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ABSTRACT. In this paper, we try to solve the problem which arises in connection with the
stability theory of a periodic equilibrium solution of Navier-Stokes equations on an infinite strip
R x]-11].
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1. INTRODUCTION

This problem arises in connection with the stability theory of a periodic equilibrium solution
of Navier-Stokes on infinite strifg = R x | -1, 1].

T 202
Consider the Navier-Stokes equation on an infinite $trip R x }—%, %[
(1.2) U =vAU — (U-V)U+Vp+ f

with f = f(x,y) a smooth time independent outer force@nwhich is L -periodic inz for
someL.

Let a smooth equilibrium solutiobly = (uo, vy), po of (1.1) be given, which i€ -periodic in
x andU, = 0 on 9df2. The stability ofUy = (uo,vo), po can be studied against small perturba-
tions under two aspects:

(I) The perturbations are themselvesperiodic inz.
(Il) The perturbations are i6£2(£2))2.
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2 A. ALAMI -IDRISSI AND S. KHABID

The relation between (1) and (1) is the mathematical tools used by physicists in connection
with Schroedinger equations with periodic potentials [3]. The main tool thereby is the notion
of direct integrals (see [1] | [3] [.[5]/.[8]). This notion is based @rPeriodic functions (ie.
generalisation of periodic functions).

In this paper we study the Stokes operators which arise in the so-called Bloch space theory of
equation[(1.]1). This theory, well established in the case of Schroedinger equations with periodic
potentials [3] extends to the Stokes operators which occur in Navier-Stokes and related equa-
tions, but the corresponding theory is now more involved, [see [8] where the three dimensional
case (3d) is treated. The Stokes operators which appear in connection wjith (1.1), either 2d or
3d, are of the form:

(1.2) PAU — P(V -V) = P(U - V)V.

HereV is a fixed velocity field, periodic in the unbounded space directiorms {, y), U is the
argument on which the operator acts, whites the orthogonal projection onto the space of
divergence free fields. Three cases are of interest:

(@) U € (H*(Q) N HY(Q))?, divU = 0.

(b) U is periodic in the unbounded space directions.

(c) U is Floquet - periodic in the unbounded space directions.

Case (b) subsumes under casel(t) [2]; case (a) is handled in [4]. Case (a) and (c) are related
by certain spectral formulas, well known in case of the Schroedinger equations with periodic
potentials. In the 3d-case however, these spectral formulas associatgd vith (1.2) are more com-
plicated than in the Schroedinger case due to the appearance of singularities ([8, Sect 9.4, 9.5]).
The purpose of the present paper is to show that in the 2d-case these singularities are absent
and that the spectral formulas associated with| (1.2) have precisely the same formula as in the
Schroedinger case. To this effect we study first the most important specidl=€). We have
to perform estimates similar to those in Sections 6.4—6.7of [8]. In our estimates, which are
considerably simpler, singularities do not appear.

How this fact can be exploited so as to obtain the mentioned spectral formulas is outlined in
subsequent sections.

2. NOTATION

For X',V Banach spaces; ||, , [|-||,, are their respective norms.(X,)) is the space of
bounded operators frod to ) with ||7'|| the operator norm.

For A alinear operator oA’ andE C X a subspaced |z is the restriction ofd to F.

For any(2, H?() is the Sobolev space of functions having square integrable derivatives up
to orderp with (-,-), and |||, the usual scalar product and norm &if(€2).We set

L£3(Q) = H'(Q) and||||;, = I/l 7y @nd extend this notation to vectors and set:

lullze = Nuallze + lluz ]z
whereu = (uj,uz) € (L£2)% Likewise with the Sobolev norms. The scalar product on
(HP(Q))*is (:,-),, with:
2
(,v)p = (i, vi)p, i, v; € HY(Q),

i=1
whereu = (uy, ug), v = (v1,v2) Weset(:,-) = (-, ). ) )
C?(Q) is the space of functions times continuously differentiable da andC{ () is the

space of functiong € C?(Q2) with supp f compact.
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3. © -PERIODIC FUNCTION

We fix a periodZ > 0, setQ;, =0, L[ andQ = Q. x |3, 1|, for some smalt > 0 and put
M, =] — €,21 + €[ with M = [0, 27]. Also, let)M, be M, minus the numbers 0 ari.
We define @-Periodic function: Fo® in M,; f € C§(Q) if f € C?(Q) and
fle+jL.y) =e"®f(z,y).j € L, (x,y) € Q.

