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1. I NTRODUCTION

The following result is known in the literature as Ostrowski’s inequality [10].

Theorem 1.1. Let f : [a, b] → R be a differentiable mapping on(a, b) with the property that
|f ′ (t)| ≤ M for all t ∈ (a, b). Then

(1.1)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a) M

for all x ∈ [a, b]. The constant1
4

is the best possible in the sense that it cannot be replaced by a
smaller constant.

A simple proof of this fact can be done by using the identity:

(1.2) f (x) =
1

b− a

∫ b

a

f (t) dt +
1

b− a

∫ b

a

p (x, t) f ′ (t) dt, x ∈ [a, b] ,
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2 S.S. DRAGOMIR

where

p (x, t) :=

 t− a if a ≤ t ≤ x

t− b if x < t ≤ b

which also holds for absolutely continuous functionsf : [a, b] → R.
The following Ostrowski type result for absolutely continuous functions holds (see [6] – [8]).

Theorem 1.2.Letf : [a, b] → R be absolutely continuous on[a, b]. Then, for allx ∈ [a, b], we
have:

(1.3)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣

≤



[
1
4

+
(

x−a+b
2

b−a

)2
]

(b− a) ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

1

(p+1)
1
p

[(
x−a
b−a

)p+1
+
(

b−x
b−a

)p+1
] 1

p
(b− a)

1
p ‖f ′‖q if f ′ ∈ Lq [a, b] ,

1
p

+ 1
q

= 1, p > 1;[
1
2

+
∣∣∣x−a+b

2

b−a

∣∣∣] ‖f ′‖1 ;

where‖·‖r (r ∈ [1,∞]) are the usual Lebesgue norms onLr [a, b], i.e.,

‖g‖∞ := ess sup
t∈[a,b]

|g (t)|

and

‖g‖r :=

(∫ b

a

|g (t)|r dt

) 1
r

, r ∈ [1,∞).

The constants1
4
, 1

(p+1)
1
p

and 1
2

respectively are sharp in the sense presented in Theorem 1.1.

The above inequalities can also be obtained from the Fink result in [9] on choosingn = 1
and performing some appropriate computations.

If one drops the condition of absolute continuity and assumes thatf is Hölder continuous,
then one may state the result (see [5]):
Theorem 1.3.Letf : [a, b] → R be ofr −H−Hölder type, i.e.,

(1.4) |f (x)− f (y)| ≤ H |x− y|r , for all x, y ∈ [a, b] ,

wherer ∈ (0, 1] andH > 0 are fixed. Then, for allx ∈ [a, b] , we have the inequality:

(1.5)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ H

r + 1

[(
b− x

b− a

)r+1

+

(
x− a

b− a

)r+1
]

(b− a)r .

The constant 1
r+1

is also sharp in the above sense.

Note that if r = 1, i.e., f is Lipschitz continuous, then we get the following version of
Ostrowski’s inequality for Lipschitzian functions (withL instead ofH) (see [4])

(1.6)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a) L.

Here the constant1
4

is also best.
Moreover, if one drops the condition of the continuity of the function, and assumes that it is

of bounded variation, then the following result may be stated (see [2]).
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DISCRETEVERSION OFOSTROWSKI’ S INEQUALITY 3

Theorem 1.4.Assume thatf : [a, b] → R is of bounded variation and denote by
b∨
a

(f) its total

variation. Then

(1.7)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

b∨
a

(f)

for all x ∈ [a, b]. The constant1
2

is the best possible.

If we assume more aboutf , i.e.,f is monotonically increasing, then the inequality (1.7) may
be improved in the following manner [3] (see also [1]).

Theorem 1.5.Letf : [a, b] → R be monotonic nondecreasing. Then for allx ∈ [a, b], we have
the inequality:∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣(1.8)

≤ 1

b− a

{
[2x− (a + b)] f (x) +

∫ b

a

sgn (t− x) f (t) dt

}
≤ 1

b− a
{(x− a) [f (x)− f (a)] + (b− x) [f (b)− f (x)]}

≤

[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

[f (b)− f (a)] .

