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1. INTRODUCTION

The following result is known in the literature as Ostrowski’s inequality [10].

Theorem 1.1.Let f : [a,b] — R be a differentiable mapping ofx, b) with the property that
|f' (t)] < M forall t € (a,b). Then

(1.1) ' / ft dt’

for all « € [a,b]. The constant is the best possible in the sense that it cannot be replaced by a
smaller constant.

A simple proof of this fact can be done by using the identity:

Gl )
b—a) ](b—a)M

b

(1.2) t)dt +tr— p (z,t) f'(t)dt, x € [a,b],
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2 S.S. RAGOMIR

where
t—a if a<t<zx

p(z,t) =
t—b if z<t<b

which also holds for absolutely continuous functighs|a, b] — R.
The following Ostrowski type result for absolutely continuous functions holds/(seel[6] — [8]).

Theorem 1.2.Let f : [a,b] — R be absolutely continuous da, b]. Then, for allx € [a, b], we
have:

(2.3) ‘ x) b—a/f ‘

i+ (52 ] e- o f 1€ Lulontl;
r—a\p+1l _ 1 .
S Il (=M (= I b= 17, F e Lylat],
% + % =1, p>1;
o atb
L[| 1
where||-||. (r € [1, cc]) are the usual Lebesgue norms bp[a, b}, i.e.,
9]l = ess sup [g (t)]
t€la,b]
and
b v
o, = ([ lor ) r e oo
The constantg, )1 and ; respectively are sharp in the sense presented in Th.m 1.1.
(p+1

The above inequalities can also be obtained from the Fink result in [9] on choesing
and performing some appropriate computations.

If one drops the condition of absolute continuity and assumesftimHolder continuous,
then one may state the result (see [5]):

Theorem 1.3.Let f : [a,b] — R be ofr — H—H®older type, i.e.,
(1.4) [f(x) = f)| < Hlz—y|", forall z,y € [a,0],
wherer € (0, 1] and H > 0 are fixed. Then, for al: € [a, ], we have the inequality:

b—x r+1 r—a r+1 i
(1.5) ‘fx b—a/f dt‘ (b—a> +<b—a) ](b—a).

The constantm is also sharp in the above sense.

Note that ifr = 1, i.e., f is Lipschitz continuous, then we get the following version of
Ostrowski’s inequality for Lipschitzian functions (with instead ofH) (see[[4])

b o atb\?
(1.6) ’f(x)—ﬁ/f(t)dt’ﬁ i+(b_;) (b—a)L.

Here the constan}it is also best.
Moreover, if one drops the condition of the continuity of the function, and assumes that it is
of bounded variation, then the following result may be stated [see [2]).
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b
Theorem 1.4. Assume thaf : [a,b] — R is of bounded variation and denote k/( /) its total

a

variation. Then
a+b

b—a

(1.7) ‘f (x) —

\G

t) dt’ <

forall z € [a,b]. The constant is the best possible.

If we assume more aboljt i.e., f is monotonically increasing, then the inequalty {1.7) may
be improved in the following manner![3] (see als0 [1]).

Theorem 1.5.Let f : [a,b] — R be monotonic nondecreasing. Then forak [a, b], we have
the inequality:

I abf(t)dt'
sb_a{[295—(a+b)}f(:v)+/absgn(t—:v)f(t)dt}
<A@l @) - F@)+ -6 - F@)
e xb‘_aj%]ww—f(a)]-

All the inequalities in[(1]8) are sharp and the constaris the best possible.

For other recent results including Ostrowski type inequalities:fame differentiable func-
tions, visit the RGMIA website dittp://rgmia.vu.edu.au/database.html

In this paper we point out some discrete Ostrowski type inequalities for vectors in normed
linear spaces.

