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ABSTRACT. Nonlinear integral inequalities of Gronwall-Bihari type for piecewise continuous
functions are solved. Inequalities for functions with delay as well as functions without delays
are considered. Some of the obtained results are applied in the deriving of estimates for the so-
lutions of impulsive integral, impulsive integro-differential and impulsive differential-difference
equations.
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1. INTRODUCTION

Integral inequalities are a powerful mathematical apparatus, by the aid of which, various
properties of the solutions of differential and integral equations can be studied, such as unique-
ness of the solutions, boundedness, stability, etc. This leads to the necessity of solving various
types of linear and nonlinear inequalities, which generalize the classical inequalities of Gron-
wall and Bihari. In recent years, many authors, such as S.S. Dragomir ([2] — [4]) and B.G.
Pachpatte [([5] - [10]) have discovered and applied several new integral inequalities for contin-
uous functions.

The development of the qualitative theory of impulsive differential equations, whose solu-
tions are piecewise continuous functions, is connected with the preliminary deriving of results
on integral inequalities for such types of functions ($ee [1] and references there).

In the present paper we prove some generalizations of the classical Bihari inequality for
piecewise continuous functions. Two main types of nonlinear inequalities are considered —
inequalities with constant delay of the argument as well as inequalities without delays. The ob-
tained inequalities are used to investigate some properties of the solutions of impulsive integral
equations, impulsive integro-differential and impulsive differential-difference equations.
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2 S.G. HRisTOovVA

2. PRELIMINARY NOTES AND DEFINITIONS

Let the points;, € (0,00), k = 1,2,... are fixed such thai,;; > ¢, andlimy t;, = oo.
We consider the se?C'(X,Y) of all functionsu : X — Y, (X C R,Y C R") which are
piecewise continuous iX with points of discontinuity of the first kind at the points € X,
i.e. there exist the limitimy,;, u(t) = u(tx+) < oo andlimyy,, u(t) = u(ty—) = u(ty) < oco.
Definition 2.1. We will say that the functioiiz(u) belongs to the clasd/; if
(1) G € C([0,00), [0, 00)).
(2) G(u) is a nondecreasing function.
Definition 2.2. We will say that the functioiiz(u) belongs to the clasg’z(y) if

(1) G € Wh.
(2) There exists a functiop € C([0, c0), [0, 00)) such that7(uv) < o(u)G(v) for u,v >
0.

We note that if the functioly € 1, and satisfies the inequality(uv) < G(u)G(v) for
u,v > 0thenG € Wy(G).
Further we will use the following notations,:_, a, = 0 and][+_, ax = 1 for k < 0.

3. MAIN RESULTS

As a first result we will consider integral inequalities with delay for piecewise continuous
functions.
Theorem 3.1. Let the following conditions be fulfilled:

(1) The funCtiongla f27 f37p7 g€ C([O’ 00)7 [07 OO))

(2) The function) € C([—h, 0], [0,00)).

(3) The function) € Ws(¢) andQ(u) > 0 for u > 0.

(4) The function? € W;.

(5) The functioru € PC(|—h, ), [0, 00)) and it satisfies the following inequalities

uwSﬁw+ﬁ@GG+AP@mmmw+Aamwm—me
(3.1) +f3(t) Y Bru(ty) for t >0,

(3.2) w(t)<y(t) fortel—h,0],

wherec > 0,06, >0, (k=1,2,...).
Then fort € (ty, tx11] N [0,7), £ =0,1,2,... we have the inequality

@s)mwSp@Ik1+@mm>

X (1 +G (Hl {H(A) + Z/tt p(s)p [p(S) 1:[(1 + 6jp(tj))] ds

i=1 ' ti- j=1
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+A(t)2/ti 9(s)¢ [p(sh)) 11 (1+ﬁjp(tk))] ds

i=1 Y- Jj:0<t;<s—h

+A@{KZK$¢[M8hDA 1 <1+ﬁw@01cw}>),

where

0 for te]0,h],
(3.4) A(t) = {

1 for t>h,

p(t) =max{f;(t):1=1,2,3}, A=c+hBQ(By),
By = max{g(t) : t € [0,h]}, By = max{y(t) : t € [—h,0]},

H“:lww+e@r

y—sup{tEO:H(A)+thi p(s)p

—l—/ttp [ H + Bip(t; ] s
+Aw§;[lmeMh»jH a+@mm1%

+A() /ttg(é’)w {p(s -n) JI a+ ﬁjp(tk))] ds € dom(H ")

O<t]-<s—h
for T € (tkathrl] N [O,t], k= 0,1,... },

and H~! is the inverse function off (u).