All the inequalities in (1.8) are sharp and the constant1
2

is the best possible.

For other recent results including Ostrowski type inequalities forn-time differentiable func-
tions, visit the RGMIA website athttp://rgmia.vu.edu.au/database.html .

In this paper we point out some discrete Ostrowski type inequalities for vectors in normed
linear spaces.

2. SOME I DENTITIES

The following lemma holds.

Lemma 2.1. Letxi (i = 1, . . . , n) be vectors inX. Then we have the representation

(2.1) xi =
1

n

n∑
j=1

xj +
1

n

n∑
j=1

p (i, j) ∆xj, i ∈ {1, . . . , n} ,

where

(2.2) p (1, j) = j − n if 1 ≤ j ≤ n− 1;

(2.3) p (n, j) = j if 1 ≤ j ≤ n− 1;

and

(2.4) p (i, j) =

 j if 1 ≤ j ≤ i− 1,

j − n if i ≤ j ≤ n− 1,

where2 ≤ i ≤ n− 1 and1 ≤ j ≤ n− 1.
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4 S.S. DRAGOMIR

Proof. For i = 1, we have to prove that

(2.5) x1 =
1

n

n∑
j=1

xj +
1

n

n∑
j=1

(j − n) ∆xj.

Using the summation by parts formula, we have

n∑
j=1

(j − n) ∆xj = (j − n) xj

∣∣n
j=1

−
n−1∑
j=1

∆ (j − n) xj+1

= (n− 1) x1 −
n−1∑
j=1

xj+1

= nx1 −
n∑

j=1

xj

and the formula (2.5) is proved.
For i = n, we can prove similarly that

(2.6) xn =
1

n

n∑
j=1

xj +
1

n

n−1∑
j=1

j∆xj.

Let 2 ≤ i ≤ n− 1. We have
n−1∑
j=1

p (i, j) ∆xj =
i−1∑
j=1

p (i, j) ∆xj +
n−1∑
j=i

p (i, j) ∆xj(2.7)

=
i−1∑
j=1

i∆xj +
n−1∑
j=i

(j − n) ∆xj.

Using the summation by parts formula, we have

i−1∑
j=1

i∆xj = jxj

∣∣n
j=i

−
i−1∑
j=1

∆ (i) xj+1(2.8)

= ixi − x1 −
i−1∑
j=1

xj+1

= (i− 1) xi −
i−1∑
j=1

xj

and
n−1∑
j=i

(j − n) ∆xj = (j − n) xj

∣∣n
j=i

−
n−1∑
j=i

∆ (j − n) xj+1(2.9)

= (n− i) xi −
n−1∑
j=i

xj+1

= (n− i + 1) xi −
n∑

j=i

xj.
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DISCRETEVERSION OFOSTROWSKI’ S INEQUALITY 5

Using (2.7) – (2.9), we deduce
n−1∑
j=1

p (i, j) ∆xj = (i− 1) xi −
i−1∑
j=1

xj + (n− i + 1) xi −
n∑

j=i

xj

= nxi −
n∑

j=1

xj

and the identity (2.1) is proved. �

The following corollaries hold.

Corollary 2.2. We have the identity

(2.10)
x1 + xn

2
=

1

n

n∑
j=1

xj +
1

n

n∑
j=1

(
j − n

2

)
∆xj.

Corollary 2.3. Letn = 2m + 1. Then we have

(2.11) xm+1 =
1

2m + 1

2m+1∑
j=1

xj +
1

2m + 1

2m∑
j=1

pm (j) ∆xj,

where

pm (j) =

 j if 1 ≤ j ≤ m,

j − 2m− 1 if m + 1 ≤ j ≤ 2m.

3. DISCRETE OSTROWSKI ’ S I NEQUALITY

The following discrete inequality of Ostrowski type holds.