2. SOME IDENTITIES

The following lemma holds.
Lemma 2.1. Letz; (i = 1,...,n) be vectors inX. Then we have the representation

1 I . . )
(2.1) xi:Eij+EZp(z,j)Aa:j, ie{l,...,n},
7j=1 j=1
where
(2.2) p(Lj)=j—-nif 1<j<n—1
(2.3) p(n,j)=j if 1<j<n-—1;
and
(2.4) p(i,j) =
j—mn if i<j<n-1,

where2 <i<n-—1landl <j<n-—1.
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Proof. Fori = 1, we have to prove that

(2.5) = — Zx] Z (j —n) Az,

Using the summation by parts formula, we have

n

Y G-mAg = G-mnl, - AG-n)wm

j=1
n—1
= (n—1)z - Z%‘H
j=1
= Nnry — Z Z;
j=1
and the formula[(2]5) is proved.
Fori = n, we can prove similarly that
1 n 1 n—1
7j=1 7j=1
Let2 <i<n-—1. We have
n—1 1—1 n—1
(2.7) dopli ) Az = > plij) Az + Y p(i,j) A
7j=1 7=1 j=t
i—1 n—1
= Ziij + Z (j —n) Az;.
j=1 j=i
Using the summation by parts formula, we have
i—1 i—1
=1 i=1
i—1
= T — T — Z%‘H
= (i—1Dx Z x;
and
n—1 n—1
(2.9) (J—n)Az; = (]_n%‘] = ZA]_R)%H
Jj=t Jj=t
n—1
= (n—i)x; — ijﬂ
j=i
= (n—i+1)a —ij.
Jj=t
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Using (2.7) —[(2.P), we deduce

n—1 1—1 n

Zp(z’,j)ij = (i—l)xi—ij+(n—i+1)xi—2xj

7j=1 7j=1 Jj=t

= nr; — Z T
j=1
and the identity[(2]1) is proved. O
The following corollaries hold.
Corollary 2.2. We have the identity
T+ x, 1 & Ile/. n
7j=1 7j=1
Corollary 2.3. Letn = 2m + 1. Then we have
1 2m+1 1 2m
(2.11) el 2m+1;x3+2m+1;pm(‘7) ¥
where
J if 1<j<m,

j=—2m—1 if m+1<j<2m.

3. DISCRETE OSTROWSKI’S INEQUALITY

The following discrete inequality of Ostrowski type holds.
Theorem 3.1. Let (X, ||-||) be a normed linear space and (i = 1,...,n) be vectors inX.

Then we have the inequality
1 1\ n2-1
<2 [(@-H > 40 ] max  |[Azg]) .
n 2 4 k=1,..n—1

n
1
Ty — — E T
n
k=1

forall i € {1,...,n}. The constant = 1 in the right hand side is best in the sense that it
cannot be replaced by a smaller one.

(3.1)

Proof. We use the representatign (2.1) and the generalised triangle inequality to obtain

n n—1
1 1 .
SC@'——ZSCk = — Zp(z,k)A:ck
L k=1
1 n—1
< S Gk Aw
k=1

.....

If - = 1, then we have

n—1 n—1 n—1 n (TL B 1)
PRI =Y k—n =Y k=""
k=1 k=1 k=1
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and as

2

the inequality[(3.]1) is valid foi = 1.
Let2 <i<n-—1.Then

1\N? n2-1 —1
(1_n—|— ) +n :n<n2 ) for n>1

n—1 i—1 n—1
D lp k) = D e R+ k)
k=1 k=1 k=i
i—1 n—1
= > k+> (n—k)
k=1 k=i
B (Z 1) n—1 i—1
— 5 tn m—1—i+1 Z k=% k
k=1 k=1
o (i—1)d 1) i(i—1)
= 5 +n(n—1i)— 5
= % (2¢® +n® — 2ni + n)

_  on+1 2+n2—1
-\ A

and the inequality| (3]1) is also proved foe {2,...,n — 1}.
Fori =n,we havep (n, k) =k, k=1,...,n — 1giving

and as

the inequality[(3.R) is also valid far= n
To prove the sharpness of the constant }1 assume tha.l) holds with a constant 0,

ie.,
3.2) B N TR L A R A
: < li-— +c(n®—1) ,_nax 1” |

.....

n
1
Ty — — E T
n
k=1

foranyz, (k=1,...,n)in X.
Letzy =21+ (k—1)r, k=1,...,n,r € X,r # 0,2, # 0andi = 1in (3.2). Then we

get
(33) w23t (k- 1)) s%[m;” e —1)] 7|
k=1
and as
(x1+ (k—=1)r) =nx; + n(n2— 1)r,
k=1
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then from [3.B) we deduce

I(*) -

from where we get

%g % {”_ —i—c(n—i—l)}
ie.,
n+1<4c(n+1),
which implies that: > 1, and the theorem is proved. O

Corollary 3.2. Under the above assumptions and i&= 2m + 1, then we have the inequality

2m—+1
1

om + 1 >

k=1

m(m+1)

3.4 S 5T
( ) - 2m4+1 k=1,..2m

Tm+1 —

The proof is obvious by the above Theorem 3.1ifer m + 1.
The following corollary also holds.