We define the functional spacesy (Q) isthe setoff € £2(Q) suchthatim,, ||f, — |l ;» =
0 for some sequencg, € CE(Q).

We also Ietﬁg be the subspace d@(Q) containing the elements such thatf(z, —y) =
f(x,y) a.e. Likewise withC} andf(z, —y) = — f(z, y) a.e Finally, we putL? = (£*)*, L? =
Lo x Lz andL; = L7 x L2,

It is easy to prove that:

L*=Lo L,

4. FOURIER SERIES

We consider the eigenvalue problegi: 4+ Ay = 0 on} —%, % [ with Neumann resp. Dirichlet
boundary conditions.
In the first case we have a complete orthonormal (C.O.N) systefh(i):

o = (—1)*V2cos 27ky for k> 1,90 = 1,
ors1 = (—1)*V2sin(2k 4+ )my for k>0,

A, = p?r? is an eigenvalue associatedg, o iS even,py., 1 0dd and moreovep,(1/2) =
V2 for p > 1. For the other case we have a (C.0.N) system given@% = ¢, where

U = —/Ryp,forp > 1.
Since parity iny will be important we introduce notations:, = wor1, % = Yops1, Ak =
Aogpi1, k>0, andpy = @op, T = Yo fOr k > 1,9 = 1 andu = Agi. FOred € M, we set:
&= (2ra+0)L7!, o € Z ande,, = €.

We have a characterization of spadég,, H;, H; with the Fourier series:

Let f € £2(Q) have Fourier series:

F= " faieati =Y faicathi
With respect td{e,p;} resp{e.v;}.
Proposition 4.1.  (a) f € H, iff
D (67 + M) [ fail” < o0.
(b) f € Hy, iff
SO0 + A9 || < o0
For a proof se€ [6]. We have the characterization of sg&teo:

Proposition 4.2. Let f € £2(Q) satisfy> (4% 4+ A;)? | fai® < co. thenf € H? and
1F13e < € (3262 + A2 | faal)

for a C independent of € M.. Likewise with) (&% + A;)?

2

foz,z'
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For a proof se€ |6].
Our aim is to prove:

Theorem 4.3.  (a) There isC' > 0 as follows. IfU € dom(A,(0)) N Ej and A;(0)U = f
for somef € M., f € Ej thenU € (Hj;)* and
10Uz < ClIfll g2 -
(b) Under the conditiond/ € dom(As(0)) N Ey or U € dom(A4(0)) N E, the assertion
(a) holds.

Proposition 4.4.1f f € Hj has Fourier serie$ ", . aq jea0; theny fa, ;| < coandf € Hy,,
iff Zj aq,j = 0, in Z.
Remark 4.5. Propositiorj 4.4 is a consequence of Propositions 6.1 and 6.3 in [8].

For the proof of this theorem we need the Proposition 6 used in [7]; we ppcall 2L 2’““

Proposition 4.6. There arel'y, I'; such that fors > 0:

(i) To(1+5)% < S +5%)2 <Ty(1+5)7%
(i0): oM +s%) 7 <Ti(l+s)7Y

(i) SN +sH)2< (1 +s8)7Y

(iU): Z )\k()\k -+ 52)_2 < F1<1 —+ S)_l.

Proof of Theorerfi 4]3Since, in the first part of the proof, the factor! appears which is later
cancelled, it is advantageous to assume firstdrat\/..

We takelU = (A, B) € (Hy,) N L such thatlivU = 0.

