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ABSTRACT. For anya := (aj,as,...,a,) € (RT)™ we establish inequalities between the
two homogeneous polynomial&P,(x,t) = (v + a1t)(x + agt)--- (z + ant) — 2™ and
Sa(z,y) == a12" 1 +agz" %y +- - - +a,y" " in the positive orthant, y,t € R*. Conditions
for AP,(x,t) < tSa(x,y) yield a new proof and broad generalization of the number theoretic
inequality that for basé > 2 the sum of all nonempty products of digits of any € Z*
never exceeds:, and equality holds exactly when all auxiliary digits dre- 1. Links with

an inequality of Bernoulli are also noted. When> 2 anda is strictly positive, the surface
AP, (z,t) = tSa(x,y) lies between the plangs = z + tmax{a; : 1 < i < n — 1} and

y = x +tmin{a; : 1 < i < n — 1}. For fixedt € R*, we explicitly determine functions
a, 3,7, of a such that this surface ig = = + at + ft?z~t + O(x72) asz — oo, and
y=n~t+dx+ O(x?)aszr — 0+ .
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1. INTRODUCTION

For any finite sequence of real numbargetIla be the product of all terms i, and let7'(a),
thetotal sum of productsf a, be the sum of all productidx asx runs through the nonempty
subsequences C a. Thus

T(a):=>3{llx:x Ca,x # w},
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wherew is the empty sequence. As usual we observe the conventiorlthat 1. There

is a rather surprising inequality which(a) must satisfy in the case of integer sequences. In
particular, for given integers > 2 andm > 0, let a be the sequence of digits in the bdse
representation ofz. Then

T(a) <m

holds for every such integen and basé, as shown in[2]. Moreover the inequality is sharp:
T(a) = m holds precisely when the auxiliary digits of, if any, are allb — 1. (Theleading
digit of n is the most significant digit; the less significant digits, if any, araitsiliary digits.)
For example

T(3,7,7) = 255 < 377,

where 377, is the baseb representation ofn = 255,313,377,447,... whenb = 8,9,
10,11,.... We also note in passing thatdfis the base digit sequence ofn thenT'(a) is
odd precisely when at least one of the digitsrofs odd.

Our main purpose in this paper is to show that the integer inequality just described is an
instance of a much more general inequality between polynomials. We shall establish the poly-
nomial inequality and investigate some of its properties.

2. POLYNOMIAL |INEQUALITY
Let a be any nonempty finite sequence of real numbers, say
a:= (ay,az,...,a,) € R" with n > 1.
With a we associate two homogeneous polynomials in two real variablepyalectpolyno-

mial

n

Py(z,t) := (z + a1t)(x + agt) - - - (v + ant) = H(:E + a,t),

r=1

and thesumpolynomial
Sa(z,y) = a12" " + apx" Py 4 -+ ay" ' = Z apx" "y L
r=1

Here we shall study these polynomials wher (R*)", whereR" := {x € R : x > 0}. It
turns out that it is natural to comparéimes the sum polynomial with the first difference of the
product polynomial,

AP,(x,t) := Pa(x,t) — Pa(z,0) = Pa(x,t) — a".

Note thattS,(x,y) andA P,(x, t) are both homogeneous of degree
With a we also associate two bounds whep 2:

M(a) :=max{a, : 1 <r<n-—1}
and m(a) :=min{a, : 1 <r <n-—1}.
Theorem 2.1. For any finite nonnegative sequence (R™)" withn > 1, the inequality
0 < AP,(x,t) < tSa(z,y)
holds for allz, y,t € R*, providedy > z + tM (a) if n > 2. The reverse inequality
APa(x,t) > tSa(x,y) >0
holds for allz, y,t € RT, providedy < x + tm(a) if n > 2.
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Proof. An easy induction om establishes the identity

n n r—1
Py(z,t) = H(x + a,t) = 2" + Z a,z""t H(x + agt).
r=1 s=1

r=1
Forz,t € R™ we haver + a,t > 0 for eachs, so

r—1

0<[[@+at) <y

s=1
holds trivially if = 1, and forr > 2 it certainly holds if
y>max{zr+asgd:1<s<r—1}=az+t max{as:1<s<r—1}
Because each,. € R, it follows for z,t € R* that

0 < AP,(x,t) = Pa(x,t) — a"

r—1

= ti: a,x"" H(x + at)
r=1

s=1

< tz a, 2" "y Tt = tSa(3,y)

r=1

holds trivially if n = 1, and forn > 2 it holds ify > x + tM (a). An entirely similar argument
establishes the reverse inequality in the theorem. O

Let us define

If a € (RT)" andn > 2 then
0<m(a) < M(a) < X(a).