Proof.
Case 1l.Lett; > h.
Lett € (0,h] N[0,7) # 0.
It follows from the inequalitieq (3]1) anf (3.2) that foe (0, 4] N [0, v) the inequality

(3.6) ) < pl0) (146 (4+ [ or@utenas ) )
holds.

Define the functlomO :[0,h] N [0,7) — [0, 00) by the equality
(3.7) v9®=A+Ap@@mwm.
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The functlonv(o)( t) is a nondecreasing differentiable functiononi] N [0,~) and it satisfies
the inequality

(3.8) u(t) < p(t) (1+ G’ (1))
The inequality[(3.B) and the definition (5) of the functifiifv) yield
d .o (v ()’
3.9 —H(vy (1)) = < p(t t) ).
39 #O0) = a < e (o00)

We integrate the inequalit.9) from O tdor ¢ € [0,h] N [0,7), and we use)@(()) = Ain
order to obtain

(3.10) HOP W) < B+ [ 9616 (o)) s

The inequalities[(3]8) and (3.]10) imply the validity of the inequality|(3.3)fer[0, 2] N [0, ).
Lett € (h,t1] N[0,7) # 0.

Then
01+ 6 (0 + [ pQnuisnas
- ht 9(5)Q(u(s — h))ds))
(3.11) = p(1) (1 + G(vé”(t)))

Wherev0 . [h,t1] N[0,v) — [0, 00) is defined by the equality
@12) 0=+ [ Qs+ [ ao)Qu(s ~m)ids

Using the fact that the functiowf)(t) is nondecreasing continuous avﬁﬂ)(t —h) < v(()o)(h) <
vél)(t) for h <t < min{2h,t,}, we can prove as above that

t

H0(0) < HE0) + [ pl)e(pl)) ds

h

v tg(s)w(p( h>)ds
+/0 p(s
(3.13) / 9(s)g (( ))ds

The inequalities[(3.11)] (3.13) prove the validity [of (3.3)t0@ (%, ¢1] N [0, 7).
Define the function
{ u(t) fort €0, h),

vo(t) =
osP(t) fort € (h,ty)].

Now lett € (¢1,t2) N [0,7) # 0.
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Define the function, : [t, #] N [0,) — [0, 00) by the equality
Gl wO-ul+ fp<s>@<u<s>>ds - f o(5)Q(u(s — h))ds.
The functionu, (¢) is nondecreasing differentiable or (t1, 5] N [0,7), v1(£) > vo(t1) and
u(t) < plt) (1 + G(U1 (t)) + ﬂlu(t1)>
< p(t) (1 + G(v1<t)) + Biplth) (1 + G(%(tl))))
(3.15) < () (14 () ) (1+ Auoten) )

Consider the following two possible cases:

Case 1.1Leth <ty —t; andt € (t; + h,t5] N [0,7). Then from[(3.15) we have
utt=1) < pte = 1) (14 Gl — 1) ) (1+ o)
< ptt =) (14 Ge) ) (14 Buole)
(3.16) — p(t —h) (1 + G(Ul(t))> 11 (1 + ﬁkp(tk))

0<tip<t—h

Case 1.2Leth >ty —ty ort € (t1,t1 + h| N [0,7). Then
(3.17) u(t — h) < p(t — h) (1 + Gwo(t — h))).
Using the inequality[(3.17) and(t — h) < v (t) we obtain
u(t —h) < p(t — h) (1 + G(vl(t)))
(3.18) — p(t —h) (1 + G(vl(t))> 11 (1 + ﬂkp(tk>>.

