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ABSTRACT. In the present paper, we study an error estimate for finite volume methods for the
stokes equations. The error is proven to be of orderh, in H1

0 -norm discrete and inL2-norm,
whereh represents the size of the mesh. The result is new even for the finite volume method.
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1. I NTRODUCTION

The numerical solution of the Navier-Stokes equations for incompressible viscous fluids has
motivated many authors, so much so that giving a complete bibliography has become an im-
possible task. Therefore, we restrict our attention only to crucial contributions making use
of finite element approximations and mixed finite element methods, among them we mention
[2, 3, 6, 8, 12, 13, 14, 15, 16, 17, 18] (see also the references therein).

The finite volume element method is used in [9], the basic idea is based on the Box method.
From the Crouzeix-Raviart element, the authors constructed the mesh of this method since every
triangulation is associated to the spaces of finite elements. Later on, they applied the Babuska
theorem to the Stokes problem, thus they obtained an analysis of error.

The finite volume projection method for the numerical approximation of two-dimensional in-
compressible flows on triangular unstructured grids is presented in [4]. The authors considered
the unsteady Navier-Stokes equations, the velocity field is approximated by either piecewise
constant or piecewise linear functions on the triangles, and the pressure field is approximated
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2 A.ALAMI -IDRISSI AND M.ATOUNTI

by piecewise linear functions. For the discretization of the diffusive flows, a dual grid connect-
ing the centers of the triangles of the primary grid is introduced there. Using this grid, a stable
and accurate discrete Laplacian is obtained.

The finite volume scheme for the Stokes problem is obtained from a mixed finite element
method with a well chosen numerical integration diagonalizing the mass matrix which is used
in [1]. The analysis of the corresponding finite volume scheme is directly deduced from general
results of mixed finite element theory and the authors gave an optimal a priori error estimate.

The finite volume method on unstructured staggered grids for the Stokes problem is presented
in [10]. The authors used an admissible mesh of triangles satisfying the properties required
for the finite element method. In the case of acute angles, they proved the existence and the
uniqueness of the solution, therefore, if the mesh consist of equilateral triangles, the authors
obtained the convergence result.

In this paper, we are interested in the study of an error estimate for finite volume method
for the Stokes equations in dimensiond = 2 or 3, on unstructured staggered grids. The main
difficulty of this problem is due to the coupling of the velocity with the pressure. For this reason,
we use the Galerkin expansion for the approximation of the pressure such that the pressure
unknowns are located at the vertices. The existence and the uniqueness of the solution results
are proved by Eymard, Gallouet and Herbin in [10]. We prove here that the error estimate is of
order one.

This paper is organized as follows: In Section 2, we introduce the continuous Stokes equa-
tions under some assumptions. In Section 3, we get the numerical scheme and the main results
of the existence and the uniqueness of the numerical solution. Finally, in Section 4, we present
the error estimate for the velocity.

2. THE CONTINUOUS EQUATIONS

We consider here the Stokes problem:

− ν∆ui(x) +
∂p

∂xi

(x) = f i(x) ∀x ∈ Ω ,∀i = 1, . . . , d,(2.1)

d∑
i=1

∂ui

∂xi

= 0 ∀x ∈ Ω,(2.2)

with Dirichlet boundary condition:

(2.3) ui(x) = 0 ∀x ∈ ∂Ω ,∀i = 1, . . . , d,

under the following assumption.

Assumption 1. (i) Ω is an open bounded connected polygonal subset ofRd,d = 2, 3.
(ii) ν > 0.

(iii) f i ∈ L2(Ω); ∀i = 1, ..., d.
In the above equation,ui represents theith component of the velocity of a fluid,ν the
kinematic viscosity andp the pressure. There exist several convenient mathematical
formulations of (2.1) – (2.3).

3. A F INITE VOLUME SCHEME ON UNSTRUCTURED STAGGERED GRIDS

The finite volume scheme is found by integrating equation (2.1) on a control volume of a
discretization mesh and finding an approximation of the fluxes on the control volume boundary
in terms of the discrete unknowns. Let us first give the assumptions which are needed on the
mesh.
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Definition 3.1. Admissible mesh.
Let Ω, be an open bounded polygonal subset ofRd, (d = 2 or 3). An admissible finite volume
mesh ofΩ, denoted byT , is given by a family of control volumes, which are open polygonal
convex subsets of̄Ω contained in hyperplanes ofRd, denoted byE , (they are the edges (2D),
or sides (3D) of the control volumes), with strictly positive(d− 1)-dimensional measure and a
family of points ofΩ denoted byP satisfying the following properties:

(i) The closure of the union of all the control volumes isΩ̄.
(ii) For anyK ∈ T , there exists a subsetEK of E such that∂K = K̄\K = ∪σ∈EK

σ̄, let
E = ∪K∈T EK .