Corollary 3.3. Under the above assumptions, we have:
a) If n = 2k, then

X1+ Tog 1 1
(3.5) o Z% <5 (k=1) max Az,
]:
b) If n =2k + 1, then
2k+1 9
T+ Toka1 1 2k* 4+ 2k + 1

) — _— A

(3.6) 2 2k + 1 ;xﬂ S Sk e Al

Proof. The proof is as follows.
a) If n = 2k, then by Corollary 22, we have

2%k—1
T +$2k
ij <o Z = Kl

2k—1

1
< 5 I8l =

.....

77777

and the inequality (3]5) is proved.
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b) If n = 2k + 1, then by Corollary 2]2, we have

2k+1
Ty + Topy1 1 237
2 o2k +1 J
2k+1
1 2k+1
< A
—%H;a | Az
1 2k+1 1
= ok 1A HM]”; J_k_“
1 [ & 1 2k+1 ]
et s ol |2 (4 )z (i-+-3)]
1 2k+1
= sy, s, 18 —k+Z Ly j%“‘k)]
1 k‘—k:+k:2+3k:+2—1
= HA%H
2k+11— ..... 9
2k:2+2k+1
= max |[|Azl| —m——
=1,...,.2k 2(2k+1)

and the inequality (3]6) is proved.
0J

The following result including a version of a discrete Ostrowski inequality,fenorms of
{Az;},_i7— also holds.

Theorem 3.4.Let (X, ||-||) be a normed linear space and (i = 1,...,n) be vectors inX.
Then we have the inequality

'——Zxk

foralla > 1,1+ % = 1, wheres,, (-) denotes the sum:

l
[

(3.7) saz—1)+san—z

Z HA:I%HB

m

Whenm = 0, the sum is assumed to be zero.

Proof. Using representatiof (2.2) and the generalised triangle inequality, we have:

n
1
T; — — E T
n
k=1

-1

Z (i, k) Azy,

k=1
n—1
p (i, k)| | Az || =: B.

k=1

(3.8)

3|

IN
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Using Holder’s discrete inequality, we have

n—1 i n—1 %
1 ) a
39) p<l (Z p (i, ) ) ( HA:cknﬂ) -

However,
n—1 i—1 n—1
p (i, k)" = p @RI+ Ip (i k)
k=1 k=1 k=1
i—1 n—1
= kOZ + Z (n - k)a

k=1
— 1a_|_..._|_(2'_1)a_|_(n_i)°‘_|_..._|_1a
Sa

and the inequality (3]7) then follows by (B.8) and {3.9). O

The case ofv = = 2 can be useful in practical applications.
Corollary 3.5. With the assumptions of Theorem|3.4, we have

1
1 <& 1 Con+1\? n2-1|’
i = < — -
v n;“—\/ﬁ[(Z 2>+ 12]

Proof. Fora = 2, we have

=

(3.10)

n—1
>l Ax?
k=1

and

ZkZ n—2+1)[2(n—2’)+1]'

n — Z
As simple algebra proves that

52(i—1)+82(n—i):n[(i—ngl)z%-ni;l],

then, by [(3.F) we deduce the desired inequdity (3.10). O

Corollary 3.6. Under the above assumptions ana if= 2m + 1, then we have the inequality:

2m—+1

1 %o 1
3.11 - o Axy||?
(3.11) Tl QmH;xk <ol le i
fora>1,§+%:1.
In particular, fora = § = 2, we have
2m+1
1 (m+1)

. ] — ——— <
(3.12) Tl 2m+12xk \/ @2m+1) ZHA il

The following result providing an upper bound in terms oflhenorm of (Azy),_— also
holds.
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Theorem 3.7.Let (X, ||-||) be a normed linear space and (i = 1,...,n) be vectors inX.
Then we have the inequality
1 n+1 —
(3.13) -——Zxk <2 5-n]i- " ian
k=1

foralli € {1,...,n}.