0<tp<t—h

The inequalities (3.15)| (3.16), (3/18) and the properties of the fun€ian imply
vy (t) = pt)Q(u(t)) + g(t)Q(u(t — h))
< (oo o1 + 1))

rae(se-n T (1+ o) )}

0<trp<t—h

(3.19) x Q(l + G(v (t))).
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We obtain from the definition (5) and the inequality (3.19) that
L (m(®))
" o(1+ G )
< p()p(p(t)(L+ Bip(tr)))
(3.20) +9(t)p (p(t -n J1 (1 + ﬂkp(tk))) :

0<tp<t—h

We integrate the inequality (3.20) fromto ¢, use the inequality (3.13) and obtain

H(vi(t)) < H(vo(t1)) +/t P(S)SD(P(S)(l + 510@1)))615
+ /ttg(SWP(S —h) ( H (1 +51<:P(tk:))> ds

0<trp<t—h

< H(A) + /Otl p(S)@(p(s))ds
+ /tltp(SM(p(s)(l 4 51/,@1))) s

(3.21) +/t g(s)ep(s — h) ( II « +6kp(tk))) ds.

0<tp<t—h

The inequalitied (3.15) and (3]21) imply the validity of the inequallity| (3.3} fer(t1, 2] N[0, 7).
We define functionsy, : [tx, tx+1] N [0,7) — [0, c0) by the equalities

(3.22) m@zmdm+ZP@MMW%+ZQ@QM&WW&

The functions(¢) are nondecreasing functiongt) > v,_1(tx) and fort € (¢, tx+1] N[0, 7)
the inequalities

u(t) < p(t) <1+G(’uk )+Zﬁl >
SP(){1+Gvk +Zﬁz
+6p(tr) (1 + Gluea(t)) + iﬁiu(ti)> }
< p(t) (1 + G(u(1)) + Zﬁz i ) (1 +ﬁkp(tk)>
(3.23) << () {f[ <1 - @'P(ti)) } (1 + G(vk(t)))

i=1

hold.
Using mathematical induction we prove that inequality |(3.3) is truetfar (t,¢4+1] N
0,7),k=1,2,....
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Case 2.Let there exist a natural number such that,, < h < t,,,1. As in Case 1 we prove
the validity of mequalltyl) using the functiong € C([tk,tkH] [0,7), [0, oo)) defined
by the equalities

vp(t) = vp_1(t) + /tp(s)Q(u(s))ds for k=0,1,...,m,

tg
t

(3.24) mw—wﬂm+/}@mwmw+/g@@w&mew>m

ty tg

O

In the partial case when the functigris) in Definition[2.2 is multiplicative, the following
result is true.

Corollary 3.2. Let the conditions of Theorein B.1 be satisfied and the fungtisatisfy the
inequalityp(ts) < o(t)p(s) fort, s > 0.
Then fort € (tx, tr1] N [0, v3) the inequality

k

(3.25) u(t) < p() H(l + Bip(ti))

X {1 + G(H‘1 <H(A) + <ﬁ(1 + @‘P(ti))

i=1

XA%M@¢@@»+A@MQM@@_h»M%)}

holds, where the functions(t) and H (u) are defined by the equalities (B.4) afd (3.5), respec-
tively, and

k
(3.26) 73 =sup {t >0:H(A)+¢ (H(l + @‘P(Q‘))

géwwwmm+A@mmmm—m»@emefw
for 7 € 0,t]},

In the case when the functiofi(¢) = 0 in inequality [3.8), we can obtain another bound in
which the functionH () is different and in some cases easier to be used.

Theorem 3.3. Let the following conditions be fulfilled:
(1) The functionsf, f2, p, g € C([0, 00), [0, c0)).
(2) The function) € C([—h,0], [0, 00)).
(3) The functiony € W5(¢) andQ(w) > 0 for u > 0.
(4) The functionG € ;.

(5) The functioru € PC(|—h, o0), [0, 00)) and it satisfies the inequalities
0 < 106 e+ [ pQuuisnds+ [ a0Qu(s - 1)as)
0 0
(3.27) + fa(t) Y Bru(ty) for t >0,
0<tp<t
(3.28) u(t) < ¢(t) for t € [—h,0],
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wherec > 0,06, >0, (k=1,2,...).
Then fort € (tx,tr41] N [0,7), (k= 1,2,...) we have the inequality

(3:29) u(t) < p(t) [ J(1 + Bin(t:))
xa( { +Z/ [ () [T+ Ao >>] ds
+/ttp [ H (14 B;p(t; ] ds

Jj=1

J:0<t;<s—h

+A(t)Zli g(s)e [p(s—h)) 11 (Hﬂjp(tk))] ds
+A(t>/t g(s)e {p(s -n) ][] « +ﬁjp(tk))] ds}) :

j:0<tj<s—h

whereA(t) is defined by equality (3.4), the constaritsB;, B,, v are the same as in Theorem
B.1,p(t) = max{fi(t) : i = 1,2},
Y ds
(3.30) H(u) = — A >y >0.
w QG(s) '

The proof of Theorer 3|3 is similar to the proof of Theofenj 3.1.

