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ABSTRACT. The purpose of the present paper is to establish some results concerning the partial
sums of meromorphic starlike and meromorphic convex functions analogous to the results due to
H. Silverman J. Math. Anal. Appl209(1997), 221-227]. Furthermore, we consider the partial
sums of certain integral operator.
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1. INTRODUCTION

Let X be the class consisting of functions of the form
1 oo
1.1 - - k
(1) fE) =+ e

which are analytic in the punctured open unit dBk= {z : 0 < |z| < 1}. Let¥*(«) and

Y () be the subclasses &f consisting of all functions which are, respectively, meromorphic
starlike and meromorphic convex of order0 < « < 1) in D. We also denote b{.(«) the
subclass ok which satisfies

—Re{2’f'(2)} > « 0<a<l;, zeld =DuU{0}).
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2 NAK EUN CHO AND SHIGEYOSHI OwWA

We note that every function belonging to the clas$a) is meromorphic close-to-convex of
ordera in D (see[2]). If f(z) = > ro,arz® andg(z) = >°.7, br2" are analytic in/, then
their Hadamard product (or convolution), denotedflayg, is the function defined by the power
series

(f*g)(z) = arbpz" (z eU).

A sufficient condition for a functiorf of the form [1.1) to be irt*(«) is that

(0.9]

(1.2) Z(k+oz)|ak| <l-«
k=1
and to be i, («) is that
(1.3) > k(k+a)lag) < 1—a.
k=1

Further, we note that these sufficient conditions are also necessary for functions of the form
(1.7) with positive or negative coefficients [([6./13], also dee [7]). Recently, Silverman [10]
determined sharp lower bounds on the real part of the quotients between the normalized starlike
or convex functions and their sequences of partial sums. Also, Li and Owa [4] obtained the
sharp radius which for the normalized univalent functiong/jrthe partial sums of the well-
known Libera integral operator|[5] imply starlikeness. Further, for various other interesting
developments concerning partial sums of analytic univalent functions, the reader may be (for
examples) refered to the works of Brickman et al. [1], Sheil-Small [9], Silvia [11], Singh and
Singh [12] and Yang and Owa [14].

Since to a certain extent the work in the meromorphic univalent case has paralleled that of
the analytic univalent case, one is tempted to search results analogous to those of Silverman
[10] for meromorphic univalent functions iR. In the present paper, motivated essentially by
the work of Silverman([10], we will investigate the ratio of a function of the form|(1.1) to its
sequence of partial sunf(z) = 1 + > a2 when the coefficients are sufficiently small
to satisfy either conditior (1.2) dr (1.3). More precisely, we will determine sharp lower bounds
for Re{f(2)/fn(2)}, Re{fu(2)/f(2)}, Re{f"(2)/[1(2)}, andRe{f,(2)/f'(2)}. Further, we
give a property for the partial sums of certain integral operators in connection with meromor-
phic close-to-convex functions. In the sequel, we will make use of the well-known result that
Re{(1 + w(2))/(1 —w(z))} > 0 (z € U) if and only if w(z) = D2, ¢,2" satisfies the in-
equality|w(z)| < |z|. Unless otherwise stated, we will assume thas of the form [1.1) and
its sequence of partial sums is denotedfbir) = 1 + >, a2

2. MAIN RESULTS
Theorem 2.1.1f f of the form[(1.]L) satisfies conditidn (IL.2), then

Re{ﬂz)}z ntza (2 € U).

fu(2) n+1+a«
The result is sharp for eveny, with extremal function
1 1—«a
2.1 =4 ——— > 0).
(2.1) fe)=—+ — (n>0)
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Proof. We may write
n+l4+al f(2) n+ 2a
l—a |fulz) n+l+4+a
1+ Y00 apehtl 4 ntlta 520 g okt

1+ Zk:l CLka'H

14+ A(2)
1+ B(2)

Set(1+ A(2))/(1+ B(z)) = (1 +w(2))/(1 —w(z)), so thatw(z) = (A(z) — B(2))/(2 +
A(z) + B(z)). Then

n+1+a Zk _— CLka+

n k+1 n+l1+a k+1
2+2) - apzFt + 1T o Zk:n+1 k=

w(z) =

and

T 2- 2Zk:1 ]a | — n+1+a Zk =n+1 ‘ak|

Now |w(z)| < 1if and only if

2<"+1+§>§:kw<2—2§]%|

k=n+1

which is equivalent to

n+ 14+«
(2.2) Z|ak| Z lay,| < 1.

