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ABSTRACT. The purpose of the present paper is to establish some results concerning the partial
sums of meromorphic starlike and meromorphic convex functions analogous to the results due to
H. Silverman [J. Math. Anal. Appl.209(1997), 221-227]. Furthermore, we consider the partial
sums of certain integral operator.
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1. I NTRODUCTION

Let Σ be the class consisting of functions of the form

(1.1) f(z) =
1

z
+

∞∑
k=1

akz
k

which are analytic in the punctured open unit diskD = {z : 0 < |z| < 1}. Let Σ∗(α) and
Σk(α) be the subclasses ofΣ consisting of all functions which are, respectively, meromorphic
starlike and meromorphic convex of orderα (0 ≤ α < 1) in D. We also denote byΣc(α) the
subclass ofΣ which satisfies

−Re{z2f ′(z)} > α (0 ≤ α < 1; z ∈ U = D ∪ {0}).
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We note that every function belonging to the classΣc(α) is meromorphic close-to-convex of
orderα in D (see [2]). Iff(z) =

∑∞
k=0 akz

k andg(z) =
∑∞

k=0 bkz
k are analytic inU , then

their Hadamard product (or convolution), denoted byf ∗ g, is the function defined by the power
series

(f ∗ g)(z) =
∞∑

k=0

akbkz
k (z ∈ U).

A sufficient condition for a functionf of the form (1.1) to be inΣ∗(α) is that

(1.2)
∞∑

k=1

(k + α)|ak| ≤ 1− α

and to be inΣk(α) is that

(1.3)
∞∑

k=1

k(k + α)|ak| ≤ 1− α.

Further, we note that these sufficient conditions are also necessary for functions of the form
(1.1) with positive or negative coefficients ([6, 13], also see [7]). Recently, Silverman [10]
determined sharp lower bounds on the real part of the quotients between the normalized starlike
or convex functions and their sequences of partial sums. Also, Li and Owa [4] obtained the
sharp radius which for the normalized univalent functions inU , the partial sums of the well-
known Libera integral operator [5] imply starlikeness. Further, for various other interesting
developments concerning partial sums of analytic univalent functions, the reader may be (for
examples) refered to the works of Brickman et al. [1], Sheil-Small [9], Silvia [11], Singh and
Singh [12] and Yang and Owa [14].

Since to a certain extent the work in the meromorphic univalent case has paralleled that of
the analytic univalent case, one is tempted to search results analogous to those of Silverman
[10] for meromorphic univalent functions inD. In the present paper, motivated essentially by
the work of Silverman [10], we will investigate the ratio of a function of the form (1.1) to its
sequence of partial sumsfn(z) = 1

z
+
∑n

k=1 akz
k when the coefficients are sufficiently small

to satisfy either condition (1.2) or (1.3). More precisely, we will determine sharp lower bounds
for Re{f(z)/fn(z)}, Re{fn(z)/f(z)}, Re{f ′(z)/f ′n(z)}, andRe{f ′n(z)/f ′(z)}. Further, we
give a property for the partial sums of certain integral operators in connection with meromor-
phic close-to-convex functions. In the sequel, we will make use of the well-known result that
Re{(1 + w(z))/(1 − w(z))} > 0 (z ∈ U) if and only if w(z) =

∑∞
k=1 ckz

k satisfies the in-
equality|w(z)| < |z|. Unless otherwise stated, we will assume thatf is of the form (1.1) and
its sequence of partial sums is denoted byfn(z) = 1

z
+
∑n

k=1 akz
k.

2. M AIN RESULTS

Theorem 2.1. If f of the form (1.1) satisfies condition (1.2), then

Re

{
f(z)

fn(z)

}
≥ n + 2α

n + 1 + α
(z ∈ U).

The result is sharp for everyn, with extremal function

(2.1) f(z) =
1

z
+

1− α

n + 1 + α
zn+1 (n ≥ 0).

J. Inequal. Pure and Appl. Math., 5(2) Art. 30, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


PARTIAL SUMS OF MEROMORPHICFUNCTIONS 3

Proof. We may write

n + 1 + α

1− α

[
f(z)

fn(z)
− n + 2α

n + 1 + α

]
=

1 +
∑n

k=1 akz
k+1 + n+1+α

1−α

∑∞
k=n+1 akz

k+1

1 +
∑n

k=1 akzk+1

:=
1 + A(z)

1 + B(z)
.

