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ABSTRACT. In this paper we prove that there are no domains R?, other than the ellipses,
such that the Lebesgue measure of the intersectighaofd its homothetic imagef translated

to a boundary poing € 9¢ is independent of, provided thaft is "centered" at a certain interior
pointO € & (the center of homothety).

Similar problems arise in various fields of mathematics, including, for example, the study of
stationary isothermal surfaces and rearrangements.

Key words and phrasesConvex sets, asymptotic expansion, ordinary differential equations.

2000Mathematics Subject Classificat 062A10, 41A58, 34A05.

1. INTRODUCTION

In this paper we devote ourselves to the investigation, in two dimensions, of the following
problem, which was originally proposed in a more genéfalimensional setting by one of the
authors inl[4] and up to this moment has remained an open problem.

Problem 1.1. Determine all the open bounded convex skits R? for which there exists a point
O € & such that, for every > 0, the measure of the intersectionéWwith its homothetic image
e€ with respect ta), translated to a boundary poiptis independent of, for every choseiy
belonging to the boundary &f.

We wish to thank R. Magnanini for some useful discussions and suggestions.
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e€

Figure 1.1: The area of the shaded regiafi is independent aof.

In other words, we are interested in determining all the open bounded conveX isefs’
satisfying the following property:

(11) Ve>0 3C=C(e)>0 st [EN[EE+(q—0)|=C  VYqedE,

with C independent of (see Fig[ 1.11).
In fact, we will answer this question by solving a more general problem:

Problem 1.2. Determine all those open bounded convex dets R? such that there exists
an open bounded convex setc R?, with the property that the measure of the intersection
EN[eE + (¢ — O)] isindependent of, for anyq € 9¢, i.e.

1.2) Ve>0 3JC=C()>0 s.t. IEN[E+ (¢—0)]|=C Vq € 0€
where(C' is independent of andO is a suitable interior point of.

We will prove that, assuming sufficient regularity for the setand&, the only sets for
which property [(1.R) is satisfied are the ellipses. Hence, if a solution to Prgblem 1.1 exists,
it must be an ellipse (thus giving uniqueness). On the other hand, homothetic ellipses clearly
satisfy [1.1). Indeed, if and E are two discs[(1]1) is obviously satisfied, and the homothetic
ellipses case can be reduced to this last one, by means of a proper dilatation, under which our
problem is invariant.

Actually, we will show that, in Problein 1.Z, must be an ellipse as well (see Corollary] 2.4).
This result is not trivial forV > 2 and it is obtained in [7].

The result proved here strongly suggests that al®'irthe only admissible convex sefs
should be the ellipsoidal domains. This multidimensional version of our result will be the object
of future investigations.

It is worthwhile to point out that the assumption tl§ais bounded is crucial since, otherwise,
many more cases appear. For examplé&inwhen¢ is the half plane£ can be any bounded
set, or inR3, whenE is a sphere, many classes of unbounded doméiase admissible (see
[71).

The problem treated in this paper, though interesting in itself, is strangely related to some
other problems appearing in different contexts. For example, in [7] the authors show that the
domainsE satisfying [1.2), wherd” is a sphere, are related to the determination of stationary
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isothermic surfaces. They prove that, in the bounded case, the only admissildensaets be
the spheres, while, in the unbounded case, the admissiblé asgsclassified, as recalled above.

The result obtained in [7] suggests many possible extensions, among which the one studied
in this paper is definitely the most general, at least in the two dimensional setting.

Another possible application of the result obtained in this paper is in connection with rear-
rangements (see![3]), with the aim of deriving a generalized version of the Riesz-Sobolev type
inequality making use of the Hardy-Littlewood inequality (see [5]).

An abstract version of the Riesz-Sobolev inequality can be written in the form

(1.3) /R (Fx0) (@) d < /R (7 g () e

whereB = {B, :r € R"} is the family of all the homothetic sets of a givepen convex
neighborhoodf the origin with compact closure, and, for any measurable fungtirth level
sets of finite measure;”? is its B-rearrangementi.e

(1.4) o™ (x) = sup {)\ >0:xz¢€ ((b,\)#B} ,

where (¢,)"? is the B-rearrangemenbf the subleveb, := {z € RY : ¢(z) < A} (see,
for instance, [[2], [6], ([8]). Here/f, g, h are measurable functions @& andx denotes the
convolution products.