(iii) For any (K, L) ∈ T 2, with K 6= L, either thed-dimensional Lebesgue measure of
K̄ ∩ L̄ is 0 orK̄ ∩ L̄ = σ̄ for someσ ∈ E .

(iv) The family P =(xK)K∈T is such thatxK ∈ K̄ and if σ = K|L it is assumed that
xk 6= xL and that the straight lineDK,L going throughxK andxL is orthogonal toK|L.

(v) For anyσ ∈ E such thatσ ∈ ∂Ω, let K be the control volume such thatσ ∈ EK , if
xK /∈ σ, letDK,σ be the straight line going throughxK and orthogonal toσ. Then the
conditionDK,σ ∩ σ 6= ∅ is assumed, letyσ = DK,σ ∩ σ.

In the sequel, the following notations are used:

• size(T ) =sup {diam(K), K ∈ T }.
• m(K) thed−dimensional Lebesgue ofK, for anyK ∈ T .
• m(σ) the (d− 1)-dimensional Lebesgue ofσ, for anyσ ∈ E .
• Eint = {σ ∈ E , σ 6⊂∂Ω} andEext = {σ ∈ E , σ ⊂ ∂Ω}.
• If σ ∈ Eint, σ = K|L then dσ = dK|L = d(xK , xL) and if σ ∈ EK ∩ Eext then

dσ = dK,σ = d(xK , yσ).
• For anyσ ∈ E the transmissibility throughσ is defined byτσ = m(σ)

dσ
if dσ 6= 0 and

τσ = 0 if dσ = 0.

In some results and proofs given below, there are summations overσ ∈ E0 with E0 = {σ ∈
E ; dσ 6= 0}. For simplicityE0 = E is assumed.

Let us now introduce the space of piecewise constant functions associated with an admissible
mesh and discreteH1

0 -norm for this space. This discrete norm will be used to obtain an estimate
of the approximate solution given by a finite volume scheme.

Definition 3.2. Let Ω be an open bounded polygonal subset ofRd, (d = 2, 3) andT be an
admissible mesh. DefineX(T ) to be the set of functions fromΩ to R which are constant over
each control volume of the mesh.

Definition 3.3. Let Ω be an open bounded polygonal subset ofRd, (d = 2, 3) andT be an
admissible mesh. Foru ∈ X(T ), define the discreteH1

0 -norm by:

‖u‖1,T =

(∑
σ∈E

τσ(Dσu)2

) 1
2

,

where:

Dσu = |uK − uL|ifσ ∈ Eint, σ = K|L.

Dσu = |uK |ifσ ∈ Eext ∩ EK

anduK denotes the value taken byu on the control volumeK.

Lemma 3.1 (Discrete Poincaré inequality). Let Ω be an open bounded polygonal subsetRd,
(d = 2, 3), T be an admissible mesh andu ∈ X(T ), then:

‖u‖L2 ≤ diam(Ω)‖u‖1,T ,
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where‖·‖1,T is the discreteH1
0 -norm.

Proof. See [10, p. 38, 11]. �

AssumeK andL to be two neighboring control volumes of the mesh. A consistent dis-
cretization of the normal flux− 5 u.n over the interface of two control volumesK andL
may be performed with differential quotient involving values of the unknown located on the
orthogonal line to the interface betweenK andL, on either side of this interface.

