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Abstract

This note studies how certain problems in quantum theory have motivated some
recent research in pure Mathematics in matrix and operator theory. The math-
ematical key is that of a commutator. We introduce the notion of the pair (A,B)
of operators having the Fuglede-Putnam’s property in the ideal of all compact
operators. The characterization of this class leads us to generalize some recent
results. We also give some applications of these results.
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1. Introduction
Let H denote a separable infinite-dimensional complex Hilbert space. Let

L(H) ⊃ K(H) ⊃ Cp ⊃ F(H)

(0 < p < ∞ ) denote, respectively, the class of all bounded linear operators,
the class of compact operators, the Schattenp-class, and the class of finite rank
operators onH. All operators herein are assumed to be linear and bounded. Let
‖·‖p , ‖·‖∞ denote, respectively, theCp- norm and theK(H)-norm. LetI be a
proper bilateral ideal ofL(H). It is well known that ifI 6= {0}, thenK(H) ⊃
I ⊃ F(H). For A, B ∈ L(H) we define the generalized derivationδA,B as
follows

δA,B(X) = AX −XB

for X ∈ L(H) (so thatδA,A = δA). In [1, Theorem 1.7], J. Anderson shows that
if A is normal and commutes withT then,

(1.1) ‖T − (AX −XA)‖ ≥ ‖T‖ ,

for all X ∈ L(H). In [11] we generalized this inequality, showing that if the
pair (A, B) has the Fuglede-Putnam’s property (in particular ifA andB are
normal operators) andAT = TB, then for allX ∈ L(H),

‖T − (AX −XB)‖ ≥ ‖T‖ .

The related inequality (1.1) was obtained by P.J. Maher [13, Theorem 3.2] show-
ing that ifA is normal andAT = TA, whereT ∈ Cp, then
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‖T − (AX −XA)‖p ≥ ‖T‖p

for all X ∈ L(H), whereCp is the von Neumann-Schatten class,
1 ≤ p < ∞ and‖·‖p its norm. In [12] we generalized P.J. Maher’s result,

proving that if the pair(A, B) has the Fuglede-Putnam’s property(FP )Cp , then

‖T − (AX −XB)‖p ≥ ‖T‖p

for all X ∈ L(H), and for allT ∈ Cp ∩ ker δA,B. In [9] F. Kittaneh shows that
if the pair(A, B) has the Fuglede-Putnam’s property inL(H) then

‖T − (AX −XB)‖I ≥ ‖T‖I

for all X ∈ L(H), and for allT ∈ I ∩ ker δA,B. In order to generalize these
results, we prove that if the pair(A, B) has the(FP )K(H) property (the Fuglede-
Putnam’s property inK(H)), then

‖T − (AX −XB)‖∞ ≥ ‖T‖∞

for all X ∈ K(H) and for allT ∈K(H)∩ker δA,B. That is, the zero generalized
commutator is the generalized commutator inK(H) of T .

A.H. Almoadjil [2] shows that ifA is normal and for everyX ∈ L(H),
A2X = XA2 andA3X = XA3, thenAX = XA. However F. Kittaneh [7]
generalizes the Almoadjil’s theorem by choosingA andB∗ subnormal. There
are of course other co-prime pairs of powers ofA andB, such as2 and2n + 1
or 3 and2n + 1 (with 3 and2n + 1 co-prime), for which a similar result can be
proved. Notice here that for such co-prime powers ofA andB, the hypothesis
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that the pair(A, B) has the(FP )K(H) property implies thatδm
A,B(X) = 0 for

some integerm > 1, and the conclusionX ∈ ker δA,B is a consequence of the
following general result: Letδm

A,B denote anm−times application ofδA,B. If
the pair(A, B) has the(FP )K(H) property andδm

A,B(X) = 0 for some integer
m > 1, thenδA,B(X) = 0.

http://jipam.vu.edu.au/
mailto:mecherisalah@hotmail.com
http://jipam.vu.edu.au/


Another Version of Anderson’s
Inequality in the Ideal of all

Compact Operators

Salah Mecheri

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 6 of 17

J. Ineq. Pure and Appl. Math. 6(3) Art. 90, 2005

http://jipam.vu.edu.au

2. Orthogonality
We begin by the following definition of the orthogonality in the sense of G.
Birkhoff [3] which generalizes the idea of orthogonality in Hilbert space.

