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Abstract

New bounds are developed for the Ceby3ev functional utilising an identity in-
volving a Riemann-Stieltjes integral. A refinement of the classical Ceby3ev in-
equality is produced for f monotonic non-decreasing, g continuous and M (g;t, b)—
M (g;a,t) >0, fort € [a,b] where M (g; ¢, d) is the integral mean over [c,d] .

2000 Mathematics Subject Classification: Primary 26D15; Secondary 26D10.
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For two given integrable functions da, o], define theCebysev functional 4,

)

(1) T(f.0): /f

_b—alff@ﬁm‘bialZNMdm

In [1], P. Cerone has obtained the following identity that involves a Stieltjes
integral (Lemma 2.1, p. 3):

Lemma 1.1.Let f,g : [a,b] — R, wheref is of bounded variation ang is
continuous ona, b] , then theT" (£, ¢g) from (1.1) satisfies the identity,

1 b
12 T(9) = G [ YO @),
where
(1.3) U(t) = (t—a) A(t,b) — (b—t) A(a,t),
with
d
(1.4) Alc,d) ::/ g (x)dx.
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Using this representation and the properties of Stieltjes integrals he obtained
the following result in bounding the functiondl(-, -) (Theorem 2.5, p. 4):

Theorem 1.2. With the assumptions in Lemriial, we have:

(1.5) [T(f 9l
sup |V ()| Vs, (f)
te(a,b]
1 New U d L Bound
< (b—a) *N L f |W (t)|dt, for L — Lipschitzian; o th@pgeir;ée\?\l/:vsrrlct%:\gls
P. Cerone and S.S. Dragomir
f |W (t)| df (t) for f monotonic nondecreasing,
where\/’ (f) denotes the total variation gf on [a, b] . e P
; . : . Content
Cerone [] also proved the following theorem, which will be useful for the ontens
development of subsequent results, and is thus stated here for clarity. The no- <44 44
tation M (g; ¢, d) is used to signify the integral mean g@bver|c, d] . Namely, < >
Ale Go Back
(1.6) M (g;e,d) = d— . — c/ f(t Close
Quit
Theorem 1.3.Letg : [a,b] — R be absolutely continuous da, b| , then for
Page 4 of 26
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(1.8) |D(g;a,t,b)| < 4

( (59 19/l

q b q :
t—a —t q
sl M

lg'lly »

(9)

L (59) L

9" € Lo [a, b];

g € Ly,la,b],
p>1 l—i—%zl;

P p

g € Lyla,b];
g of bounded variation;

g is L — Lipschitzian.

Although the possibility of utilising Theorerh 3to obtain bounds o (1),
as given by {.3), was mentioned inl], it was not capitalised upon. This aspect
will be investigated here since even though this will provide coarser bounds,
they may be more useful in practice.
A lower bound for theCeby3Sev functional improving the classical result due
to Cebysev is also developed and thus providing a refinement.
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Now, if we use the functiog : (a,b) — R,

— Dl(a _Je@de Jrg(@)da
(21) Sp(t) T D(gaa7t7b> - bh—t - t—a )

then by (L.2) we may obtain the identity:

(2.2) T(f,g) = — >2/ (t—a)(b— 1) (t)df (£).

(b—a
We may prove the following lemma.

Lemma 2.1.If g : [a,b] — R is monotonic nondecreasing ém b] , theny as
defined byZ.1) is nonnegative ofa, b) .

Proof. Sinceg is nondecreasing, we ha\[ég (x)dz > (b—1t)g(t) and thus
from (2.2

@3 )z g LtOE i —a

(=)o ()~ frg@)dr

by the monotonicity of;. O

The following result providing a refinement of the classicaby3sev inequal-
ity holds.
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Theorem 2.2. Let f : [a,b] — R be a monotonic nondecreasing function on
[a,b] and g : [a,b] — R a continuous function ofu, b] so thaty (t) > 0 for
eacht € (a,b) . Then one has the inequality:

/f[(t—a) [bg<x>dx
/:g(m)d:v

(24) T(f,9) =

1
(b—a)®
—(b—1)

}df(t)’ > 0.

