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ABSTRACT. In the present paper, we study an error estimate for finite volume methods for the
stokes equations. The error is proven to be of ofden Hi-norm discrete and id?-norm,
whereh represents the size of the mesh. The result is new even for the finite volume method.
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1. INTRODUCTION

The numerical solution of the Navier-Stokes equations for incompressible viscous fluids has
motivated many authors, so much so that giving a complete bibliography has become an im-
possible task. Therefore, we restrict our attention only to crucial contributions making use
of finite element approximations and mixed finite element methods, among them we mention
[2,13,06,8/ 12, 13, 14, 15, 16, 1[7,118] (see also the references therein).

The finite volume element method is used.inh [9], the basic idea is based on the Box method.
From the Crouzeix-Raviart element, the authors constructed the mesh of this method since every
triangulation is associated to the spaces of finite elements. Later on, they applied the Babuska
theorem to the Stokes problem, thus they obtained an analysis of error.

The finite volume projection method for the numerical approximation of two-dimensional in-
compressible flows on triangular unstructured grids is presentéd in [4]. The authors considered
the unsteady Navier-Stokes equations, the velocity field is approximated by either piecewise
constant or piecewise linear functions on the triangles, and the pressure field is approximated
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by piecewise linear functions. For the discretization of the diffusive flows, a dual grid connect-
ing the centers of the triangles of the primary grid is introduced there. Using this grid, a stable
and accurate discrete Laplacian is obtained.

The finite volume scheme for the Stokes problem is obtained from a mixed finite element
method with a well chosen numerical integration diagonalizing the mass matrix which is used
in [1]. The analysis of the corresponding finite volume scheme is directly deduced from general
results of mixed finite element theory and the authors gave an optimal a priori error estimate.

The finite volume method on unstructured staggered grids for the Stokes problem is presented
in [10]. The authors used an admissible mesh of triangles satisfying the properties required
for the finite element method. In the case of acute angles, they proved the existence and the
uniqueness of the solution, therefore, if the mesh consist of equilateral triangles, the authors
obtained the convergence result.

In this paper, we are interested in the study of an error estimate for finite volume method
for the Stokes equations in dimensidn= 2 or 3, on unstructured staggered grids. The main
difficulty of this problem is due to the coupling of the velocity with the pressure. For this reason,
we use the Galerkin expansion for the approximation of the pressure such that the pressure
unknowns are located at the vertices. The existence and the uniqueness of the solution results
are proved by Eymard, Gallouet and Herbin[in/[10]. We prove here that the error estimate is of
order one.

This paper is organized as follows: In Section 2, we introduce the continuous Stokes equa-
tions under some assumptions. In Secfipn 3, we get the numerical scheme and the main results
of the existence and the uniqueness of the numerical solution. Finally, in Sgjction 4, we present
the error estimate for the velocity.

2. THE CONTINUOUS EQUATIONS

We consider here the Stokes problem:

(2.1) — vAu'(z) + 55 () = f(z) VeeQ Vi=1,....d,
d l@ui

2.2 E = Q

(2.2) o, 0 Vo €,

with Dirichlet boundary condition:
(2.3) u'(z) =0 VeeoQ VMi=1,....d,

under the following assumption.

Assumption 1. (i) Q2 is an open bounded connected polygonal subsit'ef = 2, 3.
(i) v > 0.
(i) ffe L*(Q);Vi=1,..,d.
In the above equation;’ represents thé" component of the velocity of a fluid; the
kinematic viscosity angh the pressure. There exist several convenient mathematical

formulations of [(2.11) {(213).

3. AFINITE VOLUME SCHEME ON UNSTRUCTURED STAGGERED GRIDS

The finite volume scheme is found by integrating equation (2.1) on a control volume of a
discretization mesh and finding an approximation of the fluxes on the control volume boundary
in terms of the discrete unknowns. Let us first give the assumptions which are needed on the
mesh.
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Definition 3.1. Admissible mesh.

