonormal basigp,, } .., of H. SinceAS = SB andA, B are normal
operators, then it follows from the Fuglede-Putnam’s theoremsthat= BS*;
consequenths*AS = BS*S or S*SB = BS*S, i.e, B|S| = |S| B. Since|S|

is a compact normal operator and commutes viidfithere exists an orthonor-
mal basis{ f,} U {g.n} of H such that{ f,.} consists of common eigenvectors
of B and|S|, and{g,,} is an orthonormal basis ddr |S|. Since{fx} is an
orthonormal basis of the normal operaf®rthen there exists a scalay, such
that f, = a fr andB* f, = @, fi ; consequently

(U*(AX — XB) f, |5 fr) = (S*(AX — XB) fi, f)
= ((B(S"X) = (S"X)B) fi, fr) = 0.

That is,(U*(AX — XB) fx, fr) = 0. In (2.1) take{¢,} = {fx} U {9} as an
orthonormal basis of/. Then

1S = (AX — XB)||,, = sup([|S] = U (AX — X B)|pn, pn)
= Skup[ISI fir fi) + (U (AX — X B)gm, gm)]

> s%p(!S\fk, fr)
= [IS][] = 1|5l -
]

Theorem 2.2.Let A, B € L(H). If the pair (A, B) satisfies thgF'P)u)

property, then

(2.2) 10.4,8(X) + Sl o = 15l »
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forall X € K(H), andfor allS € K(H) Nker(da ). In particular we have

(2.3) R(0a, ) Nker(dap k) = {0},
whereR(d4 5) andker(d4 5) denote the range and the kernelfs.

Proof. It is well known that if the paif A, B) satisfies th€ ' P) ) property,
then R(S) reducesA, ker" S reducesB and A 757+ B lkert s @re normal op-

erators. LettingS, : ker™ S — R(S) be the quasi-affinity defined by setting
Sox = Sa for eachr € ker™ S, then it results thai,, s, (Sy) = daz,8:(S0) = 0.

Let A = A; & Ay, with respect toH = R(S) @ (S)L, B = By @ B,, with
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and

[S = (AX — XB)[| > [|S1 — (A1 X1 — X1B1)|| o > |51l = ISl -

We can ask “Is the sufficient condition in Theor@ necessary?”

]
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The related topic of approximation by commutatar® — X A or by general-

ized commutatord X — X B, which has attracted much interest, has its roots in
guantum theory. The Heinsnberg Uncertainly principle may be mathematically
formulated as saying that there exists a phiX of linear transformations and

a non-zero scalar for which

(3.1) AX — XA =al.
Another Version of Anderson’s

. . Inequality in the Ideal of all
Clearly, 3.1) cannot hold for square matricesand X and for bounded linear Compact Operators
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Maher [ 5] obtained the”;, variants of Anderson’s result. Mechetri/] studied
approximation by generalized commutatotX — XC: he showed that the
following inequality holds

(3.5) 1B = (AX = XCO)||, = [|B]lp,

forall X € C, ifand only if B € kerd, g. In Theorem2.2 we obtained the
IC(H) of Maher and Mecheri’s results.

In the previous inequality3(5) the zero generalized commutator is a gener-
alized commutator approximant (> of B.

Now we are ready to give some operators for which the inequality) (
holds.

Corollary 3.1. Let A, B € L(H). Then the pair(A, B) has the(F P)i
property in each of the following cases:

(1) If A, B € L(H) such thal|Az|| > ||z|| > ||Bz| forall z € H.
(2) If Aisinvertible andB such that| A~ || B|| < 1.

(3) If A = Bis a cyclic subnormal operator.

Proof. The result of Y. Tong[6, Lemma 1] guarantees that the above condition
implies that for allT” € ker(d45 | K(H)), R(T) reducesA, ker(T)* reduces
B, and A |W and B |7+ are unitary operators. Hence it results from
Theoren?.2that the paif A, B) has the propertyl’ P)x ) and the result holds
by the above theorem. The above inequality holds in particuldr # B is
isometric, in other word§Az|| = ||z|| forall z € H.
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(2) In this case it suffices to také; = ||B||"' A and B, = ||B| ™" B, then
|A1z|| > ||=|| > || Byz]|| and the result holds by (1) for all € H.