We know that if L7 = L2 x L7 thenA € £ andB € L and with the characterization of
spaceﬂLI@{0 by Fourier series we have

A= Z Ajaeoﬂ'j andB = Z BjOé@oCO'j

such thad " (\; + &?)|Aj.|* < oo, likewise for B, the components of = (a, b) admit expan-

sions too,
a = Z Aj0€aTj andb = Z bjaeaaj.

U is a weak solution of\,(0)U = f for f € E, if and only if:

2

(4.1) D (VUL V) + (V) =0

i=1

forall vV e (H;,)>.
As a test vector irf (4]1) we take:

V = (uOTO + U;Tj, WoOQ + ij'j) S (H;}O)Q,
wherebydivV = 0, thus:
(42) \/ )\jwj = —axu]' and\/ AWy = —(‘Luo.

Hereu, € Hj(Qy) is arbitrarily fixed.
As in paper|[7], we havey, + w; = 0. From the divergence condition we deduce that since

\F“O + \/_uj is constanB-periodic, then:; = \/\/;:juo.
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By exploiting the arbitrariness @f,, 1) we reach certain equations for the Fourier coefficients
Aj,on Bj,om Aj.os bjpw

We note:
):jz)\j+d2,]>0, o € L,

(A)j(@) = \jAjo = aja,j 20, a €L,

(B);(@) = \;jBja — bj0,j >0, a €l
We obtain:

VA i& iév
(43) —YZ(A)(a)+ (A)(a) — —=(B),(a) + ——=(B)o(a) =0, ,j > 0.
From the divergence condition far f we get:
(4.4) (By(e) = ——=(A)(a).5 2 0
J
From the conditior® € M, we geta # 0 then:
i/

(4.5) (A)j(a) = ‘/A_](B)j(a»

So according td (4]3) anfl (4.5) we have:
(4.6) Ni(B)j(@) = Xo(B)o(a).
By using Propositio4 we have ; B;, = 0, and then:

(

Boo =k (Xo S (A) 2o — Zj>1():j)lbj,a> :

Jj=1

4.7)

j>1

k= (1 + (Xo)? Z(Xj)Q) = k().

Having B, ,, we can expres$;,,j > 1 via (4.7) and them4; ,,j > 0 via (4.3). Then[(4]3)
becomes:

" %

(4.8) \/A_j(A)j = m(A)o
Equation [(4.p) gives us (for = 0):

(A)o() = 2 (Bofo)
Thus,
(4.9) (A)j(e) = i‘/AA_fAO<B>o(a>,

Oé)\j

and from [4.7) we deduce:
(4.10) (B)o(a) = —k(bo.a + Ao Y (X)) "bja).
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6 A. ALAMI -IDRISSI AND S. KHABID

By the divergence condition we replakg, by a;, in (4.10). If we replacéB),(«) in (4.9) by
its value we obtain:

—\/)\_):0]%’ 1 ~ <
(4.11) A)j(a) = =~ Ao + A AV2A) M aga |
( )]( ) )\j \/>\_O 0 08221( )

As can be seen from (411), the expression(fo); () does not contain any factar !, that is
no singularity, we may therefore assume from now on éhati/..

By (4.11) we have:
(A); (@) = I; + 11,
where
—\/ iAok
I = VY AN .
J 7j>1
and
—/A )\
II; = :
\j \/_

We note that by Propositign 4.4 @I is found such that,
k<Ta(l+s)7", (s=|al),

then:
~ 2
Ao k? NP IR _
|1;]* < J):z (Z(As) 2(Mo)?(Ns) 1) (Z\as,aﬁ)
7 s>1 s>1
F%(l ) )‘0+3 2
= (A + 52)2 ST [ 2l
s>1 s>1
< —Z @50l
s>1
Thus,
DD NLP<CY D asal®
a j2>1 a s>1
and forI1; we have:
~ 2
Ao k?
15]? = 25— ap o)
j A0
then: - )
Ai( Ao+ 8°)°T5(1+s)
_[I 2 < ] 2 2
| ]| — ()\j+52)2)\0 |a0,a|
and
S L < C'(1+ 5)2lagal”
j>1
Therefore
ZZ ’[I ’2 < Clz |a0a\
a j2>1