In the first place, an argument based on linearity reduces the task of proving inequality (1.3)
for B-rearrangements to the proof of its validity in the case of positive step functions. In partic-
ular, we have to prove such an inequality for the case

[:= /RN /RN Xg, (* —y) f(y)xp(x) dzdy,

(see the beginning of pg. 24 inl[6]). A simple calculation shows that, in this case, inequality
(1.3) is clearly satisfied when, for example,

(1.5) (B, +y)N Bl = [(Br+y)ﬂB]#B .

But (1.5) holds if and only if, for every choser> 0, there exists” > 0 such that
BN (z+ B,)|=C  when z€09B,.

In this paper, it is proved that this last property holds only for ellipsoidal domains.

We conclude by observing that the proof of our main theorem strongly relies on the McLaurin
expansion, with respect tg of the functiore — A(e, q) := |E N (eE + ¢)|, which allows us to
obtain a particular differential equation, satisfied by &nyaving property[(1]2). This particular
technique connects our problem to other related ones, already studied by the authors (see, e.g.,
[1]).

The paper is organized as follows: in Secfipn 2 we give the definition of a “proper testing set”
and state our main result (see Theofenj 2.1), with its consequences. In $gction 3 we give the
McLaurin expansion, with respect to up to the fifth order, of the area functien— A(e, q),
defined above (see Propositigns|3.1 3.2). Finally, in Sedtion 4 we prove the main theorem.
A Sectiornl b, with the conclusions and some final remarks, is added.

2. POSITION OF THE PROBLEM

Let £ and E' be two bounded convex subsetsif, with |E| = 1. Let O be a point in the
interior of £ and< E be the set

eE:={yecR" : y=¢(z - O)withz € E}.
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Finally, for every pointy € 0&, we denote withA (e, ¢) the Lebesgue measure of the region
ENek,, wheresE, = ¢E + (¢ — O). From now on, we will call the sef the “tested convex
set” and the sek’ the “testing convex set”.

In agreement with the notations introduced(in [7], we will make use of the following defini-
tions:

Definition 2.1. Given two set€ andF, we will say that is uniformly £-dense on its boundary
if A(e,q) does not depend anc 9€. In this caseFE will be called a “proper testing set”.

In this regard, the question arises of whether it is possible to characterize the convex sets
together with the poin® (which will be later chosen as the origin of both the cartesian axis and
the polar coordinates), for which a convex Setniformly £-dense on its boundary, exists.

In the N-dimensional setting, the problem has been treated by Magnanini, Prajapat and Sak-
aguchi in [7], where it is proved that, i is a sphere, then it is a proper testing set and, in
this case& must be a sphere, too. In tRedimensional case this property is a consequence of
Propositior) 3.2, as it is stated in Corollary|3.3 (see Segiion 3).

Remark 1. In general, it is possible to prove that any ellipsoid is a proper testing set. This
can be easily obtained observing that the problem is invariant under dilatation of the axes under
which any ellipsoid can be reduced to a sphere. Clearly, in this case the(pomist be the
center of the testing ellipsoid and the tested convex set is, up to a translation, homothetic to the
testing one.

Nevertheless, the problem of determining all the proper testing sets remains open. In this
paper, this problem will be solved for the ca¥e= 2, for tested convex sets of clag$ and
testing convex sets of clags, as stated in Theorem 2.1 below.

From now on, we assumg = 2.

Theorem 2.1. Let £ and £ be a tested set and a testing convex set of aldsand C?, re-
spectively. If the McLaurin expansion up to the fifth order, with respeet tf the function
A(e,q) = |EN[eE + (¢ — O)]] has coefficients which do not dependga d&, then E must
be an ellipse and) must be its center.

Corollary 2.2. The only proper testing sets of clagsare the ellipses.

Proof. It is a direct consequence of the previous theorem sinde,isfa proper testing set, by
definition the functiorA(e, ¢) does not depend ap so that its fifth order power expansion also
does not depend an O

Corollary 2.3. The ellipses? are the only sets which are uniformlf2-dense on their bound-
ary, where\ = 1/|Q| (see Definitiof 2]1 witd = Q and £ = X(2).

Proof. Itis a direct consequence of Corollary[2.2. O

Corollary 2.4. Let £ and E be a tested set and a testing convex set of ddsand C?, re-
spectively. If€ is uniformly E-dense on its boundary, thefiis an ellipse and& = A\F, for a
suitableX > 0.