Proof. Sincep (t) > 0 andf is monotonic nondecreasing, one has successively

O e I [ftbg(f"idx - fcff(_xfldl”] i 1)
) (b_la)2 /:““” b=1) ftbi(_xidx— f‘:f(_xidx )
ot ooz el
> (b_1a>2 /ab(t—a) (b—1t) { ftb‘z(_xidm’ B mffvid:”"_ daf (¢)

— (-1 df (t)

_ b—la)2 /ab[(t—a) /tbg(x)dx

/atg(x)dm:
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and the inequalityX.5) is proved. O

Remark 2.1. By Lemma2.1, we may observe that for any two monotonic non-
decreasing functiong, g : [a,b] — R, one has the refinement Gebysev in-
equality provided by4.4).

We are able now to prove the following inequality in terms foaind the
functiony defined above in4.1).

Theorem 2.3.Let f : [a,b] — R be a function of bounded variation and: New U

. X ) pper and Lower Bounds
l[a,b] — R an absolutely continuous function so thais bounded or(a, b) . for the CebySev Functional
Then one has the inequality:

P. Cerone and S.S. Dragomir

b

1
(2.5) T (f,9)] < 4 H%DHOO\/(f)a Title Page
¢ Contents
wherey is as given by4.1) and
© g yZ.1) « >
ol = sup o (t)]. < >
te(a,b)
. . . o Go Back
Proof. Using the first inequality in Theoremh?2, we have
Close
’ Quit
T (f,9)| < 7 sup [U ()] \/ (f)
(b—a)” telab) a Page 8 of 26
b
= 3 sup |(t — CL) (b — t) Y2 (t)’ \/ (f) J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002
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1 b

S e e =) (b= 0] sup o () \/ (f)
1 b
< 7 lelle \a/ (f),
since, obviouslysup,(, ; [(t — a) (b — 1)] = ¢=2C. O

The case of Lipschitzian functiors: [a, b] — R is embodied in the follow-
ing theorem as well.

Theorem 2.4.Let f : [a,b] — R be anL—Lipschitzian function ora, b] and
g : la, b] — R an absolutely continuous function ¢n b| . Then

(2.6) T(f.9)l

(L2 ol if o€ Lo [a,b];
1 1
< Lb-a)s [Bla+La+ Dl el p>1, 5 +1=1
; !f p € L,la,bl];
L 7 el if peLla,b,

where||-||, are the usual Lebesgye-norms ona, b] and B (-, -) is Euler’'s Beta
function.

Proof. Using the second inequality in Theoren?, we have

L b
o 0= ale)

T (f.9)] <
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Obviously

b b
/ (b—1)(t —a)lp(t)]dt < sup |¢(t)|/ (t—a)(b—t)dt

te[a,b]
(b—a)’
= ¢l
giving the first result in%.6).
By Holder’s integral inequality we have New Upper and Lower Bounds
for the CebySev Functional
b b % b % P. Cerone and S.S. Dragomir
[o-ne-apoas([lpora) ([ 10-oc-ora)
= llell, (b= a)**3 [B (g +1,q+ 1)1 Title Page
Finally, Contents
) ) 44 44
/ (b—1t)(t—a)lp(t)|dt < s?g][(b—t)(t—a)]/ o (£)] di < >
a te|a, a
(b— a)2 Go Back
- 4 ||90||1 Close
and the inequality4.6) is thus completely proved. O] Quit

. . . e : 10 of 2
We will use the following inequality for the Stieltjes integral in the subse- Page 10 of 26
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guent work, namely

b
en |[norodo)
(sup |h(1)] 71k @) df (t)
tea,b|
_ ) (e arw)” (ko \qdf )q
- New U d L B d
wherep > 1, [+ =1 et Cee el
sup |k} | f ’h | df P. Cerone and S.S. Dragomir
\ t€[a,b]
providedf is monotonic nondecreasing ahdk are continuous ofu, b] . Title Page
We note that a simple proof of these inequalities may be achieved by using Contents
the definition of the Stieltjes integral for monotonic functions. The following o N
weighted inequalities for real numbers also hold,
< | 2
(2.8) biw; Go Back
Close
max || Z |b; | w; Quit
i=1n i=1
< Page 11 of 26