Theorem 3.1. Let (X, ‖·‖) be a normed linear space andxi (i = 1, . . . , n) be vectors inX.
Then we have the inequality

(3.1)

∥∥∥∥∥xi −
1

n

n∑
k=1

xk

∥∥∥∥∥ ≤ 1

n

[(
i− n + 1

2

)2

+
n2 − 1

4

]
max

k=1,...,n−1
‖∆xk‖ ,

for all i ∈ {1, . . . , n}. The constantc = 1
4

in the right hand side is best in the sense that it
cannot be replaced by a smaller one.

Proof. We use the representation (2.1) and the generalised triangle inequality to obtain∥∥∥∥∥xi −
1

n

n∑
k=1

xk

∥∥∥∥∥ =
1

n

∥∥∥∥∥
n−1∑
k=1

p (i, k) ∆xk

∥∥∥∥∥
≤ 1

n

n−1∑
k=1

|p (i, k)| ‖∆xk‖

≤ max
k=1,...,n−1

‖∆xk‖ ×
1

n

n−1∑
k=1

|p (i, k)| .

If i = 1, then we have
n−1∑
k=1

|p (1, k)| =
n−1∑
k=1

|k − n| =
n−1∑
k=1

k =
n (n− 1)

2
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6 S.S. DRAGOMIR

and as (
1− n + 1

2

)2

+
n2 − 1

4
=

n (n− 1)

2
, for n ≥ 1

the inequality (3.1) is valid fori = 1.
Let 2 ≤ i ≤ n− 1. Then

n−1∑
k=1

|p (i, k)| =
i−1∑
k=1

|p (i, k)|+
n−1∑
k=i

|p (i, k)|

=
i−1∑
k=1

k +
n−1∑
k=i

(n− k)

=
(i− 1) i

2
+ n (n− 1− i + 1)−

(
n−1∑
k=1

k −
i−1∑
k=1

k

)

=
(i− 1) i

2
+ n (n− i)−

(
n (n− 1)

2
− i (i− 1)

2

)
=

1

2

(
2i2 + n2 − 2ni + n

)
=

(
i− n + 1

2

)2

+
n2 − 1

4

and the inequality (3.1) is also proved fori ∈ {2, . . . , n− 1}.
For i = n, we havep (n, k) = k, k = 1, . . . , n− 1 giving

n−1∑
k=1

|p (n, k)| =
n−1∑
k=1

k =
n (n− 1)

2

and as (
n− n + 1

2

)2

+
n2 − 1

4
=

n (n− 1)

2

the inequality (3.2) is also valid fori = n.
To prove the sharpness of the constantc = 1

4
, assume that (3.1) holds with a constantc > 0,

i.e.,

(3.2)

∥∥∥∥∥xi −
1

n

n∑
k=1

xk

∥∥∥∥∥ ≤ 1

n

[(
i− n + 1

2

)2

+ c
(
n2 − 1

)]
max

k=1,...,n−1
‖∆xk‖

for anyxk (k = 1, . . . , n) in X.
Let xk = x1 + (k − 1) r, k = 1, . . . , n, r ∈ X, r 6= 0, x1 6= 0 andi = 1 in (3.2). Then we

get

(3.3)

∥∥∥∥∥x1 −
1

n

n∑
k=1

(x1 + (k − 1) r)

∥∥∥∥∥ ≤ 1

n

[
(n− 1)2

4
+ c
(
n2 − 1

)]
‖r‖

and as
n∑

k=1

(x1 + (k − 1) r) = nx1 +
n (n− 1)

2
r,
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DISCRETEVERSION OFOSTROWSKI’ S INEQUALITY 7

then from (3.3) we deduce∥∥∥∥(n− 1

2

)
· r
∥∥∥∥ ≤ 1

n

[
(n− 1)2

4
+ c
(
n2 − 1

)]
‖r‖

from where we get

1

2
≤ 1

n

[
n− 1

4
+ c (n + 1)

]
i.e.,

n + 1 ≤ 4c (n + 1) ,

which implies thatc ≥ 1
4
, and the theorem is proved. �

Corollary 3.2. Under the above assumptions and ifn = 2m + 1, then we have the inequality

(3.4)

∥∥∥∥∥xm+1 −
1

2m + 1

2m+1∑
k=1

xk

∥∥∥∥∥ ≤ m (m + 1)

2m + 1
max

k=1,...,2m
‖∆xk‖ .

