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Abstract

We define an approximate Birkhoff orthogonality relation in a normed space.
We compare it with the one given by S.S. Dragomir and establish some prop-
erties of it. In particular, we show that in smooth spaces it is equivalent to the
approximate orthogonality stemming from the semi-inner-product.

2000 Mathematics Subject Classification: 46B20, 46C50
Key words: Birkhoff (Birkhoff-James) orthogonality, Approximate orthogonality,
Semi-inner-product

The paper has been completed during author's stay at the Silesian University in
Katowice.
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In an inner product space, with the standard orthogonality relatioone can
consider the approximate orthogonality defined by:

ey < [(zly)| <ellzlyll

(| cos(z,y)| < eforx,y #0).
The notion of orthogonality in an arbitrary normed space, with the norm not _ .
necessarily coming from an inner product, may be introduced in various ways. ©"an e-Birkhoff Orthogonality

One of the possibilities is the following definition introduced by Birkhaff [ Jacek Chmielifski
(cf. also James]). Let X be a normed space over the fi#de {R, C}; then
forz,ye X Title Page
vlyy <= VAEK: |2+ M\y|| > ||z . 2
. . . . Contents
We call the relationL,, aBirkhoff orthogonality(often called a Birkhoff-James
orthogonality). 44 >
Our aim is to define an approximate Birkhoff orthogonality generalizing the < >
¢ one. Such a definition was given if|{
Go Back
Close
(1.2) rley<=VAeK:|[z+ Ny > (1—¢)|z|. _
€ Quit
We are going to give another definition of this concept. Page 3 of 16
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Let us define ampproximate Birkhoff orthogonalityrore € [0, 1):

(2.1) rloy <= VA K: o+ y|” = [|z]* — 2¢ ||z | Ayl

If the above holds, we say thats <-Birkhoff orthogonal toy.
Note, that the relation®, is homogeneouys.e., z 15y implies az L5, By (for
arbitrary o, 5 € K). Indeed, for any\ € K we have (excluding the obvious

casex = 0) On an e-Birkhoff Orthogonality
2 Jacek Chmielinski
9 _ g2 g
o+ A8yl = |af? ||z + A=y
I6; Title Page
> faf? lel* = 2ol 12y
a Contents
_ 2 _
= [l — 2¢ x| [ ABy]|. « | »
Proposition 2.1. If X is an inner product space then, for arbitratyc [0, 1), < >
rlfy <= zliy. Go Back
We omit the proof — a more general result will be proved later (The@&&n Close
As a corollary, for= = 0, we obtain the well known fact: L,y < x Ly (inan Quit
inner product §pac_e). o . . Page 4 of 16
Let us modify slightly the definition of Dragomif.(1). Replacingl — ¢ by
v ]‘ - 62 we Obtaln: J. Ineq. Pure and Appl. Math. 6(3) Art. 79, 2005
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Thusz 5y < zlsywithp=p(e) =1 - v1—e>
Then, for inner product spaces we have:
x5y — zl%%

(see B, Proposition 1]).
T. Szostok [.(], considering a generalization of the sine function introduced,
for a real normed spack, the mapping:

infyer 30, for z € X\ {0}
s(z,y) =

On an e-Birkhoff Orthogonality

1, forz = 0.
It is easily seen that L,y < s(z,y) = 1. Itis also apparent thatl©y < 22
s(x,y) > V1 —¢e2. Defininge(z,y) := £4/1 — s?(x,y) (generalized cosine)
one getsc 15y < |c(z,y)| <e. Title Page

Let us compare the approximate orthogonalitiesand 15,. In an inner
product space both of them are equattorthogonality1*. Thus one may ask
if they are equal in an arbitrary normed space. This is not true. Moreover, <44 44
neither 15, C 15 nor L5, C 15, holds generally (i.e., for an arbitrary normed P >
space and akt € [0,1)). For, considetX = R? (overR) equipped with the
maximurmmorm ||(z1, z2)|| := max{|z1|, |z2|}. Now, letz = (1,0),y = (3,1), Go Back
e = 1. One can verify that 15y (i.e., that(max {|1 + 3 ,|>\|})2 > 1— || Close
holds for each\ € R) but notz 1%y (take\ = —2). Thus 5, ¢ 1. Quit

3
Page 5 of 16

Contents

On the other hand, for = (1,1), ¥y = (1,0), ¢ = ¥ we have

2
(max{|1+ A|, 3 )2 >1- (\é) , l.e., z 15y but notx 15y (consider, for ex-

amp|e’)\ _ \/Tg . 1)_ ThUSJ_sD §Z J_eB_ 3. Ineq. Pure and Appl. Math. 6(3) Art. 79, 2005
. http://jipam.vu.edu.au
See also Remarkfor further comparison of<, and 1<,.
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Let X be a normed space ovi&rc {R, C}. The norm inX need not come from
an inner product. However, (cf. G. Lumef][and J.R. Giles4]) there exists a
mapping[-|-] : X x X — K satisfying the following properties:

(s1) M+ pyle] = Azlz] + puyl2], z,y,2€ X, A peK
(s2) [z|\y] = X z|y], 7,y € X, €K,

(83) [z]z] = [|=||*, = € X;

4 [zlyl| < llzll- lyll, =y € X.