Proof. From Corollary] 2.P, we get thaf is an ellipse. Since the problem is invariant under
dilatation of the axes, we can perform a proper dilatatian such a way thak' is transformed
inacircleA(E). Using the forthcoming Corollafy 3.3, we have th4f) is a circle, too. Hence,

£ is an ellipse homothetic t&. O

J. Inequal. Pure and Appl. Mat}9(4) (2008), Art. 94, 14 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

A NON LoCAL QUANTITATIVE CHARACTERIZATION OF ELLIPSES 5

3. PRELIMINARY RESULTS

Let us now fix a systenir, y) of cartesian coordinates and [ét p) be the associated polar
coordinates (in whicl# = 0 corresponds to the positiveaxis), centered in the poiil belong-
ing to the interior ofE. In the following, we will use a local cartesian representation for the
tested convex s&t, while for the testing convex sét we will use a global polar representation
p = p(0),0 < 6 < 2rx. Moreover,£ and £ are always assumed to be of cla&sandC?,
respectively.

Given a unit vector € $', we setC(v) as the area of the portion of the plane, not containing
the vector, bounded by and by the straight line orthogonal #gpassing through the origin.

Proposition 3.1. The second order McLaurin expansion of the functitin, ¢) with respect to
¢ is given by

(3.1) A(e,q) = C(v(q))e* + o(e?)

wherev(q) is the outward unit normal vector ®in q.

Moreover, such a power expansion does not depengiband only if the testing convex set
E is centrally symmetric with respect €, i.e., p(0) = p(6 + «) for everyd € R. Obviously, in
this case(C'(v(q)) = 1/2.

f(x)

Figure 3.1:¢q = (:co, f(wo)), A(e, q) is the area of the grey region arfd(¢, ¢) is the area of the black region.

Proof. SinceA(s, q) = |€ Nek,| and the diameter ofE,, is of the ordek, the first term in the
expansion ofA(e, q) is of orders2. Moreover, keeping account of this fact, it is clear that we

can locally approximate the am with the segmenP, P;, up to an error of ordes? (see
Figure); thus producing in the computationA4if, ¢) an error of ordee?, which does not
affect the second order McLaurin expansion.

This implies thatA(s, q) = C(v(q))e* + o(g?). Clearly, if the second order power expansion
of A(e,q) does not depend ofy the functionC(v(q)) also does not depend @n Rewriting
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C(v(g)) in terms of the angl&, between the normal(g) and the positiver-axis, and calling
this new functionC'(¢), we have that it is constant if and only if

_ (o +3m/2) do — p*(¢ + 7/2) do
de

which impliesp(¢ + 37/2) = p(¢/2). Since the boundary & is a closed connected simple
curve, ¢ attains any value if0, 27), asq varies ond€. Consequentlyp(d + ) = p(0); i.e.,
E is centrally symmetric with respect . Clearly, in this case(’(v(q)) = C(¢) = 3|E| =
1/2. O

Having found the second order expansionAgt, ¢), we will now devote our attention to
determining its fifth order expansion. To this purpose, given the conve&,det us assume
thaty = f(z) is a local parametrization of clag$ of 9&, in a neighborhood of, such that

q = (o, f(x0)).

y=f(xo) X b

Figure 3.2: o = tan ¢.

Let ¢, andt, be the tangent lines (in their cartesian representationftat the points (ex-
pressed in polar coordinates)

p1 = (arctan f'(x0), ep( arctan f'(zo)))
po2 = (arctan f'(zo) + m,ep( arctan f'(zo) + 7))

Because of the central symmetry we have
p(arctan f'(zo) + 7) = p(arctan f'(z))

andt; || ts.
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We denote byy the angular coefficient of the tangent litieto ¢ £ at the pointp,. Straight-
forward computations give the following expression for

. p/(go) sin 90 + p(@o) COS 60
N p’(@o) COS 90 — p(@o) sin 60 ’

(3.2)

wheref, = arctan f'(z,) (see Figure 3]2).
Let P, P, € €E, be the corresponding pointspf, p, € eE andS; andS; be the intersection
points of the tangent lines td, at P, and P, with the curve whose equation is

Y = T(ao,0)(7)

J]—ZEOQ ///x0 I—ZE03 (iv) o :E—1304
) + P — o) + ey T T =) [ )~ w0)

2 3! 4]

(i.e. the fourth order expansion 6).
Finally, t; + g andt; + ¢ are the tangent lines, obtained translating the linesndt¢, by
adding the vectofq — O) (see Figure 3]3).