The proof is obvious by the above Theorem 3.1 fori = m + 1.
The following corollary also holds.

Corollary 3.3. Under the above assumptions, we have:

a) If n = 2k, then

(3.5)

∥∥∥∥∥x1 + x2k

2
− 1

2k

2k∑
j=1

xj

∥∥∥∥∥ ≤ 1

2
(k − 1) max

j=1,...,2k−1
‖∆xj‖ .

b) If n = 2k + 1, then

(3.6)

∥∥∥∥∥x1 + x2k+1

2
− 1

2k + 1

2k+1∑
j=1

xj

∥∥∥∥∥ ≤ 2k2 + 2k + 1

2 (2k + 1)
max

j=1,...,2k
‖∆xj‖ .

Proof. The proof is as follows.

a) If n = 2k, then by Corollary 2.2, we have∥∥∥∥∥x1 + x2k

2
− 1

2k

2k∑
j=1

xj

∥∥∥∥∥ ≤ 1

2k

2k−1∑
j=1

|j − k| ‖∆xj‖

≤ 1

2k
max

j=1,...,2k−1
‖∆xj‖

2k−1∑
j=1

|j − k|

=
1

2k
max

j=1,...,2k−1
‖∆xj‖

(
k∑

j=1

(k − j) +
2k−1∑

j=k+1

(j − k)

)

=
1

k
max

j=1,...,2k−1
‖∆xj‖

(k − 1) k

2

=
1

2
(k − 1) max

j=1,...,2k−1
‖∆xj‖ ,

and the inequality (3.5) is proved.
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8 S.S. DRAGOMIR

b) If n = 2k + 1, then by Corollary 2.2, we have∥∥∥∥∥x1 + x2k+1

2
− 1

2k + 1

2k+1∑
j=1

xj

∥∥∥∥∥
≤ 1

2k + 1

2k+1∑
j=1

∣∣∣∣j − 2k + 1

2

∣∣∣∣ ‖∆xj‖

≤ 1

2k + 1
max

j=1,...,2k
‖∆xj‖

2k+1∑
j=1

∣∣∣∣j − k − 1

2

∣∣∣∣
=

1

2k + 1
max

j=1,...,2k
‖∆xj‖

[
k∑

j=1

(
k +

1

2
− j

)
+

2k+1∑
j=k+1

(
j − k − 1

2

)]

=
1

2k + 1
max

j=1,...,2k
‖∆xj‖

[
1

2
k +

k∑
j=1

(k − j)− 1

2
(k + 1) +

2k+1∑
j=k+1

(j − k)

]

=
1

2k + 1
max

j=1,...,2k
‖∆xj‖

[
k2 − k + k2 + 3k + 2− 1

2

]
= max

j=1,...,2k
‖∆xj‖

2k2 + 2k + 1

2 (2k + 1)

and the inequality (3.6) is proved.

�

The following result including a version of a discrete Ostrowski inequality forlp−norms of
{∆xi}i=1,n−1 also holds.

Theorem 3.4. Let (X, ‖·‖) be a normed linear space andxi (i = 1, . . . , n) be vectors inX.
Then we have the inequality

(3.7)

∥∥∥∥∥xi −
1

n

n∑
k=1

xk

∥∥∥∥∥ ≤ 1

n
[sα (i− 1) + sα (n− i)]

1
α

[
n−1∑
k=1

‖∆xk‖β

] 1
β

for all α > 1, 1
α

+ 1
β

= 1, wheresα (·) denotes the sum:

sα (m) :=
m∑

j=1

jα.

Whenm = 0, the sum is assumed to be zero.

Proof. Using representation (2.2) and the generalised triangle inequality, we have:∥∥∥∥∥xi −
1

n

n∑
k=1

xk

∥∥∥∥∥ =
1

n

∥∥∥∥∥
n−1∑
k=1

p (i, k) ∆xk

∥∥∥∥∥(3.8)

≤ 1

n

n−1∑
k=1

|p (i, k)| ‖∆xk‖ =: B.
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DISCRETEVERSION OFOSTROWSKI’ S INEQUALITY 9

Using Hölder’s discrete inequality, we have

(3.9) B ≤ 1

n

(
n−1∑
k=1

|p (i, k)|α
) 1

α
(

n−1∑
k=1

‖∆xk‖β

) 1
β

.