In [10], the authors consider the mesh ofΩ, denoted byT , consisting of triangles, satisfy-
ing the properties required for the finite element method, see [7], with acute angles only, and
defining, for allK ∈ T , the pointxK as the intersection of the orthogonal bisectors of the
sides of the trianglesK yields thatT is an admissible mesh. Fors ∈ ST , let φs be the shape
function associated tos in P1. A possible finite volume scheme using a Galerkin expansion for
the pressure is defined by the following equations:

(3.1) ν
∑
σ∈EK

F i
K,σ +

∑
s∈SK

ps

∫
K

∂φs

∂xi

(x)dx = m(K)f i
K ∀K ∈ T ,∀i = 1, ..., d,

F i
K,σ = τσ(ui

K − ui
L), if σ ∈ Eint , σ = K|L , i = 1, ..., d,(3.2)

F i
K,σ = τσu

i
K , if σ ∈ Eext ∩ EK , i = 1, ..., d,(3.3)∑

K∈T

d∑
i

ui
K

∫
K

∂φs

∂xi

(x)dx = 0 ∀s ∈ ST ,(3.4)

∫
Ω

∑
s∈ST

psφs(x)dx = 0, and(3.5)

f i
K =

1

m(K)

∫
K

f i(x)dx ,∀K ∈ T .(3.6)

The discrete unknowns of (3.1) – (3.6) areui
K , K ∈ T ,∀i = 1, . . . , d, andps, s ∈ ST .

The approximate solutions are defined by:

(3.7) ui
K(x) = ui

K a.e x ∈ K ,∀K ∈ T ,∀i = 1, ..., d

and

(3.8) pT =
∑
s∈ST

psφs.

The existence and the uniqueness of the solution of the discrete problem (3.1) – (3.6) are proved
by Eymard, Gallouet and Herbin in [10]. Moreover, if the element ofT are equilateral triangles
then they obtained the following convergence result.

Proposition 3.2. Under Assumption 1, there exists an unique solution to (3.1) – (3.6), denoted
by {ui

K , K ∈ T , i = 1, ..., d} and {ps, s ∈ ST }. Furthermore, if the elements ofT are
equilateral triangle, thenuT −→ u, assize(T ) → 0, whereu is the unique solution to (2.1) –
(2.3) anduT = (u1

T , ..., ud
T ) is defined by (3.7).

Proof. See [10, p. 205]. �
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4. ERROR ESTIMATE

In this section, we present the error estimate theorem that is of order one.

Theorem 4.1.Under Assumption 1, letT be an admissible mesh as given by Definition 3.1 and
ui
T ∈ X(T ), ∀i = 1, ..., d, such thatui

T = ui
K , ∀i = 1, ..., d for a.e. x ∈ K, for all K ∈ T

where(ui
K)K∈T is the solution to (3.1) – (3.6). Letu = (ui) be the unique variational solution

of problem (2.1) – (2.3) and for eachK ∈ T , ei
K = ui(xK) − ui

K , andei
T ∈ T defined by

ei
T (x) = ei

K for a.e. x ∈ K, for all K ∈ T . Then there existsC > 0 depending only onu, Ω
andd such that:

(4.1) ‖ei
T ‖1,T ≤ Csize(T )

and

(4.2) ‖ei
T ‖L2 ≤ diam(Ω)Csize(T ),

where‖·‖1,T is the discreteH1
0 -norm.

Proof. Integrating overK the equation (2.1), then:

(4.3) −ν

∫
∂K

∇ui · −→n ∂Kdσ∂K +

∫
K

∂p

∂xi

(x)dx =

∫
K

f i(x) ∀i = 1, . . . , d.

As ∫
∂K

∇ui · −→n ∂Kdσ∂K =
∑
σ∈EK

∫
σ

∇ui · −→n σdσ ∀i = 1, . . . , d.

We denote by:

F
i

K,σ = −
∫
σ

∇ui · −→n σdσ ∀i = 1, . . . , d,

then:

(4.4) ν
∑
σ∈EK

F
i

K,σ +

∫
K

∂p

∂xi

(x)dx =

∫
K

f i(x) ∀i = 1, . . . , d.

Let F ∗,i
K,σ be defined by:

F ∗,i
K,σ = τσ(ui(xK)− ui(xL)) if σ ∈ Eint , σ = K|L; i = 1, . . . , d,

F ∗,i
K,σ = τσu

i(xK) if σ ∈ Eext ∩ EK , i = 1, . . . , d,

then the consistency error may be defined as:

F
i

K,σ − F ∗,i
K,σ = m(σ)Ri

K,σ ∀i = 1, . . . , d.

Thanks to the regularity ofu, there existsC1 ∈ R, only depending onu, such that:

(4.5)
∣∣Ri

K,σ

∣∣ ≤ C1size(T ) ∀K ∈ T andσ ∈ EK ∀i = 1, . . . , d.