Figure 3.3:C (g, q) is the area of the grey region, whitg (¢, q) — C1 (¢, q) is the area of the black region.

Proposition 3.2. Let us assume thdf is centrally symmetric with respect . Then the fifth
order McLaurin expansion of the functiofis, ¢) with respect ta is given by

(3.3) A@@:%§+@@é+@@w+d@,
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where

(3.4) C3(q) =

f"(x0) —7 p*(arctan f'(z)) ;
3 [1 + (f'(x0)) ]

(f"(@0)" o) (o) | F) (o)
Ao [(a) | 6l ) 60

p®(arctan f'(z)) ;
1+ (0]

(3.5) Cs(q) = [

and the term of fourth order is zero.

Remark 2. It is a straightforward computation to prove that the ellipSgg;) andCj(q) given
in (3.4) and|[(3.p) are actually constants independent of

Proof. It is clear that, ifc is sufficiently small, the differenc®(¢, ¢) between the ared(c, q)

of £ N ek, and its second order expansion is given by the area (with the minus sign) of that
portion ofc £, in betweenf(x) and the liney = f(zo) + f'(x0)(x — x0) (i.e. the black region

P, P Ry R, in Figure[3.1).

Since we are looking for the fifth order expansion4E, ¢), we can locally (i.e. in a neigh-
borhood ofq) replace the cartesian representationf(z)) of £ by means of its fourth order
Taylor expansiofl(,, 4) (), centered i, (in this regard, we use the fact that the lengthp; |
is of ordere).

HenceforthD(e, ¢) = —Ci(z, q) + o(£”), whereC, (¢, ¢) is the area of that portion afF, in
betweeny = T(,, 4)(x) and the lingy = f(xo) + f'(z0)(x — x0) (i.€. the grey regiol, P, Q, Q>
in Figure[3.3).

Nevertheless(; (¢, g) cannot be easily computed; for this reason we need a further approx-
imation which, however, does not affect the fifth order of the McLaurin expansicn(efq).

To this purpose, we replace the boundary B, with the tangent lineg;, + ¢ andt, + ¢. Ac-
cordingly, we denote by,(s, ¢) the area of the region thus obtained, which is bounded by the
graph of the functiory = T{,, 4)(x) and by the lineg = f(xo) + f'(x0)(z — o), t1 + ¢ and

t2 + ¢, i.e. the grey region together with the black one in Figuré 3.3.

We claim thatCy (¢, ¢) = Cs(¢, q) + o(e®). This is mainly due to the following facts:

(1) Firstly, |(Py — q) A (Py — S1)| > n > 0, for everyq € 0, with n independent of.
Indeed, if this is not the case, due to the compactnegs, diiere will be a point for
which the tangent line, + ¢ to ¢E, at the corresponding poif?, will coincide with
the tangent lineP, P, to £. Consequently, alE should stay either on the left or on the
right side of the lineP, P, in contrast with the central symmetry of,, with respect to
¢, proved in Propositiop 3] 1.

(2) Secondly, the lengthP, S| is of orders?. This is a consequence of the fact that the
difference between the abscissad’pindsS, is of order=?, as it can be seen usirig (3 16)
below (with § replaced by, as given in[(3.D)), provided thatx — f’'(zo)| > 7 > 0.

This final inequality is guaranteed by (1).

(3) Using (1) and (2), it is easy to realize that the area of the black re@iSn®; in Figure
[3.3 can be bounded from above by the integral (with respect to a cartesian reference
frame attached to the ling + ¢) of the function whose graphs gives the profile-@f,
(which, in the cartesian representation, is clearly a function of second order) along the
interval| P, S, | ~ 2. Henceforth, such area 3(c®). Obviously the same holds for the
black regionP;S5Q)s.

Having proved the claim, we now evaluate the afga, q).
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To this purpose, let us consider the lipe= a(x — zo) — (6 — f(zo)) which is parallel
to t; + ¢ andt, + g. Moreover, let us calP(¢) the intersection point between the two lines
y = f(xo) + f'(x0)(x — x9) andy = a(x — z9) — (6 — f(x0)) @andS(d) the intersection point
between the ling = a(z — z0) — (6 — f(x0))) andy = T(s, 4)(z) (see Figuré 3]4).

t,*+q

y=a(xxg)-(8-5(0xp)) .~

Xo

Figure 3.4:Cs(¢, q) is the area of the shaded region.

