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Abstract

Nonlinear integral inequalities of Gronwall-Bihari type for piecewise continuous
functions are solved. Inequalities for functions with delay as well as functions
without delays are considered. Some of the obtained results are applied in the
deriving of estimates for the solutions of impulsive integral, impulsive integro-
differential and impulsive differential-difference equations.
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1. Introduction
Integral inequalities are a powerful mathematical apparatus, by the aid of which,
various properties of the solutions of differential and integral equations can be
studied, such as uniqueness of the solutions, boundedness, stability, etc. This
leads to the necessity of solving various types of linear and nonlinear inequal-
ities, which generalize the classical inequalities of Gronwall and Bihari. In
recent years, many authors, such as S.S. Dragomir ([2] – [4]) and B.G. Pach-
patte ([5] – [10]) have discovered and applied several new integral inequalities
for continuous functions.

The development of the qualitative theory of impulsive differential equa-
tions, whose solutions are piecewise continuous functions, is connected with
the preliminary deriving of results on integral inequalities for such types of
functions (see [1] and references there).

In the present paper we prove some generalizations of the classical Bihari
inequality for piecewise continuous functions. Two main types of nonlinear in-
equalities are considered – inequalities with constant delay of the argument as
well as inequalities without delays. The obtained inequalities are used to investi-
gate some properties of the solutions of impulsive integral equations, impulsive
integro-differential and impulsive differential-difference equations.
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2. Preliminary Notes and Definitions
Let the pointstk ∈ (0,∞), k = 1, 2, . . . are fixed such thattk+1 > tk and
limk↓∞ tk = ∞.

We consider the setPC(X, Y ) of all functionsu : X → Y , (X ⊂ R, Y ⊂
Rn) which are piecewise continuous inX with points of discontinuity of the first
kind at the pointstk ∈ X, i.e. there exist the limitslimt↓tk u(t) = u(tk+) <∞
andlimt↑tk u(t) = u(tk−) = u(tk) <∞.

Definition 2.1. We will say that the functionG(u) belongs to the classW1 if

1. G ∈ C([0,∞), [0,∞)).

2. G(u) is a nondecreasing function.

Definition 2.2. We will say that the functionG(u) belongs to the classW2(ϕ) if

1. G ∈ W1.

2. There exists a functionϕ ∈ C([0,∞), [0,∞)) such thatG(uv) ≤ ϕ(u)G(v)
for u, v ≥ 0.

We note that if the functionG ∈ W1 and satisfies the inequalityG(uv) ≤
G(u)G(v) for u, v ≥ 0 thenG ∈ W2(G).

Further we will use the following notations
∑k

i=1 αk = 0 and
∏k

i=1 αk = 1
for k ≤ 0.
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3. Main Results
As a first result we will consider integral inequalities with delay for piecewise
continuous functions.

Theorem 3.1.Let the following conditions be fulfilled:

1. The functionsf1, f2, f3, p, g ∈ C([0,∞), [0,∞)).

2. The functionψ ∈ C([−h, 0], [0,∞)).

3. The functionQ ∈ W2(ϕ) andQ(u) > 0 for u > 0.

4. The functionG ∈ W1.

5. The functionu ∈ PC([−h,∞), [0,∞)) and it satisfies the following in-
equalities

(3.1) u(t) ≤ f1(t)

+ f2(t)G

(
c+

∫ t

0

p(s)Q(u(s))ds+

∫ t

0

g(t)Q(u(s− h))ds

)
+ f3(t)

∑
0<tk<t

βku(tk) for t ≥ 0,

(3.2) u(t) ≤ ψ(t) for t ∈ [−h, 0],

wherec ≥ 0, βk ≥ 0, (k = 1, 2, . . . ).
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Then fort ∈ (tk, tk+1] ∩ [0, γ), k = 0, 1, 2, . . . we have the inequality

(3.3) u(t) ≤ ρ(t)
k∏

i=1

(1 + βiρ(ti))

×

(
1 +G

(
H−1

{
H(A) +

k∑
i=1

∫ ti

ti−1

p(s)ϕ

[
ρ(s)

i−1∏
j=1

(1 + βjρ(tj))

]
ds

+

∫ t

tk

p(s)ϕ

[
ρ(s)

k∏
j=1

(1 + βjρ(tj))