Note thatS,(1,1) = >(a). This constant plays a natural role in bounding our polynomial
inequalities away from zero. Specifically, we have
Corollary 2.2. Leta € (R*)™ be a finite nonnegative sequence witkr 3 and M (a) > m(a).
Then for all strictly positiver, y, t € R* the inequality

0 < tX(a)z™ ' < APy(z,t) < tSa(z,y)
holds provided) > x + tM(a), and the reverse inequality

AP,(z,t) > tSa(z,y) > tX(a)2z" 1 >0
holds provided; < = + tm(a), with z := min{z, y}.

Proof. We sharpen the details of the proof of Theorem] 2.1. The conditidn) > m(a)
ensures thad/(a) > 0, so if z,t are strictly positive reals then + ast > « for at least one
s<n-—1,and

r—1

H(:c +agt) > 2!

s=1
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holds for some: < n. Then
AP,(x,t) = Pa(x,t) — "

n r—1
_ Z G,T.Tnirt H(gj + ast)
r=1 s=1
> Z a,x" 't =tS(a)s" > 0.
r=1

If y > x+tM(a), thenM(a) > m(a) ensures that
r—1

H(w +agt) <yt

s=1

holds for at least one < n, so

APy(x,t) = Pa(z,t) — 2" < tz a, 7" "yt = tSa(z, ).
r=1
For the second inequality, if < y < = + tm(a) thenM (a) > m(a) ensures that
r—1

H(x + ast) > y !

s=1

holds for at least one < n, so
AP,(x,t) = Pa(z,t) — 2"

n
> tz CLTJ]n_TyT_l
r=1

= tSa($a y)
> tZarz”_l =t3(a)z" ! >0,
r=1

wherez := min{z, y}. O

Corollary 2.3. For any realc and given finite sequenee € R, if n = 1 orif n > 2 and
M(a) = m(a) = ¢, then

AP,(x,t) = tSa(z,x + ct)
is an identity for allx, t € R.

Proof. First suppose € (R™)" andc, z,t € R*. If n = 1 both inequalities in Theoreim 2.1
hold, SOAP,(z,t) = tSa(z, x + ct). The same result holdsiif > 2 whenM (a) = m(a) = ¢
andy = x + ct. Since we have a degreepolynomial equality which holds for more than
values ofr and more tham values oft, it must in fact be a polynomial identity, and therefore
holds for allz, ¢ € R anda € R” with M (a) = m(a). O

We shall now show that the integer inequality proved_ in [2], and the conditions under which
it is an equality, are directly deducible from the above results. Thus Thegorém 2.1 provides a
new proof of the results in [2] as well as placing them in a much more general context.

Corollary 2.4. For any integerd) > 2 andm > 0, leta € (Z*)" be the sequence of base
digits of m. Then the total sum of products of these digits satisfigg < m, with equality
precisely when every auxiliary digit @f isb — 1.
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Proof. Assume that the bagedigits of m are arranged ia in order of increasing significance,
Soa,, is the leading digit. Thew,(1,b) = m. FurthermoreM (a) < b — 1. Putz = 1,t = 1
andy = b. Theny > x + tM (a), so the first inequality in Theoreim 2.1 yields

T(a) = Py(1,1) — 1 = APy(1,1) < Sa(1,b) = m,

as required. Now consider when equality holds. By Corollary 2.2, the strict ineqifiglity <
m holds ifn > 3 and the auxiliary digits are not all equal, so suppese 2 and all auxiliary
digits are equal td/(a). Corollary{2.3 shows thaft(a) = m*, wherem* = S,(1, M (a)+1) is
the integer with bas#&/(a)+1 digit sequenca if we permit the slightly nonstandard possibility
that the leading digit may exceed (a). Thusm* = m if M(a) = b — 1, andm* < m if
M(a) < b— 1. If n =1, Corollary[2.3 confirms the already obvioli§a) = m. O