Clearly, thez-coordinateX » of the pointP(9) is given by

0
a— f'(zo)
In particular, we set, to be the value of the paramei&for which P(5,) = P, and P(—dy)
= P,; consequentlyS(dy) = S; andS(—dy) = Ss.
Keeping in mind that the angular coefficient of the liRg>, is f'(zo), by (3.6) we get
do

(3.7) |P(do) — q| = o= Flzo) 1+ (f'(xo))Q-

(3.6) a(Xp —x0) — (0 = f(o)) = f(wo) + [(x0)(Xp—20) = Xp—wo=

On the other hand,
(38)  [P(%) — 4l =[P — gl = || = ep(arctan f'(z9))  (see Figurg3]4)
hence, by[(3]7) andl (3.8), it follows that
(o — f'(wo)) p(arctan f'(xo)) _
1+ (f"(20))”
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Moreover, ther-coordinateX s of the pointS(0) is obtained by solving the following alge-
braic equation:

(3.10) a(Xs —xo) — (0 — f(zo)) = f(@o) + f'(0)(Xs — z0) + f”(m)()gs —0)

N f"(20)(Xs — 10)° n JO) (o) (Xg — 20)*

3! 41 ;
which gives
g — ) f”(xo) . ,
(3.11) Xg—up= T + o~ Pl (Xs — )
) )
+ 3‘[a—fl<x0)] (XS IO) +4'[a—f’($0)] (XS ;EO) .

This is a non trivial computation. For this reason, we confine ourselves to finding the fourth
order McLaurin expansion with respectdt@f X¢ — xg, i.e.:

XS — Ty = D1 ($0)5 + DQ(ZL’())(Sz + D3($0)5 + D4(ZE0)(54 + 0(54) s

which is, however, enough to carry on all the other computations of this paper.
Firstly, let us observe thats — x, = O(§) and hence,

(3.12) (atthe 1storder) Xg—a9= {ﬁ] d+0(9).
- 0

Replacing|(3.12) in the right hand side pf (3.11), we get

(3.13) (atthe 2nd order)  Dy(z) = {2(04 leffgf‘;; ))3} .

Finally, by means of a standard bootstraps argument, we have
f”l(ﬂio) . Q(f”(l'o))2
310 = fi(wo)" " A= flw0))? ]

5" @0)” 5" (eo) " (o)
8o~ Fwo)) " 12(a— f'{ao))?

(3.14) (at the 3rd order) Ds(xg) =

(3.15) (at the 4th order) Dy(xg) =

f(w) (370)
+Mm—fmmﬁ}
Hence,
N (D s | f"(=0) 2(f"(x0))” | o
@16) X s = |5 E ] 0 [mm—ﬁ@@v+aa—f@m55
[0 @)’ sl ey ) |
Lm—f@m7+mm—f@@w+mm—f@m55'%“>'

This implies, in accordance with Figure B.5, tfats, ¢) is obtained by integrating with
respect td, from —d, to dy, the infinitesimal ared.A(9) of the shaded region in Fify. 3.5, found
by multiplying the baseéP(5)S(d)| = | Xp — Xs|V1 + a? by the corresponding height, whose
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P(5+dd)

o

Figure 3.5: The shaded region is the infinitesimal atkeé(0).

value isdd/v/1 + o. Hence, we have

do
@17 Glea = [ Xp- Xl do
—do

:‘&m{$2m453

F(@0)° (o) " (o £ (o) ;
_[Mi—fQM7*ai—?é@;+6Ma—f@wP]%’
and, replacing, as given by[(3]9), it follows that
f%%W%mawf@@qgg
3(1+ (F/(20))")"”
_ﬁQMwﬂ%D[(W%W +ﬂmwwm+ﬂwm]g
(1+ (f'(20)?)"? [Ho—F(@0))?  6(a—f(x) 60

(3.18) Cy(e,q) = — [

Recalling that

1 1 1
A(€7 q) = §|€Eq| + D(Ea Q) = 562 - Cl(ga q) + 0(55) = 552 - CZ<€7 q) + 0(55)

and using[(3.18), we finally get the required result. O

Corollary 3.3. If the proper testing convex sét € C? is a circle, then the tested convex set
£ € C* must also be a circle.