k=n+1

It suffices to show that the left hand side[of (2.2) is bounded aboYe By, ((k+a)/(1—a))
which is equivalent to

" (k+2a—1 > (k—n-—1
_ _ > (.

k=1 k=n+1

To see that the functioffi given by [2.1) gives the sharp result, we observe:fer re™/(7+2)
that

— 1—
/() = oo 2" — 11— a nt20 whenr — 17.
fa(2) n+1+a ntl+a n+lta
Therefore we complete the proof of Theorem 2.1. O

Theorem 2.2.1f f of the form[(1.]L) satisfies conditidn (IL.3), then
Re{f(z)} > ( (n+2)(n+ a) (e u).

fu(2) n+1)n+1+«)
The result is sharp for eveny, with extremal function
1 11—
(2.3) ()=~ T (o)

T mr Dt ita)

J. Inequal. Pure and Appl. Mathb(2) Art. 30, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 NAK EUN CHO AND SHIGEYOSHI OwWA

Proof. We write
m+Dn+1+a) [ flz)  (n+2)(n+a)
1—« fulz) (m+1D(n+1+a)
1 + Zk, apzF Tt + —(n+1)(n+1+a Zk il apzF Tt

1+ Zk_ akzk“

14+ w(z)
T 1- w(z)’

where

w(z) = ) Sy 4kt .

2423 aptt + W D @2

Now ( +1 +1+

w(2)] < (o) (ntl+a) Zk n+1 |a| <1,

2-23 |@ ‘ WZk ot |G|
if
(2.4) Z| (n+1)( n+1—|—a) i o] < 1.
- k=n+1

The left hand side 0-4) is bounded aboveXoy” | (k(k + «)/(1 — «))|ax| if

1ia {Z(k’(k’w) — (L= a)|ag]+ > (k(k+a)—(n+1)(n+ 1+oz))|ak|} >0

and the proof is completed.
We next determine bounds f&e{ f,.(2)/f(2)}.
Theorem 2.3.  (a) If f of the form[(L1.]L) satisfies conditidn (IL.2), then

Re{fn<z>} > ntlte oy,

f(z) n+2
(b) If f of the form[(1.L) satisfies conditign (L.3), then

fn(2) (n+1)(n+1+ )
Re{f(z)} S i Dmt o) al -

Equalities hold in (a) and (b) for the functions given py [2.1) (2.3), respectively.

Proof. We prove (a). The proof of (b) is similar to (a) and will be omitted. We write
n+2 [ fu(z) n+l+a
{ fz) 2 }
14> apzhtt 4 nHEa 5™ a2t

1+ Zk:l akz’““

l1—«

14+ w(z)

T 1—w(z)

| n+2 Zk =n+1 |a’k" <1
N 2_2Zk 1| ag| — nthaa Zk:n-H lar] —

where

jw(2)
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This last inequality is equivalent to

- n+l4+a —
k=1 k=n+1
Since the left hand side df (2.5) is bounded abov& By, ((k + «)/(1 — ))|ax|, the proof is
completed. O

We turn to ratios involving derivatives. The proof of Theorenj 2.4 below follows the pattern
of those in Theorern 2.1 and (a) of Theorem 2.3 and so the details may be omitted.

Theorem 2.4.1f f of the form[(1.]L) satisfies conditidn (IL.2) with= 0, then
(a) Re{f<z)} >0 (z el),

fu(2)
(b) Re{%} > % (z €U).

In both cases, the extremal function is given[by]|(2.1) with 0.
Theorem 2.5.1f f of the form[(1.]L) satisfies conditign (IL.3), then

(a) Re{f/(z)} , _ntla (z e U),

fe ) C nrita
(b) Re{J}"E;)} > "Zigo‘ (z € U).

In both cases, the extremal function is given[by|(2.3).

Proof. It is well known thatf € ¥ (a) & —zf € ¥*(a). In particular,f satisfies condition
(1.3) if and only if —z /' satisfies condition (1]2). Thus, (a) is an immediate consequence of
Theorenj 2.]L and (b) follows directly from (a) of Theorem| 2.3. O

For a functionf € X, we define the integral operatéras follows:

1 /7 1 — 1
Fo) = [ tod =1+ Y gast GeD)
k=1

Then-th partial sumF;, of the integral operatofF’ is given by

1 — 1
F.(2) =~ k D).
(2) z+;k‘+2akz (2 €D)

The following lemmas will be required for the proof of Theorem 2.8 below.
Lemma2.6.For0 <8 <m,

DN | —

" cos(k0)
> 0.
F2 Ty 2
k=1
Lemma 2.7. Let P be analytic in/ with P(0) = 1 andRe{P(z)} > 3 inU. For any function

(@ analytic ini, the functionP x () takes values in the convex hull of the image6uanderq.