(3) SinceT commutes withA, it follows that 7" is subnormal 1&]. But any
compact subnormal operator is normal. Hefites normal. NowAT = T A
implies A*T = T'A*, i.e, the pair{ A, A) has the(F' P) i property. O

Theorem 3.2.Let A, B € L(H) such that the pairg§A, A) and (B, B) have
the (F'P)xm) property. Ifo(A) No(B) = ¢, then
1T = da08,.408(X)|l = [T
forall X € (H),andforallT € K(H) Nker(dag).
Proof. It suffices to show that the paifl® B, A® B) has theF' P) ) property.

Let
| Th
-5 1)

beinK(H @ H). If (A® B)T =T(A@ B), thenAT\ = T1A, BT, = T),B,
AT, = TyB and BT; = T3A. Sincec(A) No(B) = ¢, thend g, dp 4 are
invertible [1L7]. Consequentlyl;, = 73 = 0 and sincg A, A) and(B, B) have
the (FP)x ) property, ATy = T Aand BT = T; B, thatis,(A @ B)T* =
T*(A® B). O
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In this section we will be interested on the investigation of the relation between
the commutant of a bounded linear operatoand its powers.

Lemmad4.l.LetA, B € L(H). Then
R(0a8) Nkerdap = {0} & kerdy' 5 = kerda p,
forall m > 1.
Proof. Suppose thak(d4,5) Nkerds s = {0} . It suffices to prove that
kerzﬁ,B Ckerdap.

If X e ker(si,B? then(SA,B(X) € R(5A,B) ﬂker(SA,B = {O} , e. X € ker(SA,B.
Conversely ifY” € R(04 5) Nkerda g, thenY = §, 5(X) for someX € L(H)
andd, z(Y) = 0. Consequently we hav& 5(X) = 0, i.e. X € kerd} p =
kerd4 5. Then we obtaids 5(X) =0,i.e.Y = 0. O

Lemma4.2.1f R(64,5) Nkerds g = {0}, then

ker 64,5 = )| ker 6 pr-

=2

Proof. Note thatker 04, 5 C (=, ker d4: 5:. Hence it suffices to prove the op-
posite inclusion. I1£X € (2, ker 0 4i 5, thenA?’X = X B? andA’X = X B5.
HenceAd?’X B = XB? andAXB? = A3X. LetC = AX — XB. Then,

A2C = A3X — A2XB=XB*— XB?*=0;
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CB*=AXB? - XB3*=A3X — A3X =0;
ACB = A2’XB - AXB?=XB* - XB*=0:;

hence
(4.2) A(AC - CB) = A*C — ACB = 0;
(4.2) (AC —CB)B=ACB — CB?=0.

Thus @.1) and @.2) imply that
AC —CB € R(0ap)Nkerdap = {0},
from which it results thatlC' = C'B. Hence
C € R(6ap)Nkerda g,

that is,C = 0 and thusAX = X B, i.e, X € kerd p.
Theorem 4.3.1f (A, B) has the(F'P)xx) property, then

(o]
ker 0y p = kerdap = mkeréAi’Bi, m > 1.
=2

In particular if A2X = XB? and A>X = X B3 for someX € K(H), then

AX = XB.
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Proof. This is an immediate consequence of Lemdrih Lemma4.2 and The-
orem2.2. [

Remark 1. The above theorem generalizes the results of F. Kittanglarid
Almoadijil [7]. In [ 8] F. Kittaneh shows that if the paitA, B) has the(F' P) ;)
property, then for alll” € ker(d4 5 |7) and forall X € 7,

164,5(X) + 5]z = [15]lz-

In Theorem?2.2 we show that it suffices that the pdid, B) has the(F P)xx)
property for whichR (64,5 |k(m)) is orthogonal toker(d4, 5 |x(x))- The results
of this paper are also true in the case whétéH ) is replaced by a two sided
ideal of L(H). Hence Theorerd.2 generalizes the results of F. Kittanef][

[9] and of S. Mecheri [7].
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