(Cf. also P].) We will call each mapping-|-] satisfying (s1)—(s4) aemi-
inner-product(s.i.p.) in a normed spack. Let us stress that we assume that a
s.i.p. generates the given normin(i.e., (s3) is satisfied). Note, that there may
exist infinitely many different semi-inner-productsin There is a unique s.i.p.
in X if and only if X is smooth (i.e., there is a unique supporting hyperplane at
each point of the unit sphere or, equivalently, the norm is Gateaux differen-
tiable onS — cf. [2, 4]). If X is an inner product space, the only s.i.p.ris
the inner-product itself (], Theorem 3]).

We say that s.i.p. isontinuousff Re [y|z + A\y] — Re[y|z]asR 2 A — 0
forall z,y € S. The continuity of s.i.p is equivalent to the smoothnes& d¢tf.

On an e-Birkhoff Orthogonality

Jacek Chmielinski

Title Page
Contents
44 44
< | 2
Go Back
Close
Quit
Page 6 of 16

J. Ineq. Pure and Appl. Math. 6(3) Art. 79, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:jacek@ap.krakow.pl
http://jipam.vu.edu.au/

[5, Theorem 3] or {]). It follows also in that case (see the proof of Theorem 3

in [2]):

(3.1) lim llz+ Ayl — 1

A0 A
AER

=Relylz], z,y€s.

Extending previous notations we defsemi-orthogonalityandapproximate
semi-orthogonality

rly < [yl =0;
vy < |yl <elz|- Iy,

forz,y € X and0 <e < 1.
Obviously, for an inner—product space; = | and 5, = 1°.

Proposition 3.1. For z,y € X, if 15y, thenx 15y (i.e., L& C 15).

Proof. Suppose that 1%y, i.e.,| [y|z]| < e ||z| - ||ly||. Then, for somé € [0, 1]
and for somep € [—m, 7] we have:

[yla] = Oe [zl - [lyl] - €.
For arbitrary\ € K we have:

lz + Ayl - llll = | [z + Ayla] |
= [ll1* + A [yla]]
= |lllf* + 6e [l - lyll - A- €]
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whence

lz + Xyl = [zl + 02 [ly]l - A - ™|
= [||lz|| + bz ||ly|| Re (Ae?) + ibz ||y Im (Ae™)]|.

Therefore

lz + Myll* > (1]l + 0e [l Re (Ae®))* + (Be [ly] Tm (X))

= ||£B||2 + 20¢ ||ZUH ||y|| Re ()\ew) On an e-Birkhoff Orthogonality
1022 ||y||2 ((Re (/\eiw))Q + (Im ()\eiw))2> Jacek Chmielifski
= ||z])” +20¢ |l[| [yl Re (Ae™?) + 6% || Ay :
9 ; Title Page
> [lz]” + 202 |||l [lyl| Re (Ae'?)
9 i Contents
> ||| + 202 ||| Iyl (— [Xe™])
2 44 44
= [lzl” = 20e [l | Ay
2 < >
> ||zl = 2 [l 1Myl
. Go Back
lLe.,xl15y. L]
Close
Since| [y|x]| < |||l ly]|, i.e.,z Ly for arbitraryzx, y, the above result gives Quit
alsoz Ly for all z, y. That is the reason we restricto the interval0, 1).
Page 8 of 16

Proposition 3.2. If X is a continuous s.i.p. space andt [0, 1), then L, C 1°.
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A € K we have:

0 < |lz+M|> =1+ 2|\ = [z]z + My] + Myl + Ay] — 1+ 2¢ |\

Therefore
0 < Relz|z + A\y] + Re [Ay|z + A\y] — 1 + 2¢ ||
< |[z|x + My]| + Re[Ay|z + Ay] — 1 + 2¢ | A|
< ||z + My|| + Re [My|z + Ay] — 1+ 2¢ |\l
whence

(3.2)  Re[My|z+ My + ||z + Myl — 1> —2¢|A], forall X € K.

Let\o € K\ {0}, n € Nand\ = 22. Then from 8.2) we have

—-1> 25| |
n

A
x—l——oy
n

A A
Re [—Oy]a: + —Oy] +
n n

[Xol Ao
Ao | Xo| Ao H + I/\olyH -1
A > —2¢.
: [wy' T D] =

Puttingy’ := |A°|y €S5,& = 0‘ € R (&, — 0 asn — oo) we obtain from the

above inequality

/ P——
o+ &/l =1 _

> —2e¢.
&n

Re [y'|z + & +
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Lettingn — oo, using continuity of the s.i.p. an@ (1)
Re[y'|z] + Re[y'|z] > —2¢

whence
Re [Aoylz] > —&| Aol

Putting— 2\, in the place of\, we obtainRe [\oy|z] < £|A\o| whence

IRe [Moy|z]| < e|Xo| for arbitrary)\, € K.