]
ds

+ Λ(t)
k∑

i=1

∫ ti

ti−1

g(s)ϕ

ρ(s− h))
∏

j:0<tj<s−h

(1 + βjρ(tk))

 ds
+Λ(t)

∫ t

tk

g(s)ϕ

ρ(s− h))
∏

j:0<tj<s−h

(1 + βjρ(tk))

 ds

 ,

where

(3.4) Λ(t) =

{
0 for t ∈ [0, h],

1 for t > h,

ρ(t) = max{fi(t) : i = 1, 2, 3}, A = c+ hB1Q(B2),

B1 = max{g(t) : t ∈ [0, h]}, B2 = max{ψ(t) : t ∈ [−h, 0]},
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(3.5) H(u) =

∫ u

u0

ds

Q(1 +G(s))
, A ≥ u0 ≥ 0,

γ = sup

{
t ≥ 0 : H(A) +

k∑
i=1

∫ ti

ti−1

p(s)ϕ

[
ρ(s)

i−1∏
j=1

(1 + βjρ(tj))

]
ds

+

∫ t

tk

p(s)ϕ

[
ρ(s)

k∏
j=1

(1 + βjρ(tj))

]
ds

+ Λ(t)
k∑

i=1

∫ ti

ti−1

g(s)ϕ

ρ(s− h))
∏

0<tj<s−h

(1 + βjρ(tk))

 ds
+ Λ(t)

∫ t

tk

g(s)ϕ

ρ(s− h))
∏

0<tj<s−h

(1 + βjρ(tk))

 ds ∈ dom(H−1)

for τ ∈ (tk, tk+1] ∩ [0, t], k = 0, 1, . . .

}
,

andH−1 is the inverse function ofH(u).

Proof.
Case 1.Let t1 ≥ h.

Let t ∈ (0, h] ∩ [0, γ) 6= ∅.
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It follows from the inequalities (3.1) and (3.2) that fort ∈ (0, h] ∩ [0, γ) the
inequality

(3.6) u(t) ≤ ρ(t)

(
1 +G

(
A+

∫ t

0

p(s)Q(u(s))ds

))
holds.

Define the functionv(0)
0 : [0, h] ∩ [0, γ) → [0,∞) by the equality

(3.7) v
(0)
0 (t) = A+

∫ t

0

p(s)Q(u(s))ds.

The functionv(0)
0 (t) is a nondecreasing differentiable function on[0, h] ∩ [0, γ)

and it satisfies the inequality

(3.8) u(t) ≤ ρ(t)
(
1 +G(v

(0)
0 (t))

)
.

The inequality (3.8) and the definition (5) of the functionH(u) yield

(3.9)
d

dt
H(v

(0)
0 (t)) =

(v
(0)
0 (t))′

Q
(
1 +G(v

(0)
0 (t))

) ≤ p(t)ϕ

(
ρ(t)

)
.

We integrate the inequality (3.9) from 0 to t for t ∈ [0, h] ∩ [0, γ), and we use
v

(0)
0 (0) = A in order to obtain

(3.10) H(v
(0)
0 (t)) ≤ H(A) +

∫ t

0

p(s)ϕ
(
ρ(s)

)
ds.
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The inequalities (3.8) and (3.10) imply the validity of the inequality (3.3) for
t ∈ [0, h] ∩ [0, γ).

Let t ∈ (h, t1] ∩ [0, γ) 6= ∅ .
Then

u(t) ≤ ρ(t)

(
1 +G

(
v

(0)
0 (h) +

∫ t

h

p(s)Q(u(s))ds

+

∫ t

h

g(s)Q(u(s− h))ds
))

= ρ(t)

(
1 +G

(
v

(1)
0 (t)

))
,(3.11)

wherev(1)
0 : [h, t1] ∩ [0, γ) → [0,∞) is defined by the equality

(3.12) v
(1)
0 (t) = v

(0)
0 (h) +

∫ t

h

p(s)Q(u(s))ds+

∫ t

h

g(s)Q(u(s− h))ds.