1 1
. P g < q a 1 1
Z Wi ’al| E W |b’L’ y P > 17 5 + a = 17 J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002
i=1 i=1 i
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wherea;, b; € Randw; > 0,7 € {1,...,n}.
Using @.7), we may state and prove the following theorem.

Theorem 2.5. Let f : [a,b] — R be a monotonic nondecreasing function on
la,b] . If gis continuous, then one has the inequality:

(2.9) |T(f,9)l

=

-0 —aFdr )" (Sl 0P dr( )",

p>17p+a:17

e s o ()] [} (t—a) (b— 1) df (1)

\ t€(a,b]

IN
T
S/)—‘
|
/N
e 3

Proof. From the third inequality in1.5), we have
1 b
@1 [T(1l< s [l
b
e [ e-n-aleolae.

~(b—a)
Using @.7), the inequality 2.9) is thus obtained. ]
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Using the representatiof.@) and the integration by parts formula for the Stielt-
jes integral, we have (see alsg p. 268], for a weighted version) the identity,

62 Tl = s [[ 00 ([ - aw) o

+ [e-a ([ 6-wasw)aro]
The following result holds. i

Theorem 3.1. Assume thaff : [a,b] — R is of bounded variation ang :
la,b] — R is continuous and of bounded variation @nb| . Then one has the
inequality:

b

ViV ).

a

(3.2) T (f,9)l <

N —

If g : [a,b] — Ris Lipschitzian with the constadt > 0, then

b
4
(3.3) T (f,9) < 5 (b= a) LN/ ().
If g : [a,b] — R is continuous and monotonic nondecreasing, then
3.4) [T(f.9)l

<o oo fe-oo- [owal]
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t€la,b]

| bia {t?[f}i,] [(t—a)g(t)—/:gm)du]

+ up [/tbg(u)du—g(t)(b—t)]} X\?(f>7

tefa,b

IN

t

}l{sup 90— = [awad

te(a,b) a

+ sup {ﬁ/tbg<u>du—g<t>]}\?<f>.

L t€(a,b]

Proof. Denote the two terms ir8(1) by

h= gt [o-o ([ w-auw)ao

2 ;:ﬁ/:@_@ (/f(b—u)dg(u)) @ (1),

Taking the modulus, we have

and by

b

]\a/<f>

|| < 5 Sup [(b—t)

(b — a) t€(a,b]

[ =g

+ s [(-a [/tbg<u>du—g<t><b—t>ﬂ}\i/<f>
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and

b b
L= s fo-a)| [0 was)]| V.
? b— CL)2 t€la,b] t \a/
However,
t t
sup {(b —1) / (u—a)dg (u) ] < sup [(b —t)(t—a)\/ (g)]
te[a,b] a tG[a,b] a
t New Upper anq Lower B_ounds
< sup [(b _ t) (t _ a)] sup (g> for the CebySev Functional
tefa] telat] P. Cerone and S.S. Dragomir
b
(b—a)*
= (9)
4 \,/ Title Page
and, similarly, GO
<4< 44
b (b—a)?\’
sup |(t—a)| [ (b—w)dg(u)|| <——\/(g). < >
tE[CL,b} t a
Go Back
Thus, from 38.1), Close
b Quit