We now note some examples of Theotfenj 2.1.
Example 2.1.With ¢t = 1, a = (a,b,¢,d) € (RT)?%, and the change of variables— ¢,y « «
with z,¢ € R*, we have

(t+a)(t+b)(t+c)(t+d) —t* <at® +bt*x + cta® + da?

whenx > t + max{a, b, c}. The reverse inequality holds when< ¢ + min{a, b, c}.
Example 2.2.Witht = 1,a = (d,¢,b,a) € (R")%, and the change of variables— ¢,y « x
with z,t € R™, we have

(t+a)t+b)(t+c)t+d) —t* <ax®+ bta® + ct’s + dt*

whenz > t + max{b, ¢, d}. The reverse inequality holds whern< ¢ + min{b, ¢, d}.
Example 2.3.In Examplé 2.p, let = 1 and replacéa, b, c, d) in that example wittfa, bt, ct, dt?),
wherea, b, ¢, d, t are strictly positive. Then
(1+a)1+0bt)(1+ct®)(A +dt?) — 1 < ax® + bta® + ct’x + dt?
whenz > 1 + max{bt, ct?, dt*}.
Example 2.4.Replacg(a, b, ¢, d) in Exampld 2.R by(a, bt !, ct =2, dt~?%), so
(t+a)(t® +b) (£ + o) (t* + d) — t'° < t5(azx® 4 ba® + cx + d)
whenz > t + max{bt !, ct=2, dt—3}.
Example 2.5. Evidently
APy(1,1) > Sa(1,1) = S(a)

holds for anya € (R*)" with n > 1, and holds with strict inequality it > 2 anda has at
least two strictly positive terms. However, it is interesting to note that it also holds with strict
inequality for anya € (—1,0)" with n > 2, a result which goes back to JacquesJames=
Jakob] Bernoulli (1654-1705) in the case where the sequanseonstant (see [1, Theorem
58]). Our focus in the present paper is on cases in whieh(R*)".

Thereverseof a given finite sequence:= (ay, ao, . .., a,) € R™ with n > 1is the sequence
a := (a,,...,as,a;) € R". Then

PaR(gjat) = Pa(xat) and SaR(xay) = Sa(y,:v).
Letmax(a) := max{a, : 1 <r <n}andmin(a) := min{a, : 1 <r <n}.If n > 2 we have
max{M(a), M(a®)} = max(a) and min{m(a), m(a’®)} = min(a).

With these observations, combining the principles used in Examples 2[1 @nd 2.2 readily yields
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Corollary 2.5. For any finite nonnegative sequence (R™)"™ withn > 1, the inequality
0 < AP,(t,1) < min{Sa(t,z), Sal(z,t)}

holds for allz, t € R, providedz > ¢t + max(a) if n > 2. The reverse inequality
AP,(t,1) > max{Sa(t,z), Sa(x,t)} >0

holds for allz, ¢t € R*, providedz < ¢ + min(a) if n > 2.

3. CONDITIONS FOR EQUALITY TO HOLD

When does the inequality studied in Theoren] 2.1 become an equality? To reduce this to a
problem in two variables, let us examine the 1 cross-section. Suppose> 2 anda € (R*)"
is strictly positive, that isg, > 0 for 1 < < n. We have from Theorefn 2.1:

< Sa(x, wheny > x + M(a),
NI (z,y) y=az+ M)
> Sa(z,y) wheny <z + m(a).
If =,y are strictly positive, then
0
a_ysa($7y) > 07

and continuity ofS,(x, y) as a function ofy ensures the following result:

Lemma 3.1. For any strictly positiver € R* and any strictly positive sequenaec (R™)"
withn > 2, there is a uniquey, > 0 such that

< Salz,y)  ify >y,
Sa(%?JO)

APa(z,1)¢ =
> Sa(z,y) if0<y<uyo.