Using the fact that the functionv(1)
0 (t) is nondecreasing continuous andv(0)

0 (t−
h) ≤ v

(0)
0 (h) ≤ v

(1)
0 (t) for h < t ≤ min{2h, t1}, we can prove as above that

H(v
(1)
0 (t)) ≤ H(v

(0)
0 (h)) +

∫ t

h

p(s)ϕ
(
ρ(s)

)
ds

+

∫ t

h

g(s)ϕ
(
ρ(s− h)

)
ds
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≤ H(A) +

∫ t

0

p(s)ϕ
(
ρ(s)

)
ds

+

∫ t

h

g(s)ϕ
(
ρ(s− h)

)
ds.(3.13)

The inequalities (3.11), (3.13) prove the validity of (3.3) on t ∈ (h, t1] ∩ [0, γ).
Define the function

v0(t) =

 v
(0)
0 (t) for t ∈ [0, h],

v
(1)
0 (t) for t ∈ (h, t1].

Now let t ∈ (t1, t2] ∩ [0, γ) 6= ∅.
Define the functionv1 : [t1, t2] ∩ [0, γ) → [0,∞) by the equality

(3.14) v1(t) = v0(t1) +

∫ t

t1

p(s)Q(u(s))ds+

∫ t

t1

g(s)Q(u(s− h))ds.

The functionv1(t) is nondecreasing differentiable ont ∈ (t1, t2]∩[0, γ), v1(t) ≥
v0(t1) and

u(t) ≤ ρ(t)

(
1 +G

(
v1(t)

)
+ β1u(t1)

)
≤ ρ(t)

(
1 +G

(
v1(t)

)
+ β1ρ(t1)

(
1 +G(v0(t1))

))
≤ ρ(t)

(
1 +G(v1(t))

)(
1 + β1ρ(t1)

)
.(3.15)
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Consider the following two possible cases:

Case 1.1.Let h ≤ t2 − t1 andt ∈ (t1 + h, t2] ∩ [0, γ). Then from (3.15) we
have

u(t− h) ≤ ρ(t− h)

(
1 +G(v1(t− h))

)(
1 + β1ρ(t1)

)
≤ ρ(t− h)

(
1 +G(v1(t))

)(
1 + β1ρ(t1)

)
= ρ(t− h)

(
1 +G(v1(t))

) ∏
0<tk<t−h

(
1 + βkρ(tk)

)
.(3.16)

Case 1.2.Let h > t2 − t1 or t ∈ (t1, t1 + h] ∩ [0, γ). Then

(3.17) u(t− h) ≤ ρ(t− h)

(
1 +G(v0(t− h))

)
.

Using the inequality (3.17) andv0(t− h) ≤ v1(t) we obtain

u(t− h) ≤ ρ(t− h)

(
1 +G(v1(t))

)
= ρ(t− h)

(
1 +G(v1(t))

) ∏
0<tk<t−h

(
1 + βkρ(tk)

)
.(3.18)

The inequalities (3.15), (3.16), (3.18) and the properties of the functionQ(u)
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imply

v′1(t) = p(t)Q(u(t)) + g(t)Q(u(t− h))

≤
{
p(t)ϕ

(
ρ(t)(1 + β1ρ(t1))

)
+ g(t)ϕ

(
ρ(t− h)

∏
0<tk<t−h

(
1 + βkρ(tk)

))}
×Q

(
1 +G(v1(t))

)
.(3.19)

We obtain from the definition (5) and the inequality (3.19) that

d

dt
H(v1(t)) =

(v1(t))
′

Q
(
1 +G(v1(t))

)
≤ p(t)ϕ

(
ρ(t)(1 + β1ρ(t1))

)
+ g(t)ϕ

(
ρ(t− h)

∏
0<tk<t−h

(
1 + βkρ(tk)

))
.(3.20)

We integrate the inequality (3.20) from t1 to t, use the inequality (3.13) and
obtain

H(v1(t)) ≤ H(v0(t1)) +

∫ t

t1

p(s)ϕ

(
ρ(s)(1 + β1ρ(t1))

)
ds

+

∫ t

t1

g(s)ϕρ(s− h)

( ∏
0<tk<t−h

(1 + βkρ(tk))

)
ds
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≤ H(A) +

∫ t1

0

p(s)ϕ

(
ρ(s)

)
ds

+

∫ t

t1

p(s)ϕ

(
ρ(s)(1 + β1ρ(t1))

)
ds

+

∫ t

t1

g(s)ϕρ(s− h)

( ∏
0<tk<t−h

(1 + βkρ(tk))

)
ds.(3.21)

The inequalities (3.15) and (3.21) imply the validity of the inequality (3.3) for
t ∈ (t1, t2] ∩ [0, γ).

