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ABSTRACT. Inthe present paper a class of geometric inequalities concerning the angle bisectors
and the sides of a triangle are established. Moreover an interesting open problem is proposed.
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1. INTRODUCTION AND MAIN RESULTS

For a given triangleABC' we assume thatl, B, C denote its anglesyg, b, ¢ denote
the lengths of its corresponding sides,, w;, w. denote respectively the bisectors of angles
A, B, C. Let R, r ands be the circumradius, the inradius and the semi-perimeter of a triangle
respectively. In addition we will customarily use the symbpls(cyclic sum) and[ | (cyclic
product), such as

Y fla) = fla) + fO) + fle), []f@)=fla)f@)fie).

The angle bisectors of triangles have many interesting properties. In particular, inequalities
for angle bisectors is a very attractive subject and plays an important role in the study of geom-
etry. A large number of related results can be found in the well-known monogrdphs [1] —[3]. In
recent years, we have given considerable attention to these inequalities (see [4] — [8]). Recently,
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the following interesting double inequality concerning the angle bisectors and the sides, which
was presented by X.-Zh. Yang, T.-Y. Ma and W.-L. Dong in[9, 10], has come to our attention:

1) %&(g_%@)(1_g)gz%<i+2f(__l)

The above result also motivates us to investigate some similar inequalities. We give here
sharp lower and upper bounds for the siim:-. Moreover, in SeCtIOE|3 the obtained result
will be used for establishing an analogue of mequa-(l 1).

Theorem 1.1.In any triangle ABC the following double inequalities hold

(1.2) %(§+\/§)§Z—<\§< +2v6 — 3\/§>,

W,
with equality if and only if the triangle is an equilateral. Furthermoéeand \/75 are the best
coefficients in[(1)2).
2. PROOF OF THEOREM [1.]

To prove Theorer 1]1, we shall use the following known results [2, p. 3, p. 241] (see also
[1)
Lemma 2.1. In any triangleABC we have the following inequalities
(2.1) s* < s?(4R* + 20Rr — 2r?) — r(4R +1)?,

(2.2) 2R* +10Rr —r* —2(R — 2r)V' R? — 2Rr
< s? <2R*+10Rr — r? +2(R — 2r)VR2 — 2Rr,
with equality if and only if the triangle is isosceles.

(2.3) s < %(4]%—1—7"),

with equality if and only if the triangle is equilateral.
In any acute triangled BC' we have

(2.4) s > 4R* + 4Rr + 1*,
with equality if and only if the triangle is equilateral.

Proof of Theorer 1]1By the formula for angle bisector of triangleBC' w, = % cos 4, we
have
a A
— = B O sin —
E o g (csc B + csc C) sin 5

_ (ZCSCA> (Zsiné) - 1Zsecé.

Based on the above result, it follows from the idenfifycot 4 = £ ® that the |nequallty.2) IS
equivalent to the following inequality

(2.5) %Hcotéjtg < (cheA) (Zsiné> — 12860%
\/51—[ o 4v/3-3V6 \/_

<Yz
-2 2 2
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Using a substitutiod — 7 — 24, B — 7 — 2B, C — = — 2C'in (2.5), then the inequality
(2.5) can be translated to

(2.6) %HtanA—i— ? < (ZCSCQA) (ZCOSA) — %ZCSCA

V2 4v3 - 3v6
< M tanas 22
Now, in order to prove the inequality (2.5), it is enough to prove that the inequality (2.6) to be

valid for any acute triangle.
Note that the following known identities for a triangle [2, p. 55-60]:

54 st + s%(2r* — 8Rr — 4R?) + 16 R3r + 20R?*r? 4+ 8Rr3 + 1!
E csc2A =
drs (s —4R? — ARr — r?) ’

2rs

tan A =
wnd= s

2 AR 2
S esen = SEET

2rs

ZCOSA: R;—T,

taking these identities intd (2.6), we find that the inequdlity| (2.6) is equivalent to
(2.7) 4Rr*s®> +2V/3 (82 — 4R* — 4Rr — r2) sTR
< H < 4V2Rr?s? + (8\/§ - 6\/6) (32 —4R? — 4Rr — r2) srR,
where
H=(R+r)[s"+ s*(2r* = 8Rr — 4R*) + 16R*r + 20R*r* + 8Rr® + 1]
— R (s> +4Rr +7?%) (s —4R* —4Rr — r?) .