Set(1 + A(z))/(1 + B(z)) = (1 + w(z))/(1 − w(z)), so thatw(z) = (A(z) − B(z))/(2 +
A(z) + B(z)). Then

w(z) =
n+1+α

1−α

∑∞
k=n+1 akz

k+1

2 + 2
∑n

k=1 akzk+1 + n+1+α
1−α

∑∞
k=n+1 akzk+1

and

|w(z)| ≤
n+1+α

1−α

∑∞
k=n+1 |ak|

2− 2
∑n

k=1 |ak| − n+1+α
1−α

∑∞
k=n+1 |ak|

.

Now |w(z)| ≤ 1 if and only if

2

(
n + 1 + α

1− α

) ∞∑
k=n+1

|ak| ≤ 2− 2
n∑

k=1

|ak|,

which is equivalent to

(2.2)
n∑

k=1

|ak|+
n + 1 + α

1− α

∞∑
k=n+1

|ak| ≤ 1.

It suffices to show that the left hand side of (2.2) is bounded above by
∑∞

k=1((k+α)/(1−α))|ak|,
which is equivalent to

n∑
k=1

(
k + 2α− 1

1− α

)
|ak|+

∞∑
k=n+1

(
k − n− 1

1− α

)
|ak| ≥ 0.

To see that the functionf given by (2.1) gives the sharp result, we observe forz = reπi/(n+2)

that

f(z)

fn(z)
= 1 +

1− α

n + 1 + α
zn+2 −→ 1− 1− α

n + 1 + α
=

n + 2α

n + 1 + α
whenr → 1−.

Therefore we complete the proof of Theorem 2.1. �

Theorem 2.2. If f of the form (1.1) satisfies condition (1.3), then

Re

{
f(z)

fn(z)

}
≥ (n + 2)(n + α)

(n + 1)(n + 1 + α)
(z ∈ U).

The result is sharp for everyn, with extremal function

(2.3) f(z) =
1

z
+

1− α

(n + 1)(n + 1 + α)
zn+1 (n ≥ 0).
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Proof. We write

(n + 1)(n + 1 + α)

1− α

[
f(z)

fn(z)
− (n + 2)(n + α)

(n + 1)(n + 1 + α)

]
=

1 +
∑n

k=1 akz
k+1 + (n+1)(n+1+α)

1−α

∑∞
k=n+1 akz

k+1

1 +
∑n

k=1 akzk+1

:=
1 + w(z)

1− w(z)
,

where

w(z) =

(n+1)(n+1+α)
1−α

∑∞
k=n+1 akz

k+1

2 + 2
∑n

k=1 akzk+1 + (n+1)(n+1+α)
1−α

∑∞
k=n+1 akzk+1

.

Now

|w(z)| ≤
(n+1)(n+1+α)

1−α

∑∞
k=n+1 |ak|

2− 2
∑n

k=1 |ak| − (n+1)(n+1+α)
1−α

∑∞
k=n+1 |ak|

≤ 1,

if

(2.4)
n∑

k=1

|ak|+
(n + 1)(n + 1 + α)

1− α

∞∑
k=n+1

|ak| ≤ 1.

The left hand side of (2.4) is bounded above by
∑∞

k=1(k(k + α)/(1− α))|ak| if

1

1− α

{
n∑

k=1

(k(k + α)− (1− α)|ak|+
∞∑

k=n+1

(k(k + α)− (n + 1)(n + 1 + α))|ak|

}
≥ 0,

and the proof is completed. �

We next determine bounds forRe{fn(z)/f(z)}.

Theorem 2.3. (a) If f of the form (1.1) satisfies condition (1.2), then

Re

{
fn(z)

f(z)

}
≥ n + 1 + α

n + 2
(z ∈ U).

(b) If f of the form (1.1) satisfies condition (1.3), then

Re

{
fn(z)

f(z)

}
≥ (n + 1)(n + 1 + α)

(n + 1)(n + 2)− n(1− α)
(z ∈ U).

Equalities hold in (a) and (b) for the functions given by (2.1) and (2.3), respectively.