We define functionsvk : [tk, tk+1] ∩ [0, γ) → [0,∞) by the equalities

(3.22) vk(t) = vk−1(tk) +

∫ t

tk

p(s)Q(u(s))ds+

∫ t

tk

g(s)Q(u(s− h))ds.

The functionsvk(t) are nondecreasing functions,vk(t) ≥ vk−1(tk) and fort ∈
(tk, tk+1] ∩ [0, γ) the inequalities

u(t) ≤ ρ(t)

(
1 +G

(
vk(t)

)
+

k∑
i=1

βiu(ti)

)

≤ ρ(t)

{
1 +G(vk(t)) +

k−1∑
i=1

βiu(ti)

+βkρ(tk)

(
1 +G(vk−1(tk)) +

k−1∑
i=1

βiu(ti)

)}
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≤ ρ(t)

(
1 +G(vk(t)) +

k−1∑
i=1

βiu(ti)

)(
1 + βkρ(tk)

)

≤ · · · ≤ ρ(t)

{
k∏

i=1

(
1 + βiρ(ti)

)}(
1 +G(vk(t))

)
(3.23)

hold.
Using mathematical induction we prove that inequality (3.3) is true fort ∈

(tk, tk+1] ∩ [0, γ), k = 1, 2, . . . .
Case 2. Let there exist a natural numberm such thattm ≤ h < tm+1. As
in Case 1 we prove the validity of inequality (3.3) using the functionsvk ∈
C
(
[tk, tk+1] ∩ [0, γ), [0,∞)

)
defined by the equalities

vk(t) = vk−1(tk) +

∫ t

tk

p(s)Q(u(s))ds for k = 0, 1, . . . ,m,

vk(t) = vk−1(tk) +

∫ t

tk

p(s)Q(u(s))ds(3.24)

+

∫ t

tk

g(s)Q(u(s− h))ds, k > m.

In the partial case when the functionϕ(s) in Definition2.2is multiplicative,
the following result is true.
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Corollary 3.2. Let the conditions of Theorem3.1 be satisfied and the function
ϕ satisfy the inequalityϕ(ts) ≤ ϕ(t)ϕ(s) for t, s ≥ 0.

Then fort ∈ (tk, tk+1] ∩ [0, γ3) the inequality

(3.25) u(t) ≤ ρ(t)
k∏

i=1

(1 + βiρ(ti))

×
{

1 +G

(
H−1

(
H(A) + ϕ

(
k∏

i=1

(1 + βiρ(ti)

)

×
∫ t

0

(
p(s)ϕ(ρ(s)) + Λ(s)g(s)ϕ(ρ(s− h))

)
ds
))}

,

holds, where the functionsΛ(t) andH(u) are defined by the equalities (3.4) and
(3.5), respectively, and

(3.26) γ3 = sup

{
t ≥ 0 : H(A) + ϕ

(
k∏

i=1

(1 + βiρ(ti)

)

×
∫ t

0

(
p(s)ϕ(ρ(s)) + Λ(s)g(s)ϕ(ρ(s− h))

)
ds ∈ Dom(H−1)

for τ ∈ [0, t]},

In the case when the functionf1(t) = 0 in inequality (3.3), we can obtain
another bound in which the functionH(u) is different and in some cases easier
to be used.

Theorem 3.3.Let the following conditions be fulfilled:
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1. The functionsf1, f2, p, g ∈ C([0,∞), [0,∞)).

2. The functionψ ∈ C([−h, 0], [0,∞)).

3. The functionQ ∈ W2(ϕ) andQ(u) > 0 for u > 0.

4. The functionG ∈ W1.

5. The functionu ∈ PC([−h,∞), [0,∞)) and it satisfies the inequalities

(3.27) u(t)

≤ f1(t)G

(
c+

∫ t

0

p(s)Q(u(s))ds+

∫ t

0

g(t)Q(u(s− h))ds

)
+ f2(t)

∑
0<tk<t

βku(tk) for t ≥ 0,

(3.28) u(t) ≤ ψ(t) for t ∈ [−h, 0],

wherec ≥ 0, βk ≥ 0, (k = 1, 2, . . . ).