Let us now prove the inequality (2.7) to be valid for any acute triangle.
Using the inequalitieg (2.1), (2.3) arjd (2.4), we have

(2.8) H — 4V2Rr?s* — (8\/§ - 6\/6> (s> —4R*> —4Rr —r*) srR
< (R+7)[s°(4R* + 20Rr — 2r%) —r(4R +1)°
+5*(2r® — 8Rr — 4R*) + 16R%r + 20R*r* 4+ 8Rr® + r'|
— R($*+4Rr +77%) (s —4R* —4Rr — r?) — 4V/2Rr?s*
— (8 = 6V?2) (s* —4R? — 4Rr — r*) (4R + r)rR
— 5| (~40+24v2) R+ (6.+2v2) r| Rr + (160 — 96v2) R'r
+ (152 - 120v2) RO + (52— 48V2) B3 + (6 — 6v2) Rr
= F(s,R,7).

From Euler’s inequality? > 2r, we observe that—40 + 24v/2)R + (6 + 2\/§)r < 0.
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Case 1.WhenR > (v/2 + 1)r, by inequality ) we have
F(s, R,r) < (4R? + 4Rr +72) [ (=40 + 24v2) R+ (6 +2v2) 7| Br + (160 - 96v2) R'r
+ (152 = 120V R + (52— 48v2) R¥* + (6 - 6v2) i
= (16— 16v2) B2 + (36— 16v2) R + (12— 4v2) i
= —arr? [R— (Va+1)r] [(V2—4) R+ (12 -5) 7]
<0.
Case 2.When2r < R < (v/2 + 1)r, by inequality ) we get
F(s,R,r) < [232 +10Rr — 12 — 2(R — QT)\/M}
x |(~40+24v2) R+ (64 2v2) r| Rr+ (160 - 96v2) R'r
+ (152 - 120v2) B2 + (52— 48V2) B3 + (6 — 6v2) Rr
=4Rr* (R = 2r)[Fi(R,7) + Fy(R,7)],

s~ [(w-13) (1) - | (7) (7 -2

Fy(R,r) = (20— 12v2) (?)2 +(-19+7v2) <§) +V2.
We deduce from2 < R/r < /2 + 1 that
AR < [(20-12v2) (V2+1) =3~ v2] \/<\/§+1> (V2+1-2)

where

=72 -1,
Fy(R,7) < (20 . 12\/5) (ﬁ+ 1)2 + (—19 + 7\/§> <\/§+ 1) +V2
= 7-7V2,
which leads taF'(s, R, ) < 0.
Consequently
(2.9) H — 4V2Rr?s* — (8\/§ — 6\/6) (32 —4R* — 4Rr — r2) srR <0.

On the other hand, utilizing the inequaliti¢s (2.3) gnd](2.4), we have
H — 4Rr*s* —2V3 (s> —4R* — 4Rr —r?) srR
> (R+7) [s* + s°(2r* — 8Rr — 4R?) + 16R’r + 20R*r”* + 8Rr® + 1]
— R (s> +4Rr +1?) (s> — 4R* — A4Rr — %)
— 4V2Rr?s? — 2 (s — 4R? — 4Rr —1*) (AR +1)R
=r (s> —4R* —4Rr — 37’2)2 +4r(R+r)F(s,R, 1),

where
F(s,R,7) = —s*(3R — 2r) + 12R® + 4R?r — Rr® — 20>
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By Euler’s inequalityR > 2r, we conclude thatR — 2r > 0. Using the inequality (2]2) yields
F(s,R,r) > —(3R — 2r) [2R2 Y 10Rr — 2 +2(R — QT)M}
+ 12R® + 4R*r — Rr* — 21®
— 2(R — 2r) [3(33 —5r) 412 — (3R — 2r)VRE = QRT}
[Rr?(3R — 2r) + ]

=2(R—2r
( )R(SR —5r) 4+ 12+ (3R — 2r)vVR?*> — 2Rr
> 0.
Consequently
(2.10) H —4Rr*s* — 23 (s* — AR* — ARr —r?) srR > 0.

