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Abstract

In this paper we establish new Ostrowski type inequalities involving product of
two functions. The analysis used in the proofs is elementary and based on the
use of the integral identity recently established by Dedić , Pečarić and Ujević.
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1. Introduction
In 1938, Ostrowski [7, p. 468] proved the following inequality:

(1.1)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a) M,

for all x ∈ [a, b] , wheref : [a, b] → R is a differentiable function such that
|f ′ (x)| ≤ M for all x ∈ [a, b].

In 1992, Fink [4] and earlier in 1976, Milovanović and Pěcaríc [6] have
obtained some interesting generalizations of (1.1) in the form

(1.2)

∣∣∣∣∣ 1n
(

f (x) +
n−1∑
k=1

Fk (x)

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ C (n, p, x)
∥∥f (n)

∥∥
∞ ,

where

Fk (x) =
n− k

k!
· f (k−1) (a) (x− a)k − f (k−1) (b) (x− b)k

b− a
,

as usual1
p

+ 1
p′ = 1 with p′ = 1 for p = ∞, p′ = ∞ for p = 1 and

‖f‖p =

(∫ b

a

|f (t)|p dt

) 1
p

.

In fact, Milovanovíc and Pěcaríc [6] (see also [7, p. 469]) have proved that

C (n,∞, x) =
(x− a)n+1 + (b− x)n+1

n (n + 1)! (b− a)
,

http://jipam.vu.edu.au/
mailto:bgpachpatte@gmail.com
http://jipam.vu.edu.au/


New Ostrowski Type
Inequalities Involving the
Product of Two Functions

B.G. Pachpatte

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 13

J. Ineq. Pure and Appl. Math. 7(3) Art. 104, 2006

http://jipam.vu.edu.au

while Fink [4] (see also [7, p. 473]) proved that the inequality (1.2) holds pro-
videdf (n−1) is absolutely continuous on[a, b] andf (n) ∈ Lp [a, b] , with

C (n, p, x) =

[
(x− a)np′+1 + (b− x)np′+1

] 1
p′

n! (b− a)
B ((n− 1) p′ + 1, p′ + 1)

1
p′ ,

for 1 < p ≤ ∞, B is the beta function, and

C (n, 1, x) =
(n− 1)n−1

nnn! (b− a)
max [(x− a)n , (b− x)n] .

Recently, Pachpatte [10] and Dedíc, Pěcaríc and Ujevíc [3] (see also [2])
have given some generalizations of Milovanić-Pěcaríc [6] and Fink [4] inequal-
ities. Motivated by the results in [10] and [3], in this paper we establish new
Ostrowski type inequalities involving the product of two functions. The anal-
ysis used in the proofs is based on the integral identity proved in [3] and our
results provide new estimates on these types of inequalities.

http://jipam.vu.edu.au/
mailto:bgpachpatte@gmail.com
http://jipam.vu.edu.au/


New Ostrowski Type
Inequalities Involving the
Product of Two Functions

B.G. Pachpatte

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 5 of 13

J. Ineq. Pure and Appl. Math. 7(3) Art. 104, 2006

http://jipam.vu.edu.au

2. Statement of Results
Let (Pn) be a harmonic sequence of polynomials, that is,P ′

n = Pn−1, n ≥ 1,
P0 = 1. Furthermore, letI ⊂ R be a segment andh : I → R be such that
h(n−1) is absolutely continuous for somen ≥ 1. We use the notation

L [h (x)] =
1

n

[
h (x) +

n−1∑
k=1

(−1)k Pk (x) h(k) (x)

+
n−1∑
k=1

(−1)k (n− k)

b− a

[
Pk (a) h(k−1) (a)− Pk (b) h(k−1) (b)

]]
,

to simplify the details of presentation. Forn = 1 the above sums are defined to
be zero. In a recent paper [3], Dedić, Pěcaríc and Ujevíc proved the following
identity (see also [2]):

(2.1) L [h (x)]− 1

b− a

∫ b

a

h (t) dt =
(−1)n+1

n (b− a)

∫ b

a

Pn−1 (t) e (t, x) h(n) (t) dt,

where

(2.2) e (t, x) =


t− a if t ∈ [a, x] ,

t− b if t ∈ (x, b] .

For the harmonic sequence of polynomialsPk (t) = (t−x)k

k!
, k ≥ 0 the identity

(2.1) reduces to the main identity derived by Fink in [4] (see also [3, p. 177]).
Our main results are given in the following theorems.
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Theorem 2.1. Let (Pn) be a harmonic sequence of polynomials andf, g :
[a, b] → R be such thatf (n−1), g(n−1) are absolutely continuous for somen ≥ 1
andf (n), g(n) ∈ Lp [a, b] , 1 ≤ p ≤ ∞. Then the inequality

(2.3)

∣∣∣∣g (x) L [f (x)] + f (x) L [g (x)]

− 1

b− a

[
g (x)

∫ b

a

f (t) dt+f (x)

∫ b

a

g (t) dt

] ∣∣∣∣
≤ D (n, p, x)

[
|g (x)|

∥∥f (n)
∥∥

p
+ |f (x)|

∥∥g(n)
∥∥

p

]
,

holds for allx ∈ [a, b], where

(2.4) D (n, p, x) =
1

n (b− a)
‖Pn−1e (·, x)‖p′ ,

e(t, x) is given by (2.2) andp, p′ are as explained in Section1.