As a partial case of Theordm B.1 we can obtain the following result about integral inequalities
for piecewise continuous functions without delay.
Theorem 3.4. Let the following conditions be satisfied:

(1) The functionsfy, fz, fs,p € C([0, 50), [0, 50)).

(2) The function € Wy () and@Q(u) > 0 for u > 0.

(3) The function? € ;.

(4) The functiorw € PC(]0,00), [0, 00)) and it satisfies the inequalities

(3.31) u(t)gf1<t>+f2<t>a{c+ / p()Q(u(s))d }+f3 S Grulty),for ¢ > 0.

0<tp<t
wherec > 0,06, > 0,(k=1,2,...).
Then fort € (ty, ty11] N [0,71), £ =0,1,2,... we have the inequality

(3:32) u(t) < p® (1 + Bin(t))

x (1 e (H_1 {H(a) 3 / T [p<s> I+ @p(tj))] ds

i=1 Jj=1

+ [ sl [p< S TT0+ (e >>] d}))

J=1
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where the functiof () is defined by equality (3.5)(¢) = max{f;(t);i = 1,2},

vl—sup{wo Hc +Z/ [ ﬁ(lep( ))]ds

+[p@whﬁﬂu+@mm

j=1

ds € dom(H ') for 7 € [O,t}} :

Remark 3.5. We note that the obtained inequalities are generalizations of many known results.
For example, in the case whein(t) = 0, fo(t) = 0, B, = 0, G(u) = u, Q(u) = u, h = 0,
g(t) = 0 the result in Theorem 3.3 reduces to the classical Gronwall inequality.

Now we will consider different types of nonlinear integral inequalities in which the unknown
function is powered.

Theorem 3.6. Let the following conditions be fulfilled:
(1) The functiongf, g, h,r € C(]0, o), [0, 00)).
(2) The functiony € C([—h,0],[0,00)) andy(t) < cfort € [—h,0] wherec > 0. The
constanty > 1,0 < ¢ < p.
(3) The functioru € PC(]0, c0), [0, 00)) and satisfies the inequalities

Up(t)§0+/0[f( s)u(t) + g(s)u?(s)u? (s — h)
+ h(s)u(s) + r(s)u(s — h)]ds

(3.33) + ) Bu(ty), fort >0,
0<tp <t
(3.34) ()<zp() for ¢t € [—h,0].
Then fort € (ty, tx11], £ =0,1,2,... the inequality

(3.35) u(t) < ,” 1+ B;) x \/ c+ h( )+ T(S))d5>

holds.

Proof.
Case 1.Lett; > h.
Lett € (0, h]. We define the functlom(o) : [=h, h] — [0, 00) by the equalities
e+ folf(s)ur(t) + g(s)us(s)uP="(s — h) + h(s)u(s)
v (1) = -w@mw—muateme

YP(t) for t € [—h,0).
The functionvéo)(t) is a nondecreasing differentiable function Onh], u?(t) < v(()o)(t) and
using the inequality™y" < = + £ n +m = 1 we obtain

O () p-1
(3.36) ut) < {foP(t) < L2 E= te(o,1)
p p
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and
t—h) p—1
(3.37) w(t—hy < L=
p p
0
1 1
coqprl ow @ Pl ooy
pp P P

Therefore the inequality
(490 = FO ) + g0t t0r=o(¢ — 1) + BB + ittt — h)

q/p (p—q)/p
< (@) + gty (1) ui” (t — h)
p

(0) (0)
+ h(t) (Uop(t> + ;1> + () (Uop(t> +p; 1)

(3.38) < (f(t) +g(t) + h(t) + T(t))) (0)

p
holds.
According to Corollary 1.2 [[1]) from the inequality (3]38) we obtain the validity of the
inequality