Proof. As in Theorenj 34, we have

(3.14) Y

T; — —
k=1

where

1 n—1
= EZ\p(i,k)\ Az
k=1

It is obvious that

1
B = — ZkHM\HZ n— k) || Ay
1 B i—1 n—1
PN .
< |G- 1A+ (=) Y A
L k=1 k=1
i—1 n—1
= —max{i—Ln—d} | Y [Az]+ ) [| Az
k=1 k=i
171 1 n—1
— ﬁ[§(n—l)+§\n—i—i+1|};HAIk“
n—1
111 . on+1
- M e-n+i- H 1Az
k=1
and the inequality] (3.13) is proved. O

The following corollary contains the best inequality we can get fiom {3.13).
Corollary 3.8. Let(X, ||-||) be as above and = 2m + 1. Then we have the inequality

2m+1

L2 o

(3.15)

4. WEIGHTED OSTROWSKI | NEQUALITY

We start with the following theorem.

J. Inequal. Pure and Appl. Math3(1) Art. 2, 2002 http://jipam.vu.edu.au/
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Theorem 4.1. Let (X, ||-||) be a normed linear space;;, € X (i=1,...,
)with " | p; = 1. Then we have the inequality:

(t=1,...,n
foralli e {1,...,

ij:vj

= ij 7l - max || A

7j=1

1 1
n P n q
< max [|Azy| x (le—ilp) (le§> if p>1,
j:

k=1,n—1

Proof. Using the properties of the norm, we have

4.2)

foralli e {1,...,

n n
Y pillmi—all = > pi=
j=1 Jj=1
n n
= ||%i ij - ij%'
j=1 j=1
n
= ||Ti— ij%‘
j=1

On the other hand,

(4.3) ijHxi_xjH = ij @ — 2| + Z pj |z —
j=1

Now, as

and

J. Inequal. Pure and Appl. Math3(1) Art. 2, 2002

Jj=i+1
i—1 -1 j—1
= E E (Tp1 — ) || + E Dj
j=1 k=j j=i+1 =i

IA

zp] ( nmku) Y, (z umln)

Jj=i+1

1—1
> [lAz || < (i — j) max ||Azy|| (wherej <i— 1)

k=j k=j,i—1

s—1

> llAz| < (s i) max ||Az| (wherei < s — 1),

=i,n—1
=i

Z (@11 — m)

11

n) andp; > 0

http://jipam.vu.edu.au/
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then we deduce that

A < ij (i—j)- n e x_||Azg| + Z p;j (j — i) - max [[Ax|

=i,n—

Jj=t+1
< max | Az | ij i— )+ ij j—1)
Jj=i+1

= max Az > rli- i
- =
and the first inequality irf (4}1) is proved.
Now, we observe that

n
> pili—il < maXI@—JIZpJ
j=1

j=Tn

= max|i — j|
j=Tn

= max{i—1,n—1}

n—1 o on+1

5 +‘z— 5 ‘,

which proves the first part of the second inequality in|(4.1).
By Holder’s discrete inequality, we also have

ij i —j] < (Zp]) (Zh jp>;,

7j=1

wherep > ¢ and Ly +,=1 and the second part of the second mequallt. (4 1) holds.
Finally, we also have

n n
> pjli— gl < max|p;| Y i — .
j=1 j=Ln j=1

Now, let us observe that

dli—il = Z\Z—JH Z i — ]
j=1

= Z“‘”*Z (=)
= +Z]—Z]’—i(n—i)

j 1

n2—1+ o on+1
p— Z_
4 2

and the last part of the second inequality[in{4.1) is proved.

J. Inequal. Pure and Appl. Math3(1) Art. 2, 2002 http://jipam.vu.edu.au/
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Remark 4.2. In some practical applications the case ¢ = 2 in the second part of the second
inequality may be useful. As

n

SNG-i = Y 220y j+ni
j=1 j=1

j=1
N s S PR E ?
ST T

then we may state the inequality

1
= n?—1 n+1\*|° (<&
_ 2l < | 2 A
;pg% _\/ﬁl - +(z : ) >.v Jax | Ay
foralli e {1,...,n}.

j=1
The following particular case was proved in a different manner in Theprgm 3.1.
Corollary 4.3. If z; (i =1,...,n) are vectors in the normed linear spac¥, ||-||), then we

have
1 & 1(n2-1 n4+1\2
;s — — < = _
x n;% _n[ 1 —l—(z 5 )

The following result also holds.