Now, taking\, = [y|z] we get

Re [[bfalyle] | <l blal |

whence| [y|z] |* < €| [y|z] | and finally| [y|z] | < e, i.e.,z15y. O

Without the additional continuity assumption, the inclusigp C 1 need
not hold.

Example 3.1. Consider the spacg (with the norm||z|| = Y77, || for . =
(71,29, ...) € ). Define

- TilYi
[ly) = Iyl T TVE I
i=1 4

y; 70
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— a semi-inner-product ii*. Lete € [0,4/2 — 1) and letz = (1,0,0,...),

y=(1,1,£,0,...). Then, for an arbitrary\ € K:

lz + Mgll* = 21 + 2 2]l [Ayll = (11 + AL+ [A] + [Ael)® = 1+ 22(2 +2) [
> (14 M) —1+2e(24¢) ||
=2e(34¢) A + |\ €2
>0,

i.e.,xz 15y (in fact,x L ,y). On the other hand,

B 1
24«

whence-(x5y). In particular, fore = 0, this shows thatl ; ¢ L, (cf. [4, &,
D

From the last two propositions we have:

yle] =1 [l lyll > e llz [y

Theorem 3.3.1f X is a continuous s.i.p. space, then
18 = 15

Moreover we obtain, for = 0, (cf. [5, Theorem 2])

Corollary 3.4. If X is a continuous s.i.p. space, then
lg= 1.

Conversely,L; C L, implies continuity of s.i.p. (smoothness) — ¢f] pnd

[€].
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Remark 1. Dragomir [3, Definition 5] introduces the following concept: The

s.i.p.[-|-] is of (APP)-type if there exists a mapping [0, 1) — [0, 1) such that
n(e) =0 < e =0andzLL"y impliesz15y for all = € [0, 1). It follows from
Proposition3.1that in that case we have also

(4.2) xﬂD(e)y = xl%y

forall ¢ € [0, 1).

It follows from [3, Lemma 1] that for a closed, proper linear subsp@oaf
a normed spac&’ and for an arbitrary € (0,1), the setG- o of all vectors
¢ -orthogonal ta7 is nonzero. Using4.1) we get

n(e) e
(4.2) oo’ cgls.

Therefore, we have

Lemma 4.1. If X is a normed space with the s.i.p|-] of the (APP)-type, then
for an arbitrary proper and closed linear subspaGexnd an arbitrarye € [0, 1)

the setG-L% of all vectorsz-Birkhoff orthogonal ta is nonzero.
We have also

Theorem 4.2.1f X is a normed space with the s.i.p|-] of the (APP)-type,
then for an arbitrary closed linear subspaceand an arbitrarye € [0, 1) the
following decomposition holds:

X =G+ G,
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Proof. Fix G ande € [0, 1). It follows from [3, Theorem 3] that

n(e)
X=G+G

Using @.2) we get the assertion. O

The final example shows that the set ofsafirthogonal vectors may be equal
to the set of all orthogonal ones.

Example 4.1. Consider again the spadé with the s.i.p. defined above. Let
e = (1,0,...). Observe that vectors-orthogonal toe are, in fact, orthogonal
toe:

(4.3) rlie = wxlge.

Indeed, lets € [0,1) be fixed and letr = (zy,79,...) € [' satisfyz e.
Because of the homogeneity 5f we may assume, without loss of generality,
that||z|| = 1 andz; > 0. Thus we have

YA EK: ||z 4 Xl > 1 —2¢])|.
Therefore
VAEK: (Jloy + A +1—21)° >1—2|)|.

Suppose that; > 0. Takel € R suchthat\ < 0, A > —z; and\ > —2(1—¢).
Then we have
(x1+A+1—21)* > 142\,

On an e-Birkhoff Orthogonality

Jacek Chmielinski

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 13 of 16

J. Ineq. Pure and Appl. Math. 6(3) Art. 79, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:jacek@ap.krakow.pl
http://jipam.vu.edu.au/

which leads toA < —2(1 — ¢) — a contradiction. Thus; = 0, i.e,z =
(0,29, z3,...) and|zs| + |z3] + - - - = 1. This yields, for arbitrary\ € K,

[+ Ael| = A +1=>1 = [l
i.e.,x Lge. It follows from(4.3) that for G := lin e we have
Gte=gte.

Note, that the implicatior L5z = elgx is not true. Take for example

3

v =(3,1,0,...). Thenz|e] = 2|e| ||z||, i.e,eLiz, whence (Propositiof.1)
eJ_%Bx. On the other hand, fok = —g one has

2
e+ Aol =5 < 1=ell

i.e.,(elgz).
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