Theorem 2.2. Let (Pn), f, g, f (n), g(n) andp be as in Theorem2.1. Then the
inequality

(2.5)

∣∣∣∣L [f (x)] L [g (x)]

− 1

b− a

[
L [g (x)]

∫ b

a

f (t) dt+L [f (x)]

∫ b

a

g (t) dt

]
+

(
1

b− a

∫ b

a

f (t) dt

)(
1

b− a

∫ b

a

g (t) dt

)∣∣∣∣
≤ {D (n, p, x)}2

∥∥f (n)
∥∥

p

∥∥g(n)
∥∥

p
,
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holds for allx ∈ [a, b], whereD(n, p, x) andp′ are as in Theorem2.1.

Remark 1. If we takeg(t) = 1 and henceg(n−1) (t) = 0 for n ≥ 2 in Theo-
rem2.1, then we get a variant of the Ostrowski type inequality given by Dedić,
Pečarić and Ujević in [3, p. 180]. We note that the inequality established in
Theorem2.2 is similar to the inequality given by Pachpatte in [9, Theorem 2].
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3. Proofs of Theorems2.1and 2.2
Proof of Theorem2.1. From the hypotheses we have the following identities
(see [3, p. 176]):

(3.1) L [f (x)]− 1

b− a

∫ b

a

f (t) dt =
(−1)n−1

n (b− a)

∫ b

a

Pn−1 (t) e (t, x) f (n) (t) dt

and

(3.2) L [g (x)]− 1

b− a

∫ b

a

g (t) dt =
(−1)n−1

n (b− a)

∫ b

a

Pn−1 (t) e (t, x) g(n) (t) dt.

Multiplying (3.1) and (3.2) by g(x) andf(x) respectively and adding the result-
ing identities we have

(3.3) g (x) L [f (x)] + f (x) L [g (x)]

− 1

b− a

[
g (x)

∫ b

a

f (t) dt + f (x)

∫ b

a

g (t) dt

]
=

(−1)n−1

n (b− a)

[
g (x)

∫ b

a

Pn−1 (t) e (t, x) f (n) (t) dt

+f (x)

∫ b

a

Pn−1 (t) e (t, x) g(n) (t) dt

]
.

From (3.3) and using the properties of modulus and Hölder’s integral inequality
we have∣∣∣∣g (x) L [f (x)] + f (x) L [g (x)]− 1

b− a

[
g (x)

∫ b

a

f (t) dt + f (x)

∫ b

a

g (t) dt

]∣∣∣∣
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mailto:bgpachpatte@gmail.com
http://jipam.vu.edu.au/


New Ostrowski Type
Inequalities Involving the
Product of Two Functions

B.G. Pachpatte

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 9 of 13

J. Ineq. Pure and Appl. Math. 7(3) Art. 104, 2006

http://jipam.vu.edu.au

≤ 1

n (b− a)

[
|g (x)|

∫ b

a

∣∣Pn−1 (t) e (t, x) f (n) (t)
∣∣ dt

+ |f (x)|
∫ b

a

∣∣Pn−1 (t) e (t, x) g(n) (t)
∣∣ dt

]
≤ 1

n (b− a)

[
|g (x)|

{∫ b

a

|Pn−1 (t) e (t, x)|p
′
dt

} 1
p′ {∫ b

a

∣∣f (n) (t)
∣∣p dt

} 1
p

+ |f (x)|
{∫ b

a

|Pn−1 (t) e (t, x)|p
′
dt

} 1
p′ {∫ b

a

∣∣g(n) (t)
∣∣p dt

} 1
p

]
= D (n, p, x)

[
|g (x)|

∥∥f (n)
∥∥

p
+ |f (x)|

∥∥g(n)
∥∥

p

]
.

The proof of Theorem2.1 is complete.

Proof of Theorem2.2. Multiplying the left sides and the right sides of (3.1) and
(3.2) we get

(3.4) L [f (x)] L [g (x)]

− 1

b− a

[
L [g (x)]

∫ b

a

f (t) dt + L [f (x)]

∫ b

a

g (t) dt

]
+

(
1

b− a

∫ b

a

f (t) dt

)(
1

b− a

∫ b

a

g (t) dt

)
=

(−1)2n−2

n2 (b− a)2

{∫ b

a

Pn−1 (t) e (t, x) f (n) (t) dt

}
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×
{∫ b

a

Pn−1 (t) e (t, x) g(n) (t) dt

}
.

From (3.4) and following the proof of Theorem2.1 given above with suitable
modifications, we get the required inequality in (2.4). The proof of Theorem
2.2 is complete.

Remark 2. Dividing both sides of (3.3) and (3.4) by (b − a) and integrating
the resulting identities with respect tox over [a, b], then using the properties of
modulus and Hölder’s integral inequality, we get the following inequalities

(3.5)

∣∣∣∣ 1

b− a

∫ b

a

[g (x) L [f (x)] + f (x) L [g (x)]]dx

−2

(
1

b− a

∫ b

a

f (t) dt

)(
1

b− a

∫ b

a

g (t) dt

)∣∣∣∣
≤ 1

b− a

∫ b

a

D (n, p, x)
[
|g (x)|

∥∥f (n)
∥∥

p
+ |f (x)|

∥∥g(n)
∥∥

p

]
dx,

and

(3.6)

∣∣∣∣ 1

b− a

∫ b

a

L [f (x)] L [g (x)]dx

−
[(

1

b− a

∫ b

a

L [f (x)] dx

) (
1

b− a

∫ b

a

g (x) dx

)
+

(
1

b− a

∫ b

a

L [g (x)] dx

)(
1

b− a

∫ b

a

f (x) dx

)]
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+

(
1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)∣∣∣∣
≤ 1

b− a

∥∥f (n)
∥∥

p

∥∥g(n)
∥∥

p

∫ b

a

{D (n, p, x)}2dx.

We note that the inequalities obtained in (3.5) and (3.6) are respectively similar
to the well known Grüss [5] and Čebyšev [1] inequalities (see also [8]) and we
believe that these inequalities are new to the literature.
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