(9l < 01+ 151 < 5V 0V ()

a

Page 15 of 26
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If g is L—Lipschitzian, then we have

t t L(t— a)?
/ (u—a)dg (u) EL/ (u—a)du= %
and b b 2
L(b—t
/ (b—u)dg (u)| < L/ (b—u)du= %
t t
and thus
1 b N?W tL;pp%r a;)nq L0\|/:ver B;_ountlis
‘I]_l g 2L Sup |:(b —t t_ (1 or the Cebysev Functional
2 (b - a) t€la,b] \a/ P. Cerone and S.S. Dragomir
and
1 b _
|I5] < ﬁL sup [(t —a)(b—t) \/ Title Page
2 ( B a) elab] a Contents
Since
, <4< 4 2
a+2b\ (a+2b 4 3
sup |(b—t t—a)? :<b— >< —a> =—({b-a)”, < | 2
te|a,b] [< ) ) } 3 3 27 ( )
Go Back
then b Close
2(b—a)
L] < 2—7L\/(f) Quit
and, similarly, Page 16 of 26
b
B = 25200V (), ey i
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Consequently

T(fo)l < Inl+ 1B < 282D\ ()

and the inequality3.3) is also proved.
If g is monotonic nondecreasing, then

/at(u—a)dg(U) S/:(u—a)dg(u):(t_a)g(t)_/:g(u)du

and

[ o=

Consequently,

— Q) t€lab

1< g s [o-0 =000 - [swad] Vo)

< { 7 SB[ (E— @) g (1) = [ g (w)du| V5 (£).
| dsupiegen [90) = 25 J g () du] V2 ().

and

1) < s (-0 [/tbgw) tu=g(0)0-0)| \i/(f)

(b — a)2 t€a,b

g/t (b—u)dg(u)Z/tg(u)du—g(t)(b—t)-
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7 Sy [ 9 (W) du— g (1) (0= )] V2 (F)
1 SWPre(a [ﬁ S} g () du—g (t)} Ve (),

and the inequality3.4) is also proved. O

<

The following result concerning a differentiable functign [a, b] — R also
holds.

Theorem 3.2. Assume thaff : [a,b] — R is of bounded variation ang :
la,b] — R is differentiable or(a, b) . Then,

35) 7o)l < —— V()

Wrefusy | (0 =) (t = ) 119l

sy [0 =) (t = ) 19y T ' € L [a8];

T SUD;eranl |(O— 1 t—a)*a ||y ]
g {5t [0 1) (6 =) g e

1+=
x Py (£ = @) (0= )7 11|}
if ¢ €L,ab],p>1, %—I—%:l;
S {supicron [(0= 1) (¢ = @) 11001
o SuDyegoay [(¢ = @) (0= 87 19/ lyyoe| } 1T o' € Loclas]
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if ¢ € Lia,b];

b
<\ () x an i
4(b a)

if ¢ €L,[ab], p>1,

a

191 a,61.00 if ¢' € Lo [a,b],

where the Lebesgue norms over an intefvad] are defined by

Al = (/ ht m) C<peo

:=ess sup |h(t)].
te[e,d]

and
12l .00

Proof. Sincey is differentiable or(a, b) , we have
t
@8 |/ w-adsw

[ =g @

(t —a) gl

IN

Jo (w=a)dullg'll g0

t
(fa, u—aqdu> ||g/”[at],p7 p>17 i_’_%:l’
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(t =a) g0

. (t a) 1 1 _ 1.
= W’lg”at]p’ p>1 p+,=5
e I fa,87,00
and, similarly,
(b—1) ||9IH [t,b],1
b
(3.7) / (b—u)dg (u)| < %Ilg les1p P> 1
t,b],p
t (gt+1)a

e g
2 £,b]
With the notation in Theorer.1, we have on using3(6)
(b—1)(t— a) 19101

b
1
e VA IR R p P>t
L | g
and from 8.7)
(t—a) (b_t)Hg/H[tb]l
b
1 a)(b—
I < (b—a)Q\/(f)'tzl[}zpb] %HQHWW p>1, 5 +.=1

a)(b— 2
L8 g 4g.00

1 _
Lyl

I;
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Further, since
T (f.9)| < L]+ |2,

we deduce the first inequality i3 ().
Now, observe that

sup (b= 1) (¢ = ) 19/l ga] < 500 (0= 1) (¢ = )] sup 119/l

t€fa,b] t€la,b] t€la,b]
(b - CL)2 /
S LAY T
(b—1)(t—a)ta
sup 1 ||g/||[a,t],p
t€[a,b] (g+1)a
1 1
< ———— Sup |:<b — t) (t - a)1+q:| Sup Hg H[at]p
(q+1)a telap] t€lab
= My 1911061,
where 1
M, = ——— sup [(b —t)(t — a)1+5} )