We still have to look at A)y(«). We recall [(4.1] ‘) for; = 0 and we can estimate(«) by
Propositiorj 4.6.
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For (B);(a): By (4.4) and [(4.9) we can deduce by using Propositiof 4.4 that there is a
f—independent’; such that:

DD B <G YT bl

The proof of(b) is very similar.
Conclusion:
1Ullg2 < ClIFl 2

5. COMMENTS

As indicated, due to the fact that the singularity= 0 resp. § = 27 drops out in the
computations presented in the previous sections, the spectral theory, carried out for dimension
d = 3in[6], [8] simplifies considerably. Partly for this reason and partly for reasons of space we
concentrate here on briefly describing the final result which emerges from this simplification. In
order to describe the manner in which the spectral formula (**) in [6] simplifies, we recall the
objects which appear in it. Following Sectidrjs 2 ahd 3, we havé-eriodic Sobolev spaces
H(Q), Hy(Q), 8 €] — €, 2m + €], the orthogonal projectioR, from £*(Q)* onto Ey, with Ej
the £*-closure of the set of € H;(Q) x Hy,(Q) such thadiv f = 0. The periodic Stokes
operatorAgs(#) is now defined as follows:

(5.1) fedom(As(9)) it f e (Hi(Q)N Hyo(Q))?
anddiv f =0, and for suchf, Ag(0)f =vPAf.
Next, we recall that, as stressed in the introduction, we are given a smooth velocity feld

(v1,v3) on R x [, 1] which is L-periodic in the unbounded variabte that gives rise to an
operator]” acting on elements = (u;, u3) € dom(Ag(f)) according to
(5.2) Tu = —(v10u1 + v30,u1, V10,u3 + v30,u3).

We briefly digress on the periodic case which ariseg/fer 0 of § = 27. In accordance with
[6] we stress this case by the label ‘per’ rather thargby 0 or 6 = 27. Thus Ag(per) =
Ag(0) = Ag(2m), H?,.(Q) = HY(Q) = HY (Q), etc. In order for the spectral formulas below

per

to be valid, we have to defing,.,, As(per), Py as follows:

(5.3) Eyer is the £2—closure of all vector fields v = (f, h)
in H!.(Q) x H]..(Q) such that div f = 0 and /Qfdxdz =0
(5.4) v=(f,h)isin dom(Ag(per))if v € (Hp(Q) N Hyero(Q))*,

dive = 0 and / fdxdz = 0; for such v we set
Q

Ag(per)v = vPye;Av, where P,, is the orthogonal projection
from £2(Q)* onto Fpe,.

With this definition, A (per) is selfadjoint onk,.,.
Finally we need corresponding objects defined on the wholeQteipR x (— , %) Thus

(5.5) E is the £*—closure of f € H'(Q) x Hy(f)
such that div f =0,
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(5.6) f € dom(Ag) iff f € (H*(Q) N H(N))? and div f =0,
and for such f we set Agf = vPAf.

For elements’ € dom(Ag), the operatofl” acts again vig (5]2). Under these stipulations, the
operators

G = AS + PT, G9 = AS<9) + PQT7 Gper = Ag(per) + PperT

all become holomorphic semigroup generatorskont,, E,., respectively. The spectral for-
mulas, announced above now are:

((22),) o(Ag + PT) = closure U (As(0) + PT) |,
0e(0,27)
((22),) o(As+PT) = |J (As(0) + RT).
0€[0,2x]

These formulas correspond to formulas (*), (**) i [6, p. 169]. WHi}2), looks the same as

(*) in [6], (22), is definitely simpler; it implies in particular that X € o(Ag(per) + Py 1)
then\ € o(As + PT'), a statement which cannot be asserted in dimengien3 as can be
seen from formula (**) in[[6]. The proof of22), is based on the computations in the present
Sectior] 4, which entail that the singularities which arise in dimengien3 in [6], drop out.

The detailed verification of this claim is by a careful examination of the arguments in [6], a task
within the scope of this paper.
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