Proof. We prove (a). The proof of (b) is similar to (a) and will be omitted. We write

n + 2

1− α

[
fn(z)

f(z)
− n + 1 + α

n + 2

]
=

1 +
∑n

k=1 akz
k+1 + n+1+α

1−α

∑∞
k=n+1 akz

k+1

1 +
∑n

k=1 akzk+1

:=
1 + w(z)

1− w(z)
,

where

|w(z)| ≤
n+2
1−α

∑∞
k=n+1 |ak|

2− 2
∑n

k=1 |ak| − n+2α
1−α

∑∞
k=n+1 |ak|

≤ 1.
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This last inequality is equivalent to

(2.5)
n∑

k=1

|ak|+
n + 1 + α

1− α

∞∑
k=n+1

|ak| ≤ 1.

Since the left hand side of (2.5) is bounded above by
∑∞

k=1((k + α)/(1− α))|ak|, the proof is
completed. �

We turn to ratios involving derivatives. The proof of Theorem 2.4 below follows the pattern
of those in Theorem 2.1 and (a) of Theorem 2.3 and so the details may be omitted.

Theorem 2.4. If f of the form (1.1) satisfies condition (1.2) withα = 0, then

(a) Re

{
f ′(z)

f ′n(z)

}
≥ 0 (z ∈ U),

(b) Re

{
f ′n(z)

f ′(z)

}
≥ 1

2
(z ∈ U).

In both cases, the extremal function is given by (2.1) withα = 0.

Theorem 2.5. If f of the form (1.1) satisfies condition (1.3), then

(a) Re

{
f ′(z)

f ′n(z)

}
≥ n + 2α

n + 1 + α
(z ∈ U),

(b) Re

{
f ′n(z)

f ′(z)

}
≥ n + 1 + α

n + 2
(z ∈ U).

In both cases, the extremal function is given by (2.3).

Proof. It is well known thatf ∈ Σk(α) ⇔ −zf ′ ∈ Σ∗(α). In particular,f satisfies condition
(1.3) if and only if−zf ′ satisfies condition (1.2). Thus, (a) is an immediate consequence of
Theorem 2.1 and (b) follows directly from (a) of Theorem 2.3. �

For a functionf ∈ Σ, we define the integral operatorF as follows:

F (z) =
1

z2

∫ z

0

tf(t)dt =
1

z
+

∞∑
k=1

1

k + 2
akz

k (z ∈ D).

Then-th partial sumFn of the integral operatorF is given by

Fn(z) =
1

z
+

n∑
k=1

1

k + 2
akz

k (z ∈ D).

The following lemmas will be required for the proof of Theorem 2.8 below.

Lemma 2.6. For 0 ≤ θ ≤ π,
1

2
+

m∑
k=1

cos(kθ)

k + 1
≥ 0.

Lemma 2.7. LetP be analytic inU with P (0) = 1 andRe{P (z)} > 1
2

in U . For any function
Q analytic inU , the functionP ∗Q takes values in the convex hull of the image onU underQ.

Lemma 2.6 is due to Rogosinski and Szegö [8] and Lemma 2.7 is a well-known result (c.f.
[3, 12]) that can be derived from the Herglotz’ representation forP .

Finally, we derive

Theorem 2.8. If f ∈ Σc(α), thenFn ∈ Σc(α)
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Proof. Let f be of the form (1.1) and belong to the classΣc(α) for 0 ≤ α < 1. Since
−Re{z2f ′(z)} > α, we have

(2.6) Re

{
1− 1

2(1− α)

∞∑
k=1

kakz
k+1

}
>

1

2
(z ∈ U).

Applying the convolution properties of power series toF ′
n, we may write

−z2F ′
n(z) = 1−

n∑
k=1

k

k + 2
akz

k+1(2.7)

=

(
1− 1

2(1− α)

∞∑
k=1

kakz
k+1

)
∗

(
1 + 2(1− α)

n+1∑
k=1

1

k + 1
zk

)
.

Puttingz = reiθ(0 ≤ r < 1, 0 ≤ |θ| ≤ π), and making use of the minimum principle for
harmonic functions along with Lemma 2.6, we obtain

Re

{
1 + 2(1− α)

n+1∑
k=1

1

k + 1
zk

}
= 1 + 2(1− α)

n+1∑
k=1

rk cos kθ

k + 1
(2.8)

> 1 + 2(1− α)
n+1∑
k=1

cos kθ

k + 1
≥ α.

In view of (2.6), (2.7), (2.8) and Lemma 2.7, we deduce that

−Re{z2F ′
n(z)} > α (0 ≤ α < 1; z ∈ U).

Therefore we complete the proof of Theorem 2.8. �
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