Lemmd& 2.6 is due to Rogosinski and Szego [8] and Leifnma 2.7 is a well-known result (c.f.
[3,[12]) that can be derived from the Herglotz’ representationfor
Finally, we derive

Theorem 2.8.1f f € ¥.(«), thenF, € ¥.(«)
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Proof. Let f be of the form [(1]1) and belong to the class(a) for 0 < a < 1. Since
—Re{2%f'(2)} > «a, we have

(2.6) Re {1 — ﬁ ; lmkzkﬂ} > % (z €elU).

Applying the convolution properties of power seriedtn we may write

~ k
2.7 —2?Fl(2)=1—
@7)  —FE() ;kH

a2

1 e8] n+1 1
=|1—-=— kagz ! 14+2(1— L
( 2(1—04); = >*< ( O‘);/le

Puttingz = 7¢?(0 < r < 1, 0 < |§] < 7), and making use of the minimum principle for
harmonic functions along with Lemma P.6, we obtain

A | & Ak cos k6
(2.8) Re 1+2(1—04)Zk+1z —14+2(1—-a) 1
k=1 k=1
n+1
1421 —a) S M
= k+1

In view of (2.8), [2.7),[(2B) and Lemnfia 2.7, we deduce that
—Re{Z’F/(2)} > «a 0<a<l; zel).
Therefore we complete the proof of Theorem 2.8. O

REFERENCES

[1] L. BRICKMAN, D.J. HALLENBECK, T.H. MacGREGORAND D. WILKEN, Convex hulls and
extreme points of families of starlike and convex mappifigans. Amer. Math. Socl85(1973),
413-428.

[2] M.D. GANIGI anD B.A. URALEGADDI, Subclasses of meromorphic close-to-convex functions,
Bull. Math. Soc. Sci. Math. R. S. Roumafiie S.),33(81)(1989), 105-109.

[3] A.W. GOODMAN, Univalent functions\Vol. I, Mariner Publ. Co., Tampa, Fl., 1983.

[4] J.L. LI AND S. OWA, On partial sums of the Libera integral operaforiMath. Anal. Appl.213
(1997), 444-454.

[5] R.J. LIBERA, Somes classes of regular univalent functidtrec. Amer. Math. Soc16 (1965),
755-758.

[6] M.L. MOGRA, T.R. REDDY AND O.P. JUNEJA, Meromorphic univalent functiorgyll. Austral.
Math. Soc, 32(1985), 161-176.

[7] M.L. MOGRA, Hadamard product of certain meromorphic univalent functidnsdylath. Anal.
Appl, 157(1991), 10-16.

[8] W. ROGOSINSKIAND G. SZEGO, Uber die abschimlte von potenzreihen die in ernein kreise be
schranket bleiberviath. Z, 28 (1928), 73-94.

[9] T. SHEIL-SMALL, A note on partial sums of convex schlicht functioBsill. London Math. Sa¢
2(1970), 165-168.

[10] H. SILVERMAN, Partial sums of starlike and convex functiodsMath. Anal. Appl.209(1997),
221-227.

J. Inequal. Pure and Appl. Mathb(2) Art. 30, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

PARTIAL SUMS OF MEROMORPHICFUNCTIONS 7

[11] E.M. SILVIA, On partial sums of convex functions of ordey Houston J. Math 11 (1985), 397—
404.

[12] R. SINGHAND S. SINGH, Convolution properties of a class of starlike functidhiec. Amer.
Math. Soc, 106(1989), 145-152.

[13] B.A. URALEGADDI AND M.D. GANIGI, Meromorphic convex functions with negative coeffi-
cients,J. Math. Res. & Expositiqry (1987), 21-26.

[14] D. YANG AND S. OWA, Subclasses of certain analytic functiodskkaido Math. J 32 (2003),
127-136.

J. Inequal. Pure and Appl. Mathb(2) Art. 30, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Introduction
	2. Main Results
	References