(3.39) (vg‘”(t)) < (CH’L1 t(h(s)+r(s))ds)

p 0
X exp (/Ot (f(t) +g(t) + M) ds> |

From inequality[(3.309) follows the validity of (3.B5) forc [0, 7).
Lett € (h, tl]

Define the function;[()l) : [h,t1] — [0, 00) by the equation

oM (1) = o§(h) + /h t[ F(s)uP () + g(s)u?(s)uP~4(s — h) + h(s)u(s) + r(s)u(s — h)]ds.
From the definition of the functiovél) (t) and the inequalitS), the validity of the inequality
(3.40) wP(t) < v (1), te (ht).

follows.
Case 1.1Leth <t < min{t;,2h}. Thent — h € (0, k] and

(1)
-1
ot = < e < e < e < O 2L
p p

Case 1.2Lett; > 2hort € (2h,t;]. Then

(1)
t) p-1
a(t— by < ot — by < o) < 0 4 2
P P
and

a4 (i) = (70 + a0+ ") 00 4 10+ o)

p
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From the inequalitieg (3.40], (3}41) and applying Corollary 1.2 ([1]) we obtain
o t
o) < (o700 + 222 [+ risas)
h

p

<o t (70 + gt + 2 ) )

< (c+p;1 (h(s) +r(5))ds)

p 0
(3.42) X exp (/t <f(t) +g(t) + M) ds) :
0 p
The inequalities[(3.40) anfl (3}43) prove the validity of the inequdlity {3.3%).0].

Define a function
{ o) fort €10, A,

vp(t) = )
o§P(t) fort € [h,ty].

Now lett € (1, ts].
Define the function : [t1, 1] — [0, c0) by the equation
(3.43) wi(t) zvo<t1)+/h [f(s)uP(t) + g(s)u(s)u?""(s — h) + h(s)u(s)
+ r(s)u(s — h)|ds + BruP(t1).

We note thaty(t) < vi(t), uP(t) < vi(t), uP(t1) < vo(ty), u(t — h) < Y v(t), u(t — h) <
/on(t) and /v, (1) < 28 4 =L for t € (ty, t).
The functionv, (t) satisfies the inequality

nlt) < ((1+61)vo<t1)+— tf<h<s> i rls))is)
(Ll 2):
<(1+8) ( (h(s) +T(s))ds)
(3.44) % exp ( /0 ( )+ g(t) + M) ds) |
From the inequalities(t) < ¢/v:(t) and [3.44) it follows|(3.35) fot € (t1, ts).

Using mathematical mductlon We can prove the validity of (B.35) fer0.
Case 2.Let there exist a natural number such that,, < h < t,,,1. Asin Case 1 we can
prove the validity of the inequality (3.B5), using functiongt), £ = 1,2,... defined by the
inequality

(3.45) wi(t) = vr-1(tr) +/t [f(s)uP(t) + g(s)u(s)u"""(s — h) + h(s)u(s)

+ r(s)u(s — h)]ds + BrpuP(ty).
0

Remark 3.7. Some of the inequalities proved by B.G. Pachpattelin[5], [6], [7] are partial cases
of Theoreni 311 and TheordmB.3.

J. Inequal. Pure and Appl. Mathb(4) Art. 88, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

12 S.G. HRisTOVA

4. APPLICATIONS
We will use above results to obtain bounds for the solutions of different type of equations.

Example 4.1. Consider the nonlinear impulsive integral equation with delay

u =+ PVaTds + [ o(o)als = s 2

(4.1) + ) Beulty), for ¢ >0,
O<trp<t
(4.2) u(t)=0 te[—h0)|,

Whereﬁk > 07 k= 1727 o DG E C([07 OO)? [07 OO))7 f S C([O> OO), [07 1])7 h > 0.
We note the solutions of the problem (4.1), {4.2) are nonnegative.
Define the function&: (u) = u?, Q(u) = /u. ThenQ € Wy (), whereg(u) = /u.
Consider the function

4.3 1 2).
@) 0= [ qrrom =, v e VIE)
Then the inverse function df (u) will be defined by

(4.4) H™'(u) = sinh(u) = 1(e“ —e ).