Proof. SinceF is a proper testing set, by Definitipn PALe, ¢) is constant. Hence, Proposition
[3.7 applied to this particular case, implies

J" (o)
73/2

[1 + (f'(0)) }

= cost.
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It follows that the boundary of the tested convex&dias a positive constant curvature, which,
as far as bounded sets are concerned, implies that it is a circle. O

In the caseN > 2, the same result stated in Corollary]3.3 was previously provenlin [7,
Theorem 1.2].
4. PROOF OF THE MAIN THEOREM

Proof. By (3.4) and [(3.5) in Proposition 3.2 and the fact that, by assumption, the McLaurin
expansion of the functiorl (¢, ¢) up to the fifth order does not depend on the pqimat £, we
obtain

(4.2) C3 = p*(arctan f'(xzo)) ;

(f"(@0)” o) f" (o) | F (o)
4(0& _ f/($0))2 * 6(0[ — f’(ﬁfo)) * 60

p°(arctan f'(z)) ;
14 (7)™

whereC'; andC’5 are now constants independent;ofThe next step is to eliminate the function
f putting together[(4]1) and (4.2), thus obtaining an ordinary differential equation for a new
functionw defined by

(4.2) Cs = [

(1 + (f/)2)1/2
p(arctan(f’))

Note that, nowy is regarded as a function of the new varialjle
By (4.7), we obtain

(4.3) w(f') =

573/2
" ¢ [1 + (f/(x)) i|
(44) fa) = p?(arctan f/(z))
which gives
(4.5) f'(z) = Cw’(f'(2)).

Hence, differentiating iteratively the previous equation with respect tee get

(4.6) (@) = 3C%w (f'(2))w' (' (@) ;

(4.7) FUN (@) = 3C%wT (f'(x)) [B(w")?(f'(2)) + w(f'(z))w" (f'(x))] -
Recalling that/’(z) = tan 6, (4.3) implies

1
pl0) = w(tan @) cos§’
ooy w(tan®)tanf — (1 + tan® #)w'(tan d)
P6) = w?(tan @) cos 0 ’
and, by [(3.2),
_ w(0) oy w(o)
(4.8) a(f) = tanf — o (0) = alf) — f'(z) = )
Replacing[(4.8) and (4.5)—(4.8) in (4.2), we get
C3w? C3uwdw'  C3uw7 o ” 1
(4.9) Cs = dw? ] (w')? - 2w/’ + 20 (5(w) +ww ) R
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which, after a simplification, gives

(4.10) W (f'(2))w? (f (@) = C,
whereC is a proper constant.

From equation (4.10), it easily follows thathas a boundary of clags®.
At this point, using Lemma 41 below, with¢) = w({) and{ = f'(z) = tan6, together

with (4.3) and|[(4.14), we get
1+tan?0 O+ (B +2Atan0)’

2 —
(4.12) w”(tan0) = 0 54
Hence,
(4.12) o(0) = | — 24 .
(C + B?)cos?  + 4A%sin? 0 + 4AB sin 6 cos 0

It is well known that equatiorj (4.12) is the polar representation of a conic curve whose center
is the origin of the polar coordinates. On the other hand, the testing cdhi®a closed curve
and hence it must be an ellipse. O

Lemma 4.1. Lety(¢) be aC?-function satisfying the equation

(4.13) () =C.
Then,

O+ (B+24¢)
(4.14) y(§) = i\/ A :

whereA and B are two arbitrary constants.

Proof. Introducing the auxiliary function(p) = ¢ (y~1(p)), with p = y(§), the equation
(4.13) reduces to

C

dv(p) = v (p) = 7 + 24,

g V)=

whereA is an arbitrary constant. This implies
, 2442(¢) — C
y'() = :
y(&)
This is a standard ordinary differential equation, whose solution is given by

O+ (B+24¢)°
B 2A '

y*(€)

5. CONCLUSIONS AND FINAL REMARKS

We want to stress the fact that, though applied to the case in whehd& are convex sets,
the technique used in this paper should work equally well in the case in hisistar-shaped
with respect to a poin® and its boundary is a simple closed curve such that in any gaint
the vector(P — O) and the unit tangent vectelin P satisfy the condition(P — O) A | > 6,
for somed > 0, while £ has a curvaturé(s) (wheres is the arc-length) which does not change
sign infinitely many times.
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