Then fort ∈ (tk, tk+1] ∩ [0, γ), (k = 1, 2, . . . ) we have the inequality

(3.29) u(t) ≤ ρ(t)
k∏

i=1

(1 + βiρ(ti))

×G

(
H−1

{
H(A) +

k∑
i=1

∫ ti

ti−1

p(s)ϕ

[
ρ(s)

i−1∏
j=1

(1 + βjρ(tj))

]
ds

+

∫ t

tk

p(s)ϕ

[
ρ(s)

k∏
j=1

(1 + βjρ(tj))

]
ds
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+ Λ(t)
k∑

i=1

∫ ti

ti−1

g(s)ϕ

ρ(s− h))
∏

j:0<tj<s−h

(1 + βjρ(tk))

 ds
+Λ(t)

∫ t

tk

g(s)ϕ

ρ(s− h))
∏

j:0<tj<s−h

(1 + βjρ(tk))

 ds

 ,

whereΛ(t) is defined by equality (3.4), the constantsA,B1, B2, γ are the same
as in Theorem3.1, ρ(t) = max{fi(t) : i = 1, 2},

(3.30) H(u) =

∫ u

u0

ds

Q(G(s))
, A ≥ u0 > 0.

The proof of Theorem3.3 is similar to the proof of Theorem3.1.
As a partial case of Theorem3.1 we can obtain the following result about

integral inequalities for piecewise continuous functions without delay.

Theorem 3.4.Let the following conditions be satisfied:

1. The functionsf1, f2, f3, p ∈ C([0,∞), [0,∞)).

2. The functionQ ∈ W2(ϕ) andQ(u) > 0 for u > 0.

3. The functionG ∈ W1.

4. The functionu ∈ PC([0,∞), [0,∞)) and it satisfies the inequalities

(3.31) u(t) ≤ f1(t) + f2(t)G

{
c+

∫ t

0

p(s)Q(u(s))ds

}
+ f3(t)

∑
0<tk<t

βku(tk), for t ≥ 0.
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wherec ≥ 0, βk ≥ 0, (k = 1, 2, . . . ).

Then fort ∈ (tk, tk+1] ∩ [0, γ1), k = 0, 1, 2, . . . we have the inequality

(3.32) u(t) ≤ ρ(t)
k∏

i=1

(1 + βiρ(ti))

×

(
1 +G

(
H−1

{
H(c) +

k∑
i=1

∫ ti

ti−1

p(s)ϕ

[
ρ(s)

i−1∏
j=1

(1 + βjρ(tj))

]
ds

+

∫ t

tk

p(s)ϕ

[
ρ(s)

k∏
j=1

(1 + βjρ(tj))

]
ds

}))
,

where the functionH(u) is defined by equality (3.5), ρ(t) = max{fi(t); i =
1, 2},

γ1 = sup

{
t ≥ 0 : H(c) +

k∑
i=1

∫ ti

ti−1

p(s)ϕ

[
ρ(s)

i−1∏
j=1

(1 + βjρ(tj))

]
ds

+

∫ t

tk

p(s)ϕ

[
ρ(s)

k∏
j=1

(1 + βjρ(tj))

]
ds ∈ dom(H−1) for τ ∈ [0, t]

}
.

Remark 1. We note that the obtained inequalities are generalizations of many
known results. For example, in the case whenf1(t) = 0, f2(t) = 0, βk = 0,
G(u) = u, Q(u) = u, h = 0, g(t) = 0 the result in Theorem3.3reduces to the
classical Gronwall inequality.
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Now we will consider different types of nonlinear integral inequalities in
which the unknown function is powered.

Theorem 3.5.Let the following conditions be fulfilled:

1. The functionsf, g, h, r ∈ C([0,∞), [0,∞)).

2. The functionψ ∈ C([−h, 0], [0,∞)) andψ(t) ≤ c for t ∈ [−h, 0] where
c ≥ 0. The constantsp > 1, 0 ≤ q ≤ p.

3. The functionu ∈ PC([0,∞), [0,∞)) and satisfies the inequalities

up(t) ≤ c+

∫ t

0

[f(s)up(t) + g(s)uq(s)up−q(s− h)

+ h(s)u(s) + r(s)u(s− h)]ds

+
∑

0<tk<t

βku
p(tk), for t ≥ 0,(3.33)

u(t) ≤ ψ(t) for t ∈ [−h, 0].(3.34)

Then fort ∈ (tk, tk+1], k = 0, 1, 2, . . . the inequality

(3.35) u(t) ≤ p

√√√√ k∏
i=1

(1 + βi)× p

√(
c+

p− 1

p

∫ t

0

(h(s) + r(s))ds

)

× p

√
exp

(∫ t

0

(f(s) + g(s) +
h(s) + r(s)

p
)ds

)
holds.
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Proof.
Case 1.Let t1 ≥ h.