Combining [2.9) and (2.10) yields the inequality (2.7), then frpm|(2.7), the inequality (1.2)
follows immediately. Moreove, from the process of proving inequdlity| (1.2), itis easy to observe

that the equalities hold ifi (1.2) if and only if the triangle is equilateral.

Next, we need to show that the coefficieétand%5 in ) are best possible in the strong
sense.
Consider the inequality (1.2) in a general form as

(2.11) /\< +—f—3f><zw_<k( +£—3\/'>

Puttinga = 1,b = 1, ¢ = 2t in (2.11) yields that
T AR+ (12—
(212)  A1+1)+ (2V3-3V5)) ’/1+i§ r4+20) !

2+ 2t

§k(1+t)+(2\/§ 3\/_k> =t

1+t

In (2.12), passing the limit as— 0 andt — 1 respectively, we find that < % andk > \/75

Thus the best possible values foandf in ) is that\,,.x = % Knin = %5 This completes
the proof of Theorerp 1] 1. O

3. AN APPLICATION
As an application of Theorejn 1.1, we establish an analogue of the ineqpaljty (1.1), as follows.

Theorem 3.1.1n any triangle A BC' the following double inequalities hold

(3.1) 2¢§+§(1—%)§Zwﬂag2ﬁ+2ﬁ(§—1>,

with equality if and only if the triangle is equilateral. Furthermogg,/2 is the best coefficient
in the right-hand side of inequality (3.1).

Proof. Applying Theorel and Blundon’s inequality [14K 2R + (3v/3 — 4)r, it follows
that

Z_<§< +2v6 — 3\/§)g2\/§+2\/§(§—1>.

Wq
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On the other hand, by using Theorgm|1.1 and Gerretsen’s inequality]£2]16 Rr — 5r2, we
have

Zw—a—2f——(1—%>

>§(§+¢§)_2f_§(1_2_;>

1
20 )y —
2R7’ —[sR — 3(R — 2r)r — 6v/3Rr]
> ﬁ [R\/ 16Rr — 5r2 — 3(R — 2r)r — 3\/§Rr]

 RY(16Rr —5r%) — [3(R — 2r)r + 3v3Rr]”

~ 2Rr [RV16Rr —5r2 + 3(R — 2r)r + 3v/3Rr]

_ 16(R —2r)% + (55 — 18V/3)(R — 2r)? + (64 — 36\/3)(R — 2r)
N 2R [RV16Rr — 5r% + 3(R — 2r)r + 3V/3Rr]

>0

— ’

so that

The inequality[(3.]L) is proved. It follows directly from Theorém|1.1 that the equalities hold in
(3.7) if and only if the triangle is equilateral.

Let us now show that the coefficiedt/2 in the right-hand side of mequallt. (3.1) is best
possible.

Consider the inequality (3.1) in a general form as

(3.2) Zw—<2f+u(§—1)

Puttinga = 1,b =1, ¢ = 2t in (3.2) yields that

482 + (1 4+ 2t)/2 — 2t 1—¢
HOROVEEE (VB )
2+ 2t 441 — 2 1+t

Passing the limit as — 0 in (3.3), we gefu > 2v/2. Thus the best possible value foin ( .)
should beu,,i, = 2v/2. The proof of Theorer. 1 is complete.

(3.3)

Itis worth noticing that the coefﬁcie@tis not best possible for the left-hand side of inequality
(3.7), this may lead us to further discussion of the following significant problem.

Open Problem. Determine the best coefficiemtfor which the inequality below holds

(3.4) Zwiazz\@+u(1—2—];).

It seems that the problem is complicated and difficult. Indeed, it is unable to be solved in a
same way as the foregoing technique.
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