However,
n−1∑
k=1

|p (i, k)|α =
i−1∑
k=1

|p (i, k)|α +
n−1∑
k=i

|p (i, k)|α

=
i−1∑
k=1

kα +
n−1∑
k=i

(n− k)α

= 1α + · · ·+ (i− 1)α + (n− i)α + · · ·+ 1α

= sα (i− 1) + sα (n− i)

and the inequality (3.7) then follows by (3.8) and (3.9). �

The case ofα = β = 2 can be useful in practical applications.

Corollary 3.5. With the assumptions of Theorem 3.4, we have

(3.10)

∥∥∥∥∥xi −
1

n

n∑
k=1

xk

∥∥∥∥∥ ≤ 1√
n

[(
i− n + 1

2

)2

+
n2 − 1

12

] 1
2
[

n−1∑
k=1

‖∆xk‖2

] 1
2

.

Proof. Forα = 2, we have

s2 (i− 1) =
i−1∑
k=1

k2 =
i (i− 1) (2i− 1)

6

and

s2 (n− i) =
n−i∑
k=1

k2 =
(n− i) (n− i + 1) [2 (n− i) + 1]

6
.

As simple algebra proves that

s2 (i− 1) + s2 (n− i) = n

[(
i− n + 1

2

)2

+
n2 − 1

12

]
,

then, by (3.7) we deduce the desired inequality (3.10). �

Corollary 3.6. Under the above assumptions and ifn = 2m + 1, then we have the inequality:

(3.11)

∥∥∥∥∥xm+1 −
1

2m + 1

2m+1∑
k=1

xk

∥∥∥∥∥ ≤ 2
1
α

2m + 1
[sα (m)]

1
α

[
2m∑
k=1

‖∆xk‖β

] 1
β

for α > 1, 1
α

+ 1
β

= 1.
In particular, for α = β = 2, we have

(3.12)

∥∥∥∥∥xm+1 −
1

2m + 1

2m+1∑
k=1

xk

∥∥∥∥∥ ≤
√

m (m + 1)

3 (2m + 1)

[
2m∑
k=1

‖∆xk‖2

] 1
2

.

The following result providing an upper bound in terms of thel1−norm of(∆xk)k=1,n−1 also
holds.
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Theorem 3.7. Let (X, ‖·‖) be a normed linear space andxi (i = 1, . . . , n) be vectors inX.
Then we have the inequality

(3.13)

∥∥∥∥∥xi −
1

n

n∑
k=1

xk

∥∥∥∥∥ ≤ 1

n

[
1

2
(n− 1) +

∣∣∣∣i− n + 1

2

∣∣∣∣] n−1∑
k=1

‖∆xk‖

for all i ∈ {1, . . . , n}.

Proof. As in Theorem 3.4, we have

(3.14)

∥∥∥∥∥xi −
1

n

n∑
k=1

xk

∥∥∥∥∥ ≤ B,

where

B :=
1

n

n−1∑
k=1

|p (i, k)| ‖∆xk‖ .

It is obvious that

B =
1

n

[
i−1∑
k=1

k ‖∆xk‖+
n−1∑
k=i

(n− k) ‖∆xk‖

]

≤ 1

n

[
(i− 1)

i−1∑
k=1

‖∆xk‖+ (n− i)
n−1∑
k=i

‖∆xk‖

]

=
1

n
max {i− 1, n− i}

[
i−1∑
k=1

‖∆xk‖+
n−1∑
k=i

‖∆xk‖

]

=
1

n

[
1

2
(n− 1) +

1

2
|n− i− i + 1|

] n−1∑
k=1

‖∆xk‖

=
1

n

[
1

2
(n− 1) +

∣∣∣∣i− n + 1

2

∣∣∣∣] n−1∑
k=1

‖∆xk‖

and the inequality (3.13) is proved. �

The following corollary contains the best inequality we can get from (3.13).