Theorem 4.4.Let (X, ||-||) be a normed linear space;, € X (i=1,...,n) andp; > 0
(i=1,...,n)with 3" p; = 1. Then, fora > 1, 1 + § = 1, we have the inequality:

n
- E PiT;
j=1

)

N

(4.4)

(4.5)

max_||Axgl .
k=1n—1

(4.6)

1
n n—1 a
. gL @
<> li— |7 p; (E [Azy|| )
j=1 k=1

<
N
<.
|
=
w
N—
|
oD
{\gk
=,
N——
2|
iy
)
V
=
2=
+
SO
I
=

n—1 o
< (Z ||Mk||a> x
k=1

foralli € {1,...,n}.
Proof. Using Holder’s discrete inequality, we may write that

anku < (i—j)} (anku )

and

s—1 s—1 é
S Aw] < (s - i) (Z ||sz||a) ,
=i =i

J. Inequal. Pure and Appl. Math3(1) Art. 2, 2002 http://jipam.vu.edu.au/
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which implies forA, as defined in the proof of Theorém}4.1, that

1 1
i—1 o n
1 1
A< S (znmkn ) bt S (i) (znmln ) "
j=1 s=i+1
1
1—1 a 1—1 n .
< | Az (i = )7 p; + (ZHMH ) > (s=i)Fp,
k=1 7j=1 s=i+1
n—1 « 7—1 L
< | Az [Z @—]5PJ+Z (s—1)7p ]
k=1 7j=1 s=i+1
1
n—1 a n .
= 1Az ) > Ji— 417 .
k=1 j=1

which proves the first inequality if (4.6).
Now it is obvious that

n

. L1
S li—jlip < maX|Z—J|BZPJ
=1

j=1n

wl=

= max{(i—l)%,(n—i)

}1
I

n+1
2

= B(n—l)Jr i —

proving the first part of the second inequality|in {4.6).

H 1 1 _
For-~, > 1 with St = 1, we have
1
n i n n 5 B
Sii st = () (35007
j=1 j=1 j=1

obtaining the second part of the second inequality in (4.6).
Finally, we observe that

2=

i . s u . s
> li— 17 py < max {p;} > i —j|7,
j=1 J=kn j=1

and the theorem is proved. O
Corollary 4.5. If z; (i =1,...,n) are vectors in the normed spacg, ||-||), then for alli €
{1,...,n} we have:

(4.7)

1 n 1 n n—1 é 1 1

1
i— =Y < =) -] Azil|*| , a>1, —+==1.
x nj:193a _n]§:1 i =7l (;;:1 I xkll) o a3

Finally, we may state the following result as well.

J. Inequal. Pure and Appl. Math3(1) Art. 2, 2002 http://jipam.vu.edu.au/
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Theorem 4.6.Let X, z; andp; (i = 1,...,n) be as in Theorem 4.4. Then we have the inequal-
ity:

n—1
max {F;-1,1 = P} > [|Azy|
k=1

(4.8) T — ijxj <
(= p)max{ & a0, E 1an}
n—1
< (L=p) Y l1Az]
j=1
foralli € {1,...,n}, where
P, ::Zpi, m=1,...,n
=1
andF, := 0.

Proof. It is obvious that

1—1 i—1
S Az <7 A
k=j k=1

and
s—1 n—1
D A <> Az,
=1 =1

Then, forA as defined in the proof of Theor¢m 4.1, we have that

1—1 1—1
< ST Az Y p; +Z|!sz|| Z P
k=1 Jj=1

Jj=i+1

<max{F_,1- P}

ZHA%H + Z 1Az

Jj=t+1

—max{P,_;,1 — P;} Z | Az -
k=1

Also, we observe that

B < maX{ZHA%H Z HA%’JH} i1+ 1= F)

Jj=i+1

= (1 —pi)max {Z | Az Z HA%H}

and the theorem is thus proved. O

J. Inequal. Pure and Appl. Math3(1) Art. 2, 2002 http://jipam.vu.edu.au/
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Corollary 4.7. LetX andz; (i =1,...,n) be asin Corollary 45. Then

1 ] " n—1
—[3(n—=1)+|i =2 |] 3 [|Az]],
n k=1

(4.9) <

n—1

n
1
xi——g T;
n < !
J=1

i—1 n—1
max{z SR> HA:ckn}
k=1 k=1
foralli e {1,...,n}.
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