Furthermore
r+m(a) <y < z+ M(a).

In what follows we shall determing, more explicitly. It is convenient to introduce some
notation. Let:;(a) be thekth elementary symmetric functiaf the sequence, defined to be
the sum of productblx asx runs through all thé-term subsequencesC a. Thus

Yp(a) :=3{IIx : x C a, |x| = k}.

In particulars; (a) = £(a) = ¥7_,a, andXy(a) = X721 5" a.a,. Again let

W(a) == Xn: (/: - D ay.

r=1
We callW,(a) thekth binomially-weighted surof the sequenca. Note thatit;(a) = ¥, (a).

Lemma 3.2. For any finite strictly positive sequenaez (R™)" and any positive integér < n,
we have
min(a)®  Y(a)
max(a) — Wi(a)
with strict inequalities whemn is not constant.

max(a)®

<
~ min(a) ’

Proof. Leta* € (R*)™ be the constant sequence with every term equald®o(a). Then

Si(a) < Tp(a*) = (Z) max(a)t,
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and the inequality is strict wheais not constant. Also

Wi(a) = i (; - D a, > zn; (1:: 1) min(a) = (Z) min(a) > 0,

SO

Yr(a) _ max(a)k

Wi(a) = min(a) ’
with strict inequality wher is not constant. An entirely similar argument establishes the other
inequality in the lemma. O

For any reak > 0, if ¢ € (R™)" is the constant sequence with every term equal tben
Lemm shows that,(c)/Wy(c) = cF~1. Hence(Ek(a)/Wk(a))ﬁ is a measure of central
tendency for the terms of the sequence (R*)™, for each integek in the intervalk < & < n.
The casé: = 2 enters into the asymptotic behaviourgf as we now show.

Theorem 3.3. For strictly positivex,y € RT and any strictly positive sequenaec (R™)"
with n > 2, the equalityA P,(x, 1) = Sa(z,y) holds for largez when

y=r+a+0(z") (x — 00),
where
oo 22()
= W)

Proof. Letyy = = + fo(x), SOAPa(x,1) = Sa(z, x + fo(x)). Thenm(a) < fo(z) < M(a) by
Lemmd 3.1, s®(fy(z)) = O(1) asz — oo. Hence

Salz,z + fo(z)) = a, 2" " (x + fo(z))"?

I
M —
M:

S
~

8

3

R

_l_
—
M:

=

|

—

Bl
~

—

&

=

3

S

_l_

Q

=]

3

T

Also
APy(x,1) = (z+ a1)(x + ag) -+ (x + a,) — 2"
= Y(a)z" !t + Sy(a)z" 2+ O(a" ).
But these two expressions are equal, so for largdollows that

fo(x) = 5/22((3

+O0(z7h).
0
By Theorenj 3B, if we pugp = =+ + fi(z) thenO(fi(z)) = O(z™!) asz — oc. Explicit
expansion oA P,(z,1) andSa(z, z + o + fi(x)) as far as terms in" 3 yields
Corollary 3.4. For any finite strictly positive sequeneec (R*)" with n > 3, the equality
AP,(z,1) = Sa(z,y) holds for largezr, y € RT when
y=z+a+pfr " +0(? (2 — o),

where
23 (a) — Oé2W3 (a)

W2 (a)

0o 22(a)
- Wa(a)
From Lemma 3J1 we immediately deduce

and g:=
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Corollary 3.5. If M (a) = m(a) = ¢, thena = candj = 0.

Next we shall considey, whenz is small but positive. It will be convenient to uéga) to
denote the geometric meanff, : 1 <r < n —1},s0G(a) := (a1a2 gy 1)ﬁ For any
finite strictly positive sequence € (R*)" we definea™ := (a] ,a2 ,o.a7t),s0X(amt)
is the sum of reciprocals of the termsafOf course X (a™!) = X, _;(a)/X,(a). This sum
enters into the small scale behaviourgf as we now show.