Corollary 3.8. Let (X, ‖·‖) be as above andn = 2m + 1. Then we have the inequality

(3.15)

∥∥∥∥∥xm+1 −
1

2m + 1

2m+1∑
k=1

xk

∥∥∥∥∥ ≤ m

2m + 1

2m∑
k=1

‖∆xk‖ .

4. WEIGHTED OSTROWSKI I NEQUALITY

We start with the following theorem.
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Theorem 4.1. Let (X, ‖·‖) be a normed linear space,xi ∈ X (i = 1, . . . , n) and pi ≥ 0
(i = 1, . . . , n) with

∑n
i=1 pi = 1. Then we have the inequality:∥∥∥∥∥xi −

n∑
j=1

pjxj

∥∥∥∥∥(4.1)

≤
n∑

j=1

pj |j − i| · max
k=1,n−1

‖∆xk‖

≤ max
k=1,n−1

‖∆xk‖ ×



n−1
2

+
∣∣i− n+1

2

∣∣ ,
(

n∑
j=1

|j − i|p
) 1

p
(

n∑
j=1

pq
j

) 1
q

if p > 1, 1
p

+ 1
q

= 1,

[
n2−1

4
+
(
i− n+1

2

)2]
max
j=1,n

{pj}

for all i ∈ {1, . . . , n}.

Proof. Using the properties of the norm, we have

n∑
j=1

pj ‖xi − xj‖ ≥

∥∥∥∥∥
n∑

j=1

pj (xi − xj)

∥∥∥∥∥(4.2)

=

∥∥∥∥∥xi

n∑
j=1

pj −
n∑

j=1

pjxj

∥∥∥∥∥
=

∥∥∥∥∥xi −
n∑

j=1

pjxj

∥∥∥∥∥ ,

for all i ∈ {1, . . . , n}.
On the other hand,

n∑
j=1

pj ‖xi − xj‖ =
i−1∑
j=1

pj ‖xi − xj‖+
n∑

j=i+1

pj ‖xi − xj‖(4.3)

=
i−1∑
j=1

pj

∥∥∥∥∥
i−1∑
k=j

(xk+1 − xk)

∥∥∥∥∥+
n∑

j=i+1

pj

∥∥∥∥∥
j−1∑
l=i

(xl+1 − xl)

∥∥∥∥∥
≤

i−1∑
j=1

pj

(
i−1∑
k=j

‖∆xk‖

)
+

n∑
j=i+1

pj

(
j−1∑
l=i

‖∆xl‖

)
=: A.

Now, as
i−1∑
k=j

‖∆xk‖ ≤ (i− j) max
k=j,i−1

‖∆xk‖ (wherej ≤ i− 1)

and
s−1∑
l=i

‖∆xl‖ ≤ (s− i) max
l=i,n−1

‖∆xl‖ (wherei ≤ s− 1),
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12 S.S. DRAGOMIR

then we deduce that

A ≤
i−1∑
j=1

pj (i− j) · max
k=j,i−1

‖∆xk‖+
n∑

j=i+1

pj (j − i) · max
l=i,n−1

‖∆xl‖

≤ max
k=1,n−1

‖∆xk‖

[
i−1∑
j=1

pj (i− j) +
n∑

j=i+1

pj (j − i)

]

= max
k=1,n−1

‖∆xk‖ ·
n∑

j=1

pj |i− j|

and the first inequality in (4.1) is proved.
Now, we observe that

n∑
j=1

pj |i− j| ≤ max
j=1,n

|i− j|
n∑

j=1

pj

= max
j=1,n

|i− j|

= max {i− 1, n− i}

=
n− 1

2
+

∣∣∣∣i− n + 1

2

∣∣∣∣ ,
which proves the first part of the second inequality in (4.1).