Definition 2.1. Let C be the field of complex numbers and letE be a normed
linear space. Letx, y ∈ E. If ‖x− λy‖ ≥ ‖λy‖ for all λ ∈ C, thenx is said to
be orthogonal toy. LetF andG be two subspaces inE. If ‖x + y‖ ≥ ‖y‖, for
all x ∈ F and for ally ∈ G, thenF is said to be orthogonal toG.

Definition 2.2. LetA, B ∈ L(H). We say that the pair(A, B) satisfies(FP )K(H),
if AC = CB whereC ∈ K(H) impliesA∗C = CB∗.

Theorem 2.1.LetA, B ∈ L(H). If A andB are normal operators, then

‖S − (AX −XB)‖∞ ≥ ‖S‖∞

for all X ∈ L(H) and for allS ∈ ker δA,B ∩ K(H).

Proof. Let S = U |S| be the polar decomposition ofS, whereU is an isometry
such thatker U = ker |S|. Since

‖U∗S‖∞ ≤ ‖U∗‖∞ ‖S‖∞ = ‖S‖∞

for all S ∈ K(H),

‖S − (AX −XB)‖∞ ≥ sup
n
|(U∗[S − (AX −XB)]ϕn, ϕn)|(2.1)

= sup
n

([|S| − U∗(AX −XB)]ϕn, ϕn)

http://jipam.vu.edu.au/
mailto:mecherisalah@hotmail.com
http://jipam.vu.edu.au/


Another Version of Anderson’s
Inequality in the Ideal of all

Compact Operators

Salah Mecheri

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 7 of 17

J. Ineq. Pure and Appl. Math. 6(3) Art. 90, 2005

http://jipam.vu.edu.au

for any orthonormal basis{ϕn}n≥1 of H. SinceAS = SB andA, B are normal
operators, then it follows from the Fuglede-Putnam’s theorem thatS∗A = BS∗;
consequentlyS∗AS = BS∗S or S∗SB = BS∗S, i.e,B |S| = |S|B. Since|S|
is a compact normal operator and commutes withB, there exists an orthonor-
mal basis{fk} ∪ {gm} of H such that{fk} consists of common eigenvectors
of B and |S|, and{gm} is an orthonormal basis ofker |S|. Since{fk} is an
orthonormal basis of the normal operatorB, then there exists a scalarαk such
thatfk = αkfk andB∗fk = αkfk ; consequently

〈U∗(AX −XB)fk, |S| fk〉 = 〈S∗(AX −XB)fk, fk〉
= 〈(B(S∗X)− (S∗X)B)fk, fk〉 = 0.

That is,〈U∗(AX −XB)fk, fk〉 = 0. In (2.1) take{ϕn} = {fk} ∪ {gm} as an
orthonormal basis ofH. Then

‖S − (AX −XB)‖∞ ≥ sup
n

([|S| − U∗(AX −XB)]ϕn, ϕn)

= sup
k,m

[|S| fk, fk) + (U∗(AX −XB)gm, gm)]

≥ sup
k

(|S| fk, fk)

= ‖|S|‖ = ‖S‖∞ .

Theorem 2.2. Let A, B ∈ L(H). If the pair (A, B) satisfies the(FP )K(H)

property, then

(2.2) ‖δA,B(X) + S‖∞ ≥ ‖S‖∞ ,
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for all X ∈ K(H), and for allS ∈ K(H) ∩ ker(δA,B). In particular we have

(2.3) R(δA,B |K(H)) ∩ ker(δA,B |K(H)) = {0} ,

whereR(δA,B) andker(δA,B) denote the range and the kernel ofδA,B.

Proof. It is well known that if the pair(A, B) satisfies the(FP )K(H) property,
thenR(S) reducesA, ker⊥ S reducesB andA |R(S), B |ker⊥ S are normal op-

erators. LettingS0 : ker⊥ S → R(S) be the quasi-affinity defined by setting
S0x = Sx for eachx ∈ ker⊥ S, then it results thatδA1,B1(S0) = δA∗1,B∗

1
(S0) = 0.