Theorem 3.6. For strictly positivex,y € RT and any strictly positive sequenaec (R*)"
with n > 2, the equalityA P,(z, 1) = Sa(z, y) holds for smallz when
y =+ 0z + O(2?) (x — 0+),
where
Yi(a™) —a,
(n—1a,
Proof. For0 < = < M(a) letyy = go(z), SOAP,(z,1) = Sa(z, go(x)). Lemma[ 3.1 ensures
thatm(a) < go(z) < 2M(a), soO(go(z)) = O(1) asx — 0+ . Then

n

Sa(,90(2)) = Y tn-ra2” " go(2)"" = ango()" " + O(x)

r=1

v:i=G(a) and §:= ™"

and
AP,(x,1) = (aray - - a,) + O(x),
so equality of these expressions implies that
go(x) = G(a) + O(x).
Now lety, = G(a) + g1(z), S00(g1(z)) = O(z) asz — 0 + . Then
Sa(z,G(a) + g1(x))

=3 e (Gla) + g1 (@)

= a;G(a)”*1 + (n — 1)a,G(a)" g1 (x) + an_12G(a)" " + O(z?)
and

AP,(x,1) = (araq - - - {14—(2& >x+0 )}

Equality of these two expressions implies that
(a,G(a)2i(a™) —a, 1)z
(n—1)a,
and the theorem follows. OJ

+0(a?),

gi1(x) =

From Lemma 3]1 we deduce
Corollary 3.7. If M(a) = m(a) = ¢, theny = candj = 1.
Let us now consider the geometry underlying Theoremis 3.3 and 3.6. The positive quadrant
x,y € RT is divided into an S-region”, where
AFu(x,1) < Sa(,y),
and a A P-region”, where
APy(x,1) > Sa(z,y).
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The boundary between these two regions is
Ey(a) = {(z,y) € (R")? : APa(,1) = Sal,1)}.

On this boundary curve the polynomialsP,(z, 1) and S,(x,y) are equal, so we cakl;(a)

the equipoise curvéor a. Lemmd 3.l ensures that (a) lies in the strip between the parallel
linesy = = + M(a) andy = = + m(a). By Theorenj 33 the equipoise curve is asymptotic to
y = = + «, and by Theorerh 3|6 it cuts theaxis aty = G(a), with slopes.

Whenn = 2, we haveM (a) = m(a) = a = G(a) = a; andE;(a) is the liney = x + a;.
Whenn > 3, asz — oo the equipoise curve approaches the asymptote frony-tegjion side
if > 0, and from theA P-region side if3 < 0.

It appears likely that the equipoise curve never crosses the asymptote, though we were not
able to demonstrate this in general. The condition for such a crossing to occur is a polynomial
of degreen— 3 in x, SO such crossings are possible only when 4. However it seems unlikely
that there are ever any solutions with> 0. Whenn = 3, itis clear thatF, (a) must be entirely
on one side of the asymptote unless= a,a,. In the latter casej = 0 and £ (a) actually
coincides with the asymptote; this behaviour is demonstratefg, by, 4, 4) for example.

Throughout the preceding discussion in this section we have been compdririg, 1) with
Sa(z,y) in the positivex, y-quadrant. A simple observation enables us to deduce the corre-
sponding information comparing P,(x,t) with ¢S, (z,y) in the positivez, y, t-orthant. For
anyt € Rt anda € (R")", letta := (tay, tas, ..., ta,) € (RT)". Then

Pia(2,1) = Pa(z,t) and Spa(z,y) = tSalz,y),

so all the relevant facts abolt P, (z,t) = tSa(x,y) follow from our earlier results in this
section by replacing by ta. In particular, theequipoise surface

Esy(a) = {(z,y,1) € (R)* : APa(z,t) = tSa(z,y)}
lies in the region between the plangs= x + tM(a) andy = = + tm(a), which coincide
if M(a) = m(a), and otherwise intersect in the line= x,¢t = 0. For any fixedt > 0 the
equipoise surface satisfies
y=x+at+ Btz +0(z7?) (z — 00)
and
y =yt + 6z + O(z?) (x — 0+).
However, the device of replacirgoy ta does not provide any information about the comparison
of the product and sum polynomials for a general finite sequaneeR"™. As hinted at by
Bernoulli’'s Inequality, mentioned in Examgle P.5, there is potentially much of interest in this
more general case.
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