By Hölder’s discrete inequality, we also have

n∑
j=1

pj |i− j| ≤

(
n∑

j=1

pq
j

) 1
q
(

n∑
j=1

|i− j|p
) 1

p

,

wherep > q and 1
p

+ 1
q

= 1, and the second part of the second inequality in (4.1) holds.
Finally, we also have

n∑
j=1

pj |i− j| ≤ max
j=1,n

|pj|
n∑

j=1

|i− j| .

Now, let us observe that

n∑
j=1

|i− j| =
i∑

j=1

|i− j|+
n∑

j=i+1

|i− j|

=
i∑

j=1

(i− j) +
n∑

j=i+1

(j − i)

= i2 − i (i + 1)

2
+

n∑
j=1

j −
i∑

j=1

j − i (n− i)

=
n2 − 1

4
+

(
i− n + 1

2

)2

and the last part of the second inequality in (4.1) is proved. �
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Remark 4.2. In some practical applications the casep = q = 2 in the second part of the second
inequality may be useful. As

n∑
j=1

(j − i)2 =
n∑

j=1

j2 − 2i
n∑

j=1

j + ni2

= n

[
n2 − 1

12
+

(
i− n + 1

2

)2
]

,

then we may state the inequality

(4.4)

∥∥∥∥∥xi −
n∑

j=1

pjxj

∥∥∥∥∥ ≤ √
n

[
n2 − 1

12
+

(
i− n + 1

2

)2
] 1

2
(

n∑
j=1

p2
j

) 1
2

max
k=1,n−1

‖∆xk‖

for all i ∈ {1, . . . , n}.
The following particular case was proved in a different manner in Theorem 3.1.

Corollary 4.3. If xi (i = 1, . . . , n) are vectors in the normed linear space(X, ‖·‖), then we
have

(4.5)

∥∥∥∥∥xi −
1

n

n∑
j=1

xj

∥∥∥∥∥ ≤ 1

n

[
n2 − 1

4
+

(
i− n + 1

2

)2
]

max
k=1,n−1

‖∆xk‖ .

The following result also holds.
Theorem 4.4. Let (X, ‖·‖) be a normed linear space,xi ∈ X (i = 1, . . . , n) and pi ≥ 0
(i = 1, . . . , n) with

∑n
i=1 pi = 1. Then, forα > 1, 1

α
+ 1

β
= 1, we have the inequality:∥∥∥∥∥xi −

n∑
j=1

pjxj

∥∥∥∥∥(4.6)

≤
n∑

j=1

|i− j|
1
β pj

(
n−1∑
k=1

‖∆xk‖α

) 1
α

≤

(
n−1∑
k=1

‖∆xk‖α

) 1
α

×



[
1
2
(n− 1) +

∣∣i− n+1
2

∣∣] 1
β ,

(
n∑

j=1

|i− j|
δ
β

) 1
δ
(

n∑
j=1

pγ
j

) 1
γ

if γ > 1, 1
γ

+ 1
δ

= 1,

n∑
j=1

|i− j|
1
β max

j=1,n
{pj}

for all i ∈ {1, . . . , n}.

Proof. Using Hölder’s discrete inequality, we may write that

i−1∑
k=j

‖∆xk‖ ≤ (i− j)
1
β

(
i−1∑
k=j

‖∆xk‖α

) 1
α

and
s−1∑
l=i

‖∆xl‖ ≤ (s− i)
1
β

(
s−1∑
l=i

‖∆xl‖α

) 1
α

,
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which implies forA, as defined in the proof of Theorem 4.1, that

A ≤
i−1∑
j=1

(i− j)
1
β

(
i−1∑
k=j

‖∆xk‖α

) 1
α

pj +
n∑

s=i+1

(s− i)
1
β

(
s−1∑
l=i

‖∆xl‖α

) 1
α

ps

≤

(
i−1∑
k=1

‖∆xk‖α

) 1
α i−1∑

j=1

(i− j)
1
β pj +

(
n−1∑
l=i

‖∆xl‖α

) 1
α n∑

s=i+1

(s− i)
1
β ps

≤

(
n−1∑
k=1

‖∆xk‖α

) 1
α
[

i−1∑
j=1

(i− j)
1
β pj +

n∑
s=i+1

(s− i)
1
β ps

]