Let A = A1 ⊕ A2, with respect toH = R(S) ⊕ R(S)
⊥

, B = B1 ⊕ B2, with

respect toH = ker(S)⊥⊕ ker S andX : R(S) ⊕ R(S)
⊥
→ ker(S)⊥⊕ ker S

have the matrix representation

X =

[
X1 X2

X3 X4

]
.

Then we have

‖S − (AX −XB)‖∞ =

∥∥∥∥[
S1 − (A1X1 −X1B1) ∗
∗ ∗

]∥∥∥∥
∞

.

The result of I.C. Gohberg and M.G. Krein [6] guarantees that

‖S − (AX −XB)‖∞ ≥ ‖S1 − (A1X1 −X1B1)‖∞ .

SinceA1 andB1 are two normal operators, it results from Theorem2.2that

‖S1 − (A1X1 −X1B1)‖∞ ≥ ‖S1‖∞ = ‖S‖∞
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and

‖S − (AX −XB)‖∞ ≥ ‖S1 − (A1X1 −X1B1)‖∞ ≥ ‖S1‖∞ = ‖S‖∞ .

We can ask “Is the sufficient condition in Theorem2.2necessary?”
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3. Examples and Applications
The related topic of approximation by commutatorsAX − XA or by general-
ized commutatorAX −XB, which has attracted much interest, has its roots in
quantum theory. The Heinsnberg Uncertainly principle may be mathematically
formulated as saying that there exists a pairA, X of linear transformations and
a non-zero scalarα for which

(3.1) AX −XA = αI.

Clearly, (3.1) cannot hold for square matricesA andX and for bounded linear
operatorsA andX. This prompts the question:

How close canAX −XA be the identity?
Williams [17] proved that ifA is normal, then, for allX in B(H),

(3.2) ||I − (AX −XA)|| ≥ ||I||.

Mecheri [14] generalized Williams inequality (3.2): he proved that ifA, B
are normal, then for allX ∈ B(H)

(3.3) ||I − (AX −XB)|| ≥ ||I||.

Anderson [1] generalized Williams inequality (3.2): he proved that ifA is nor-
mal and commutes withB then, for allX ∈ B(H)

(3.4) ||B − (AX −XA)|| ≥ ||B||.
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Maher [13] obtained theCp variants of Anderson’s result. Mecheri [14] studied
approximation by generalized commutatorsAX − XC: he showed that the
following inequality holds

(3.5) ||B − (AX −XC)||p ≥ ||B||p,

for all X ∈ Cp if and only if B ∈ ker δA,B. In Theorem2.2 we obtained the
K(H) of Maher and Mecheri’s results.

In the previous inequality (3.5) the zero generalized commutator is a gener-
alized commutator approximant inCP of B.

Now we are ready to give some operators for which the inequality (2.2)
holds.

Corollary 3.1. Let A, B ∈ L(H). Then the pair(A, B) has the(FP )K(H)

property in each of the following cases:

(1) If A, B ∈ L(H) such that‖Ax‖ ≥ ‖x‖ ≥ ‖Bx‖ for all x ∈ H.

(2) If A is invertible andB such that‖A−1‖ ‖B‖ ≤ 1.

(3) If A = B is a cyclic subnormal operator.

Proof. The result of Y. Tong [16, Lemma 1] guarantees that the above condition
implies that for allT ∈ ker(δA,B | K(H)), R(T ) reducesA, ker(T )⊥ reduces
B, and A |R(T ) and B |ker(T )⊥ are unitary operators. Hence it results from
Theorem2.2that the pair(A, B) has the property(FP )K(H) and the result holds
by the above theorem. The above inequality holds in particular ifA = B is
isometric, in other words‖Ax‖ = ‖x‖ for all x ∈ H.
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(2) In this case it suffices to takeA1 = ‖B‖−1 A andB1 = ‖B‖−1 B, then
‖A1x‖ ≥ ‖x‖ ≥ ‖B1x‖ and the result holds by (1) for allx ∈ H.

(3) SinceT commutes withA, it follows that T is subnormal [18]. But any
compact subnormal operator is normal. HenceT is normal. NowAT = TA
impliesA∗T = TA∗, i.e, the pair(A, A) has the(FP )K(H) property.

Theorem 3.2. Let A, B ∈ L(H) such that the pairs(A, A) and (B, B) have
the(FP )K(H) property. Ifσ(A) ∩ σ(B) = φ, then

‖T − δA⊕B,A⊕B(X)‖∞ ≥ ‖T‖∞

for all X ∈ K(H), and for allT ∈ K(H) ∩ ker(δA,B).