Let €2, be an open bounded polygonal subseRéf(d = 2 or 3). An admissible finite volume
mesh of(), denoted byT, is given by a family of control volumes, which are open polygonal
convex subsets d? contained in hyperplanes &<, denoted bye, (they are the edges (2D),
or sides (3D) of the control volumes), with strictly positive— 1)-dimensional measure and a
family of points of{2 denoted byP satisfying the following properties:

(i) The closure of the union of all the control volumegis
(i) Forany K € 7, there exists a subséf of £ such thahDK = K\K = U,c¢, 7, let
& = Ugerék.
(iii) For any (K, L) € T2, with K # L, either thed-dimensional Lebesgue measure of
KnLisOorK N L = o forsomes € £.
(iv) The family P =(xx)ker is such thatry € K and ifo = K|L it is assumed that
xy, # x1, and that the straight lin®y ;, going throughr - andz, is orthogonal tai | L.
(v) For anyo € £ such thatr € 019, let K be the control volume such that € &, if
rx ¢ o, let Dk, be the straight line going through and orthogonal te. Then the
conditionDk , N o # 0 is assumed, lej, = Dk, N o.
In the sequel, the following notations are used:
size(T) =sup {diam(K), K € T}.
m(K) thed—dimensional Lebesgue @f, forany K € 7.
m(o) the @ — 1)-dimensional Lebesgue of for anyo € €£.
Eimt = {0 € £,0¢00} and€,,; = {0 € £,0 C 00}.
olf o € &, 0 = K|L thend, = dg), = d(zg,xr) and ifo € Ex N E,y then
do’ = dK,cr = d($K, yo)-
e For anyo € & the transmissibility throughr is defined byr, = %’) if d, # 0 and
7 =0if dy = 0.
In some results and proofs given below, there are summationsrowef, with & = {0 €
&;d, # 0}. For simplicity&, = £ is assumed.
Let us now introduce the space of piecewise constant functions associated with an admissible
mesh and discretd}-norm for this space. This discrete norm will be used to obtain an estimate
of the approximate solution given by a finite volume scheme.

Definition 3.2. Let Q2 be an open bounded polygonal subseféf (d = 2,3) and7 be an
admissible mesh. Defin&(7) to be the set of functions frof? to R which are constant over
each control volume of the mesh.

Definition 3.3. Let 2 be an open bounded polygonal subseRéf (d = 2,3) and7 be an
admissible mesh. Far € X (7)), define the discret&-norm by:

lullrr = (Z%(DUU)2> :

oe€
where:
Dou = |ug —uglifo € Ep,o = K|L.
Dou = |uglifo € Eepy N EK

anduy denotes the value taken layon the control volumex'.

Lemma 3.1 (Discrete Poincaré inequality).et 2 be an open bounded polygonal subBét
(d = 2,3),7 be an admissible mesh andc X (7), then:

[ull 2 < diam(Q)|ully.z,
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where||-||, ;- is the discretei;-norm.
Proof. Seel[10, p. 38, 11]. O

AssumeK and L to be two neighboring control volumes of the mesh. A consistent dis-
cretization of the normal flux- <7 w.n over the interface of two control volumes and L
may be performed with differential quotient involving values of the unknown located on the
orthogonal line to the interface betwe&hand L, on either side of this interface.

In [10], the authors consider the mesh(afdenoted byZ, consisting of triangles, satisfy-
ing the properties required for the finite element method, [See [7], with acute angles only, and
defining, for all K € 7, the pointzx as the intersection of the orthogonal bisectors of the
sides of the triangle&’ yields that7 is an admissible mesh. Fere Sz, let ¢, be the shape
function associated toin P;. A possible finite volume scheme using a Galerkin expansion for
the pressure is defined by the following equations:

(3.2) I/ZF}{U%— Zps/a¢s v=m(K)fj, VK e€T Vi=1,...d,
o€k sESK
(3.2) Fiy, = To(ug —uy), foe€&y,oc=K|L i=1,..d,
(3.3) F}'(U = Toub, foe&unNék,i=1,..4d,
(34)) Z“K (%S = 0 Vse Sy,
KeT i
(3.5) / Z ps¢s(x)de = 0, and
Q SEST
i 1 i
K

The discrete unknowns df (3.1)- (8.6) arfg, K € T ,Vi=1,...,d, andp,, s € St.
The approximate solutions are defined by:

(3.7) ube () = ule aere K VKeT Vi=1,..d
and
(3.8) pr=Y_ psds.

SEST

The existence and the uniqueness of the solution of the discrete pr¢blém (3.1) — (3.6) are proved
by Eymard, Gallouet and Herbin in [10]. Moreover, if the elemerif aire equilateral triangles
then they obtained the following convergence result.

Proposition 3.2. Under Assumptiop|1, there exists an unique solutiop td (3.I) } (3.6), denoted
by {ut, K € T, i = 1,...,d} and{ps, s € Sr}. Furthermore, if the elements Gf are
equilateral triangle, theni; — u, assize(7) — 0, whereu is the unique solution t¢ (2.1) —

(2.9) andus = (ut, ..., ut) is defined by[(3]7).
Proof. Seel[10, p. 205]. O
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4. ERROR ESTIMATE

In this section, we present the error estimate theorem that is of order one.