(q + 1) a t€la,b]

Consider the arbitrary function(t) = (b — t) (t —a) ™", 7 > 0. Theny' (t) =

(t—a) [(r+1)b+a— (r+2)t] showing that

sup p (t) =
te(a,b]

{a +(r+1) b] _ (b—a) (r+1)""
r+ 2 (r+2)"*?
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Consequently,

o4 =)@t )T qgt D (b-a)’t
q — ’ - :

(q+1) (2q+1)*7 (2 +1)**s

Also,

(b—1)(t —a)’ 1
o [ N | <5 500 (0= 0= ] s 1]

te(a,b] tela,b] te(a,b]
2 (b - a>3 /
= = 19 ey -
In a similar fashion we have
(b—a)’
sup (£ =a) (b= ) gl | < = 19

te(a,b]

1 1
(t—a)(b-1)"s _alg+Hb-ae
sup 1 H H[t,b],p o4 1 Hg H[a,b},p’
tefab] (¢+ 1) (2¢+1)°"a
and
(t—a)(b-1)* 2(b—a)
sup g o £ 559 lljap].00
sw [ 119l el 4 )
and the last part of3(5) is thus completely proved. O
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Lemma 3.3. Letg : [a,b] — R be absolutely continuous da, b] then for

(3.8)  (t) = M (g;t,b) — M (g;a,t),
with M (g; ¢, d) defined by 1.6),
( (u) Hg/Hooa g/ € Loo [a7b]7
==t gy, ¢ € Lala,b], a>1, 3+
(B+ 1)"
B9  elle<? gl g € Ly a,b];
Ve (g), g of bounded variation;
[ (5%) L, g is L — Lipschitzian,
and forp > 1
( (b—a\1T5 || ’
(5%) 7 19l 9 € Loo[a,b];
P rb—1)?15 v
(ff el | dt) lg'll, -
g €Lya,b], a>1, L+1
310) ¢l < 1 3
(b—a)[lg'll,, ¢ € Lila,b];
(b—a)? \/° (g), g of bounded variation;
\ (b_Ta)H% L, g is L — Lipschitzian.
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Proof. Identifying ¢ (t) with D (g; a,t,b) of (1.7) produces bounds fdi (¢)|
from (1.8). Taking the supremum overe [a, b] readily gives 8.9), a bound for

]l -
The bound fot]y|| , is obtained fromZ.8) using the definition of the Lebesque
p—norms ovela, b] . O

Remark 3.1. Utilising (3.9 of Lemma3.3in (2.5 produces a coarser upper
bound for|T" (f, g)| . Making use of the whole of Lemm&3in (2.6) produces
coarser bounds forZ4.6) which may prove more amenable in practical situa-
tions.

Corollary 3.4. Let the conditions of Theoreth3 hold, then

(519l 9 € Lulab];
—=r||¢'ll,, ¢ € Lala,b],
(B+1)P
1 b a>1, i + % =1;
@1 T(al <7V g, ¢ € Lufa,b;
Ve (9), ¢ of bounded variation;
[ (5%) L, g is L — Lipschitzian.
Proof. Using (3.9) in (2.5 produces§.11). ]

Remark 3.2. We note from the last two inequalities &£ 11 that the bounds
produced are sharper than those of Theorgr giving constants of and ;
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compared Wiﬂ'% and% of equations §.2) and (3.3). For ¢ differentiable then
we notice that the first and third results ¢f.{1) are sharper than the first and
third results in the second cluster &.6). The first cluster in3.5) are sharper
where the analysis is done over the two subinter{eals| and (z, b)].
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