=

(
n−1∑
k=1

‖∆xk‖α

) 1
α n∑

j=1

|i− j|
1
β pj,

which proves the first inequality in (4.6).
Now it is obvious that

n∑
j=1

|i− j|
1
β pj ≤ max

j=1,n
|i− j|

1
β

n∑
j=1

pj

= max
{

(i− 1)
1
β , (n− i)

1
β

}
=

[
1

2
(n− 1) +

∣∣∣∣i− n + 1

2

∣∣∣∣] 1
β

,

proving the first part of the second inequality in (4.6).
Forγ, δ > 1 with 1

γ
+ 1

δ
= 1, we have

n∑
j=1

|i− j|
1
β pj ≤

(
n∑

j=1

pγ
j

) 1
γ
(

n∑
j=1

|i− j|
δ
β

) 1
δ

obtaining the second part of the second inequality in (4.6).
Finally, we observe that

n∑
j=1

|i− j|
1
β pj ≤ max

j=1,n
{pj}

n∑
j=1

|i− j|
1
β ,

and the theorem is proved. �

Corollary 4.5. If xi (i = 1, . . . , n) are vectors in the normed space(X, ‖·‖), then for all i ∈
{1, . . . , n} we have:

(4.7)

∥∥∥∥∥xi −
1

n

n∑
j=1

xj

∥∥∥∥∥ ≤ 1

n

n∑
j=1

|i− j|
1
β

(
n−1∑
k=1

‖∆xk‖α

) 1
α

, α > 1,
1

α
+

1

β
= 1.

Finally, we may state the following result as well.
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Theorem 4.6.LetX, xi andpi (i = 1, . . . , n) be as in Theorem 4.4. Then we have the inequal-
ity:

∥∥∥∥∥xi −
n∑

j=1

pjxj

∥∥∥∥∥ ≤


max {Pi−1, 1− Pi}

n−1∑
k=1

‖∆xk‖

(1− pi) max

{
i−1∑
k=1

‖∆xk‖ ,
n−1∑
k=i

‖∆xk‖
}(4.8)

≤ (1− pi)
n−1∑
j=1

‖∆xk‖

for all i ∈ {1, . . . , n}, where

Pm :=
m∑

i=1

pi, m = 1, . . . , n

andP0 := 0.

Proof. It is obvious that
i−1∑
k=j

‖∆xk‖ ≤
i−1∑
k=1

‖∆xk‖

and
s−1∑
l=i

‖∆xl‖ ≤
n−1∑
l=i

‖∆xl‖ ,

Then, forA as defined in the proof of Theorem 4.1, we have that

A ≤
i−1∑
k=1

‖∆xk‖
i−1∑
j=1

pj +
n−1∑
l=i

‖∆xl‖
n∑

j=i+1

pj

=: B

≤ max {Pi−1, 1− Pi}

[
i−1∑
j=1

‖∆xj‖+
n−1∑

j=i+1

‖∆xj‖

]

= max {Pi−1, 1− Pi}
n−1∑
k=1

‖∆xk‖ .

Also, we observe that

B ≤ max

{
i−1∑
j=1

‖∆xj‖ ,

n−1∑
j=i+1

‖∆xj‖

}
(Pi−1 + 1− Pi)

= (1− pi) max

{
i−1∑
k=1

‖∆xk‖ ,

n−1∑
k=i

‖∆xk‖

}
and the theorem is thus proved. �

J. Inequal. Pure and Appl. Math., 3(1) Art. 2, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


16 S.S. DRAGOMIR

Corollary 4.7. LetX andxi (i = 1, . . . , n) be as in Corollary 4.5. Then

(4.9)

∥∥∥∥∥xi −
1

n

n∑
j=1

xj

∥∥∥∥∥ ≤


1

n

[
1
2
(n− 1) +

∣∣i− n+1
2

∣∣] n−1∑
k=1

‖∆xk‖ ,

n− 1

n
max

{
i−1∑
k=1

‖∆xk‖ ,
n−1∑
k=i

‖∆xk‖
}

for all i ∈ {1, . . . , n}.
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