Theorem 4.1.Under Assumption| 1, I&f be an admissible mesh as given by Definifiof 3.1 and
uy € X(7T), Vi=1,..,d, such thaw'y = u%, Vi =1,..,dforae.z € K,forall K € T
where(ul ) ger IS the solution to[(3]1) 4 (3/6). Let= (u’) be the unique variational solution
of problem [(2.11) —[(2]3) and for eadli € T, ¢} = u'(zx) — u, andel € T defined by
ei-(r) = eb fora.e.x € K, for all K € 7. Then there exist§' > 0 depending only om,
andd such that:

(4.2) HeiTHLT < Csize(T)
and
(4.2 et z2 < diam(2)Csize(T),

where||-||, ;- is the discretefl;-norm.

Proof. Integrating overk’ the equation[(2]1), then:

@3 v [V Todot [ Lite= [ ) vi=1d
oK K ’ K

As
/Vui-ﬁaKdaaK— /Vu Medo Vi=1,...,d.
oK oEEK &

We denote by:

1.

FKJ:—/vui-mda Vi=1,....d,

g

then:
(4.4) FK(,JF/(9 da;—/fi(x) Vi=1,...,d.
K

oc€lfK

Let Fj¢' be defined by:
FI*(’U = 1,(u'(zg) —u'(xy)) fo€&w,0c=K|Li=1,...,d,

F;(lcr = 1u'(eg) Ko€lanNéx,i=1,...d,
then the consistency error may be defined as:

Fy,—Fl =m(o)Ry, Vi=1,....d.
Thanks to the regularity af, there exists; € R, only depending om, such that:
(4.5) |Ri,| < Cisize(T) VK € Tando € & Vi=1,...,d.
If o € & NEK ,0 = K|L, then, we have:
Fp—Fip = Fro— Fiot Fity = Fie,
= m(0)Ric, + Fiy = Fico

(4.6) = m(0) R, + T, (e — 1),
and ifo € &.,; N Ex, then, we have:
4.7) F;ﬁ — F}‘QU = m(J)R’KU + Tae%.
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Subtracting[(3]1) fron[@:%) then:

@8) v Y (Fio — Ficr) / e @ie= 3 n / oyt = [ ) () e

o€lKk K

Multiplying (4.8) by ¢%;, summing forK” € T andi, then we obtain:

3D 9D SISV 3D ) SERTETATED 3) 3p ST N

i KeT oe€k i K€eT oefi i K€eT oe€k
2
(4.9) = E > 7, Doe] +§ > > m(o) R €
i o€ i KeT oeli

Usingdiv(u) = 0 and the relatior (3]4), we deduce that:

(4.10) ZZ(/ z)da —Zps/% ) b = 0.

1 KeT sESK

From the relation(3]6), then:

(4.11) ZZ (/f fKU) = 0.

i KeT

Replacing[(4.9)[(4.10), (4.1.1) ih (4.8), hence:
d d
DD lDaelt == 3037 3 mlo) i el

i oef& i K€eT oe€i

then:

(4.12) Z 53 7 = Z > m(o)Ri ek

i KeT oefik
Thanks to the propriety of conservativity, one hdg , = —R; , for o € &y, such that
o= K|L,letR}, = |R |.
Reordering the summation over the edges and using the Cauchy-Schwarz inequality, one ob-
tains:

ST N mlo)Ri k| <> m(o)|RL|| D]

KeT oe€i ocefk
1
m(o) i)
< (Z y |DUT\2 > m(o)d,|R,” |
o€k ¢ o€E

From the relationﬁS), we hav&’ | < Cysize(7) and we remark thap . m(o)d, = m(Q),

oe€
then we deduce the existence(, only depending om andf?, such that:

(4.13) < Cyllely |l rsize(T).

> > mlo)Ri ek

KeT ek
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Then:

d d
(4.14) Yol < C <Z ||€9H1,7> size(T).
=1 =1

Using Young'’s inequality, there exist$ only depending on, €2 andd, such that:

1

d 2
(4.15) <Z ||eZTH%T> < Cssize(T).
=1

We have:

d 2
(4.16) llerllir < <Z He’TH%T> < Cssize(T) Vi=1,...,d.

=1
Applying the discrete Poincaré inequality, we obtain the relafior} (4.2). O
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