Proof. It suffices to show that the pair(A⊕B, A⊕B) has the(FP )K(H) property.
Let

T =

[
T1 T2

T3 T4

]
be inK(H ⊕ H). If (A ⊕ B)T = T (A ⊕ B), thenAT1 = T1A, BT4 = T4B,
AT2 = T2B andBT3 = T3A. Sinceσ(A) ∩ σ(B) = φ, thenδA,B, δB,A are
invertible [12]. ConsequentlyT2 = T3 = 0 and since(A, A) and(B, B) have
the (FP )K(H) property,AT ∗1 = T ∗1 A andBT ∗4 = T ∗4 B, that is,(A ⊕ B)T ∗ =
T ∗(A⊕B).
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4. On the Commutant of A and its Powers
In this section we will be interested on the investigation of the relation between
the commutant of a bounded linear operatorA and its powers.

Lemma 4.1. LetA, B ∈ L(H). Then

R(δA,B) ∩ ker δA,B = {0} ⇔ ker δm
A,B = ker δA,B,

for all m ≥ 1.

Proof. Suppose thatR(δA,B) ∩ ker δA,B = {0} . It suffices to prove that

ker δ2
A,B ⊂ ker δA,B.

If X ∈ ker δ2
A,B, thenδA,B(X) ∈ R(δA,B)∩ ker δA,B = {0} , i.e. X ∈ ker δA,B.

Conversely ifY ∈ R(δA,B)∩ ker δA,B, thenY = δA,B(X) for someX ∈ L(H)
andδA,B(Y ) = 0. Consequently we haveδ2

A,B(X) = 0, i.e. X ∈ ker δ2
A,B =

ker δA,B. Then we obtainδA,B(X) = 0, i.e. Y = 0.

Lemma 4.2. If R(δA,B) ∩ ker δA,B = {0}, then

ker δA,B =
∞⋂
i=2

ker δAi,Bi .

Proof. Note thatker δA,B ⊂
⋂∞

i=2 ker δAi,Bi . Hence it suffices to prove the op-
posite inclusion. IfX ∈

⋂∞
i=2 ker δAi,Bi , thenA2X = XB2 andA3X = XB3.

HenceA2XB = XB3 andAXB2 = A3X. Let C = AX −XB. Then,

A2C = A3X − A2XB = XB3 −XB3 = 0;

http://jipam.vu.edu.au/
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CB2 = AXB2 −XB3 = A3X − A3X = 0;

ACB = A2XB − AXB2 = XB3 −XB3 = 0;

hence

(4.1) A(AC − CB) = A2C − ACB = 0;

(4.2) (AC − CB)B = ACB − CB2 = 0.

Thus (4.1) and (4.2) imply that

AC − CB ∈ R(δA,B) ∩ ker δA,B = {0} ,

from which it results thatAC = CB. Hence

C ∈ R(δA,B) ∩ ker δA,B,

that is,C = 0 and thusAX = XB, i.e,X ∈ ker δA,B.

Theorem 4.3. If (A, B) has the(FP )K(H) property, then

ker δm
A,B = ker δA,B =

∞⋂
i=2

ker δAi,Bi , m ≥ 1.

In particular if A2X = XB2 and A3X = XB3 for someX ∈ K(H), then
AX = XB.
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Proof. This is an immediate consequence of Lemma4.1, Lemma4.2and The-
orem2.2.

Remark 1. The above theorem generalizes the results of F. Kittaneh [9] and
Almoadjil [2]. In [ 8] F. Kittaneh shows that if the pair(A, B) has the(FP )L(H)

property, then for allT ∈ ker(δA,B |I) and for allX ∈ I,

‖δA,B(X) + S‖I ≥ ‖S‖I .

In Theorem2.2 we show that it suffices that the pair(A, B) has the(FP )K(H)

property for whichR(δA,B |K(H)) is orthogonal toker(δA,B |K(H)). The results
of this paper are also true in the case whereK(H) is replaced by a two sided
ideal ofL(H). Hence Theorem2.2 generalizes the results of F. Kittaneh [8],
[9] and of S. Mecheri [12].
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