Let t ∈ (0, h]. We define the functionv(0)
0 : [−h, h] → [0,∞) by the

equalities

v
(0)
0 (t) =


c+

∫ t

0
[f(s)up(t) + g(s)uq(s)up−q(s− h) + h(s)u(s)

+r(s)u(s− h)]ds, t ∈ [0, h],

ψp(t) for t ∈ [−h, 0).

The functionv(0)
0 (t) is a nondecreasing differentiable function on[0, h], up(t) ≤

v
(0)
0 (t) and using the inequalityxmyn ≤ x

m
+ y

n
, n+m = 1 we obtain

(3.36) u(t) ≤ p

√
v

(0)
0 (t) ≤ v

(0)
0 (t)

p
+
p− 1

p
, t ∈ [0, h]

and

u(t− h) ≤ ψ(t− h)

p
+
p− 1

p
(3.37)

≤ c

p
+
p− 1

p
≤ v

(0)
0 (t)

p
+
p− 1

p
, t ∈ [0, h].

Therefore the inequality(
v

(0)
0 (t)

)′
= f(t)up(t) + g(t)uq(t)up−q(t− h) + h(t)u(t) + r(t)u(t− h)

≤ f(t)v
(0)
0 (t) + g(t)v

(0)
0 (t)

q/p
v

(0)
0 (t− h)

(p−q)/p
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+ h(t)

(
v

(0)
0 (t)

p
+
p− 1

p

)
+ r(t)

(
v

(0)
0 (t)

p
+
p− 1

p

)

≤
(
f(t) + g(t) +

h(t) + r(t))

p

)
v

(0)
0 (t) + (h(t) + r(t))

p− 1

p
(3.38)

holds.
According to Corollary 1.2 ([1]) from the inequality (3.38) we obtain the

validity of the inequality

(3.39)
(
v

(0)
0 (t)

)
≤
(
c+

p− 1

p

∫ t

0

(h(s) + r(s))ds

)
× exp

(∫ t

0

(
f(t) + g(t) +

h(s) + r(s)

p

)
ds

)
.

From inequality (3.39) follows the validity of (3.35) for t ∈ [0, h].
Let t ∈ (h, t1].

Define the functionv(1)
0 : [h, t1] → [0,∞) by the equation

v
(1)
0 (t)

= v
(0)
0 (h)+

∫ t

h

[f(s)up(t)+g(s)uq(s)up−q(s−h)+h(s)u(s)+r(s)u(s−h)]ds.

From the definition of the functionv(1)
0 (t) and the inequality (3.33), the validity

of the inequality

(3.40) up(t) ≤ v
(1)
0 (t), t ∈ (h, t1].
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follows.

Case 1.1. Leth < t ≤ min{t1, 2h}. Thent− h ∈ (0, h] and

u(t− h) ≤ p

√
v

(0)
0 (t− h) ≤ p

√
v

(0)
0 (h) ≤ p

√
v

(1)
0 (t) ≤ v

(1)
0 (t)

p
+
p− 1

p
.

Case 1.2.Let t1 > 2h or t ∈ (2h, t1]. Then

u(t− h) ≤ p

√
v

(1)
0 (t− h) ≤ p

√
v

(1)
0 (t) ≤ v

(1)
0 (t)

p
+
p− 1

p

and

(3.41)
(
v

(1)
0 (t)

)′
≤
(
f(t) + g(t) +

h(t) + r(t))

p

)
v

(1)
0 (t)

+ (h(t) + r(t))
p− 1

p
.

From the inequalities (3.40), (3.41) and applying Corollary 1.2 ([1]) we obtain

(v
(1)
0 (t)) ≤

(
v

(0)
0 (h) +

p− 1

p

∫ t

h

(h(s) + r(s))ds

)
× exp

(∫ t

h

(
f(t) + g(t) +

h(s) + r(s)

p

)
ds

)
≤
(
c+

p− 1

p

∫ t

0

(h(s) + r(s))ds

)
× exp

(∫ t

0

(
f(t) + g(t) +

h(s) + r(s)

p

)
ds

)
.(3.42)
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The inequalities (3.40) and (3.43) prove the validity of the inequality (3.35) on
(h, t1].