If σ ∈ Eint ∩ EK , σ = K|L, then, we have:

F
i

K,σ − F i
K,σ = F

i

K,σ − F ∗,i
K,σ + F ∗,i

K,σ − F i
K,σ

= m(σ)Ri
K,σ + F ∗,i

K,σ − F i
K,σ

= m(σ)Ri
K,σ + τσ(ei

K − ei
L),(4.6)

and ifσ ∈ Eext ∩ EK , then, we have:

(4.7) F
i

K,σ − F i
K,σ = m(σ)Ri

K,σ + τσe
i
K .
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Subtracting (3.1) from (4.3) then:

(4.8) ν
∑
σ∈EK

(
F

i

K,σ − F i
K,σ

)
+

∫
K

∂p

∂xi

(x)dx−
∑
s∈SK

ps

∫
K

∂φs

∂xi

(x)dx =

∫
K

f i(x)−m(K)f i
K,σ.

Multiplying (4.8) byei
K , summing forK ∈ T andi, then we obtain:

d∑
i

∑
K∈T

∑
σ∈EK

(
F

i

K,σ − F i
K,σ

)
ei

K =
d∑
i

∑
K∈T

∑
σ∈EK

τσ(ei
K − ei

L)ei
K +

d∑
i

∑
K∈T

∑
σ∈EK

m(σ)Ri
K,σe

i
K

=
d∑
i

∑
σ∈E

τσ|Dσe
i
T |2 +

d∑
i

∑
K∈T

∑
σ∈EK

m(σ)Ri
K,σe

i
K .(4.9)

Usingdiv(u) = 0 and the relation (3.4), we deduce that:

(4.10)
d∑
i

∑
K∈T

∫
K

∂p

∂xi

(x)dx−
∑
s∈SK

ps

∫
K

∂φs

∂xi

(x)dx

 ei
K = 0.

From the relation (3.6), then:

(4.11)
d∑
i

∑
K∈T

∫
K

f i(x)−m(K)f i
K,σ

 ei
K = 0.

Replacing (4.9), (4.10), (4.11) in (4.8), hence:

d∑
i

∑
σ∈E

τσ|Dσe
i
K |2 = −

d∑
i

∑
K∈T

∑
σ∈EK

m(σ)Ri
K,σe

i
K ,

then:

(4.12)
d∑
i

‖ei
T ‖2

1,T = −
d∑
i

∑
K∈T

∑
σ∈EK

m(σ)Ri
K,σe

i
K .

Thanks to the propriety of conservativity, one hasRi
K,σ = −Ri

L,σ for σ ∈ Eint, such that
σ = K|L, let Ri

σ = |Ri
K,σ|.

Reordering the summation over the edges and using the Cauchy-Schwarz inequality, one ob-
tains: ∣∣∣∣∣∑

K∈T

∑
σ∈EK

m(σ)Ri
K,σe

i
K

∣∣∣∣∣ ≤
∑
σ∈EK

m(σ)|Ri
σ||Dσe

i
T |

≤

(∑
σ∈EK

m(σ)

dσ

|Dσe
i
T |2
) 1

2
(∑

σ∈E

m(σ)dσ|Ri
σ|2
) 1

2

.

From the relation (4.5), we have|Ri
σ| ≤ C1size(T ) and we remark that

∑
σ∈E

m(σ)dσ = m(Ω),

then we deduce the existence ofC2, only depending onu andΩ, such that:

(4.13)

∣∣∣∣∣∑
K∈T

∑
σ∈EK

m(σ)Ri
K,σe

i
K

∣∣∣∣∣ ≤ C2‖ei
T ‖1,T size(T ).
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Then:

(4.14)
d∑

i=1

‖ei
T ‖2

1,T ≤ C2

(
d∑

i=1

‖ei
T ‖1,T

)
size(T ).

Using Young’s inequality, there existsC3 only depending onu, Ω andd, such that:

(4.15)

(
d∑

i=1

‖ei
T ‖2

1,T

) 1
2

≤ C3size(T ).

We have:

(4.16) ‖ei
T ‖1,T ≤

(
d∑

i=1

‖ei
T ‖2

1,T

) 1
2

≤ C3size(T ) ∀i = 1, . . . , d.

Applying the discrete Poincaré inequality, we obtain the relation (4.2). �
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