2
According to Corollary 3]2 we obtain the upper bound for the solution

n< I <1+ﬁk>{1+ sinh (J IT (0 +5) /Ot<p<s>+Ag<s>>ds)] }

O<tp<t
Example 4.2.Consider the initial value problem for the nonlinear impulsive integro-differential
equation

(4.5) W () = 2F(8)/u() /0 F()uls)ds, t> 0.t 41,
(4.6) u(ty, +0) = Bru(tr),
4.7) u(0) = ¢,

wherec > 0,6, > 0,k =1,2,..., f € C([0,0), [0,00)).
The solutions of the given problem satisfy the inequality

t 2
4.9) wy et | [ FoVaGI| + 3 s, vz
0 0<tp<t
Define the functions&: (u) = u?, Q(u) = v/u. Then the function#/ (u) and H ~!(u) are defined

by the equationg (4.3) and (4.4).
We note that the solutions of the problegm {4.5) —|(4.7) are nonnegative. According to Theo-

rem[3.4 the solutions satisfy the estimate

2

(49) u(t)<A H(1+Aﬁk){1+[ ( 11 1+Aﬁk/f )] }
0<tp<t

O<trp<t

whereA = max{1, c}.
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Example 4.3.Consider the initial value problem for the nonlinear impulsive differential-difference
equation

(4.10) u'(t) = F(t,u(t),u(t —h)) +r(t), t>0,t#t,

(4.11) u(ty +0) = Brulty),

(4.12) u(t) =¥(t), te[—h,0],

whereg;, =constk =1,2,..., r € C([0,00),R), v € C([—h,0],R), F € C([0, ) x R? R)

and there existfunctionsg € C([0,00),[0,00)) suchthat F'(t,u,v)| < p(t)\/|u|+g(t)\/|v

Let|y(0) + [Ir(s)ds| <1, t > 0.
We assume that the solutions of the initial value problem {4.10) —|(4.12) exi8t a).
The solution satisfies the inequalities

u(t)] < w<0>+/0 r(s)ds +/0 (p(s)V/[u(s)| + g(s)v/u(s — h)|)ds
(4.13) + 3 Bl )], >0,
(4.14) u(t)] = [¥(®)], te[=h,0].

Consider functiong; (t) = [¢(0) + [ r(s)ds|, G(u) = u, Q(u) = v/u, fo(t) = 1, fa(t) = 1.
Theny(u) = /u and according to the equality (8.5) the functiffifu) = 2(v/1 + u — 1) and
its inverse isH ' (u) = (3 + 1) — 1.

According to Corollary 32 the following bound for the solution|[of (4.10) — (%.12)

@15 o< ] <1+|ﬁk|>( 1+ 1B,/ By

0<trp<t

2

[T (1+15) / p(s) + Ag(s)ds |

0<trp<t

is satisfied, wheré; = max{|g(s)| : s € [0, h|}, B» = max{¢(s) : s € [—h,0]}.

Example 4.4.Consider the initial value problem for the nonlinear impulsive differential-difference

equation

(4.16) u(t)u'(t) = Ft,u(t),u(t — h)) + q(@)u(t) + rt)u(t — h), t > 0,t # tx,

(4.18) u(t) = o(t), te[~h0],

whereg, = const,k = 1,2,...,r,q € C([0,0),R), v» € C([-h,0],R), FF € C([0,00) x

R% R) and there exist functionﬁ,g € C([0,00),[0,00)) such that| F(t,u,v)| < p(t)u® +
g(t)v?. Let [1(0) s)ds| < 1, t > 0. We assume that the solutions of the initial value

+ Jo 7
problem (4.1D) { (4.1 —-2) exist df, o)

The solution satisfies the mequalltles
u(t)? < ¢*(0) + /0 (p(s)uz(s) +g(s)u(s — h) +q(s)u(s) +r(s)uls — h)) ds
(4.19) + Y BA(t), t>0,

O<tp<t

(4.20) () = 2(t), te[—h,0].
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Apply Theorenj 3.6 to the inequalitigs (4}18), (4.19) and obtain the following upper bound for
the solution of the initial value probler (4]15)[—(4.17)

u(t)? < ¢?*(0) + /0 (p(s)uZ(s) + g(8)u*(s — h) + q(s)u(s) + r(s)u(s — h)) ds
(4.21) + Y Bty t>0,

O<tp<t

(4.22) W*(t) =*(t), t€[—h,0].
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