Define a function

v0(t) =

 v
(0)
0 (t) for t ∈ [0, h],

v
(1)
0 (t) for t ∈ [h, t1].

Now let t ∈ (t1, t2].
Define the functionv1 : [t1, t2] → [0,∞) by the equation

(3.43) v1(t) = v0(t1) +

∫ t

h

[f(s)up(t) + g(s)uq(s)up−q(s− h) + h(s)u(s)

+ r(s)u(s− h)]ds+ β1u
p(t1).

We note thatv0(t) ≤ v1(t), up(t) ≤ v1(t), up(t1) ≤ v0(t1), u(t− h) ≤ p
√
v1(t),

u(t− h) ≤ p
√
v1(t) and p

√
v1(t) ≤ v1(t)

p
+ p−1

p
for t ∈ (t1, t2].

The functionv1(t) satisfies the inequality

v1(t) ≤
(

(1 + β1)v0(t1) +
p− 1

p

∫ t

t1

(h(s) + r(s))ds

)
× exp

(∫ t

t1

(
f(t) + g(t) +

h(s) + r(s)

p

)
ds

)
≤ (1 + β1)

(
c+

p− 1

p

∫ t

0

(h(s) + r(s))ds

)
× exp

(∫ t

0

(
f(t) + g(t) +

h(s) + r(s)

p

)
ds

)
.(3.44)
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From the inequalitiesu(t) ≤ p
√
v1(t) and (3.44) it follows (3.35) for t ∈

(t1, t2].
Using mathematical induction we can prove the validity of (3.35) for t ≥ 0.

Case 2.Let there exist a natural numberm such thattm ≤ h < tm+1. As in
Case 1 we can prove the validity of the inequality (3.35), using functionsvk(t),
k = 1, 2, . . . defined by the inequality

(3.45) vk(t) = vk−1(tk)

+

∫ t

tk

[f(s)up(t) + g(s)uq(s)up−q(s− h) + h(s)u(s)

+ r(s)u(s− h)]ds+ βku
p(tk).

Remark 2. Some of the inequalities proved by B.G. Pachpatte in [5], [ 6], [ 7]
are partial cases of Theorem3.1and Theorem3.3.
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4. Applications
We will use above results to obtain bounds for the solutions of different type of
equations.

Example 4.1.Consider the nonlinear impulsive integral equation with delay

u(t) = f(t) +

[∫ t

0

p(s)
√
u(s)ds+

∫ t

0

g(s)
√
u(s− h)ds

]2

+
∑

0<tk<t

βku(tk), for t ≥ 0,(4.1)

u(t) = 0 t ∈ [−h, 0],(4.2)

whereβk ≥ 0, k = 1, 2, . . . , p, g ∈ C([0,∞), [0,∞)), f ∈ C([0,∞), [0, 1]),
h > 0.

We note the solutions of the problem (4.1), (4.2) are nonnegative.
Define the functionsG(u) = u2, Q(u) =

√
u. ThenQ ∈ W2(φ), where

φ(u) =
√
u.

Consider the function

(4.3) H(u) =

∫ u

0

ds

Q(1 +G(s))
=

∫ u

0

ds√
1 + s2

= ln(u+
√

1 + u2).

Then the inverse function ofH(u) will be defined by

(4.4) H−1(u) = sinh(u) =
1

2
(eu − e−u).
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According to Corollary3.2we obtain the upper bound for the solution

u(t) ≤
∏

0<tk<t

(1+βk)

1 +

sinh

√√√√ ∏
0<tk<t

(1 + βk)

∫ t

0

(p(s) + Λg(s))ds

2 .

Example 4.2. Consider the initial value problem for the nonlinear impulsive
integro-differential equation

u′(t) = 2f(t)
√
u(t)

∫ t

0

f(s)
√
u(s)ds, t > 0, t 6= tk,(4.5)

u(tk + 0) = βku(tk),(4.6)

u(0) = c,(4.7)

wherec ≥ 0, βk ≥ 0, k = 1, 2, . . . , f ∈ C([0,∞), [0,∞)).
The solutions of the given problem satisfy the inequality

(4.8) u(t) ≤ c+

[∫ t

0

f(s)
√
u(s)ds

]2

+
∑

0<tk<t

βku(tk), tk ≥ 0.

Define the functionsG(u) = u2, Q(u) =
√
u. Then the functionsH(u) and

H−1(u) are defined by the equations (4.3) and (4.4).
We note that the solutions of the problem (4.5) – (4.7) are nonnegative. Ac-
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cording to Theorem3.4the solutions satisfy the estimate

(4.9) u(t) ≤ A
∏

0<tk<t

(1 + Aβk)

×

1 +

sh
√A

∏
0<tk<t

(1 + Aβk)

∫ t

0

f(s)ds

2 ,

whereA = max{1, c}.
Example 4.3. Consider the initial value problem for the nonlinear impulsive
differential-difference equation

u′(t) = F (t, u(t), u(t− h)) + r(t), t > 0, t 6= tk,(4.10)

u(tk + 0) = βku(tk),(4.11)

u(t) = ψ(t), t ∈ [−h, 0],(4.12)

whereβk =const, k = 1, 2, . . . , r ∈ C([0,∞),R), ψ ∈ C([−h, 0],R), F ∈
C([0,∞)× R2,R) and there exist functionsp, g ∈ C([0,∞), [0,∞)) such that
|F (t, u, v)| ≤ p(t)

√
|u|+ g(t)

√
|v|. Let |ψ(0) +

∫ t

0
r(s)ds| ≤ 1, t ≥ 0.

We assume that the solutions of the initial value problem (4.10) – (4.12) exist
on [0,∞).

The solution satisfies the inequalities

(4.13) |u(t)| ≤
∣∣∣∣ψ(0) +

∫ t

0

r(s)ds

∣∣∣∣
+

∫ t

0

(p(s)
√
|u(s)|+ g(s)

√
|u(s− h)|)ds+

∑
0<tk<t

|βk|.|u(tk)|, t > 0,
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(4.14) |u(t)| = |ψ(t)|, t ∈ [−h, 0].

Consider functionsf1(t) = |ψ(0)+
∫ t

0
r(s)ds|,G(u) = u,Q(u) =

√
u, f2(t) =

1, f3(t) = 1. Thenϕ(u) =
√
u and according to the equality (3.5) the function

H(u) = 2(
√

1 + u− 1) and its inverse isH−1(u) = (u
2

+ 1)2 − 1.
According to Corollary3.2 the following bound for the solution of (4.10) –

(4.12)

(4.15) |u(t)| ≤
∏

0<tk<t

(1 + |βk|)
(√

1 + hB1

√
B2

+
1

2

√ ∏
0<tk<t

(1 + |βk|)
∫ t

0

(p(s) + Λg(s)ds

2

,

is satisfied, whereB1 = max{|g(s)| : s ∈ [0, h]}, B2 = max{ψ(s) : s ∈
[−h, 0]}.

Example 4.4. Consider the initial value problem for the nonlinear impulsive
differential-difference equation

u(t)u′(t) = F (t, u(t), u(t− h))(4.16)

+ q(t)u(t) + r(t)u(t− h), t > 0, t 6= tk,

u(tk + 0) = βku(tk),(4.17)

u(t) = ψ(t), t ∈ [−h, 0],(4.18)
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whereβk = const, k = 1, 2, . . . , r, q ∈ C([0,∞),R), ψ ∈ C([−h, 0],R),
F ∈ C([0,∞)×R2,R) and there exist functionsp, g ∈ C([0,∞), [0,∞)) such
that |F (t, u, v)| ≤ p(t)u2 + g(t)v2. Let |ψ(0) +

∫ t

0
r(s)ds| ≤ 1, t ≥ 0. We

assume that the solutions of the initial value problem (4.10) – (4.12) exist on
[0,∞).

The solution satisfies the inequalities

(4.19) u(t)2 ≤ ψ2(0)

+

∫ t

0

(
p(s)u2(s) + g(s)u2(s− h) + q(s)u(s) + r(s)u(s− h)

)
ds

+
∑

0<tk<t

β2
ku

2(tk), t > 0,

(4.20) u2(t) = ψ2(t), t ∈ [−h, 0].

Apply Theorem3.5 to the inequalities (4.17), (4.18) and obtain the following
upper bound for the solution of the initial value problem (4.14) – (4.16)

(4.21) u(t)2 ≤ ψ2(0)

+

∫ t

0

(
p(s)u2(s) + g(s)u2(s− h) + q(s)u(s) + r(s)u(s− h)

)
ds

+
∑

0<tk<t

β2
ku

2(tk), t > 0,

(4.22) u2(t) = ψ2(t), t ∈ [−h, 0].
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