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1. INTRODUCTION

Thek—th (normalized) elementary symmetric function with complex variables,, . . ., z, €
C is defined by

Z . . . l‘ . 'T . .« .. I‘ .

_ 1<j1<g2<...<j<n “7J177J2 Jk

Ek(xlax%"'?xn) - (n )
)

wherek = 1,2,...,n. By convention,Ey(z1,zs,...,x,) = 1. For the sake of brevity, we
write such a function simply a&; when there is no confusion over its variables.

Itis well known that wherr, x, . . ., z,, € R, the sequencgE, } satisfies Newton’s inequal-
ities:
(1.1) Ef>E, 1B, 1<k<n-1

For background material regarding Newton’s inequalities including some interesting historical
notes, we refer the reader 1d [2, 6]. It should be pointed out, however, that a sequence with
property [(1.1) is also said to be log—concave or, more generally, Pélya frequency in literature
[1,18]. Furthermore, it is known thdt (1.1) holds if and only if

(1.2) EWE; > Ey_1Ep

for all £ < [, provided thatt, > 0 for all k£ and that{ £} has no internal zeros, namely that
foranyk < j <, E; # 0 whenevelEy, E; # 0.

For { £} with variableszy, z,, ..., x, € C, itis natural to require first that the non—real
entries inzy, zo, ..., x, appear in conjugate pairs so as to guarantee{that C R. A set
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of numbers that fulfills this requirement is said to be self-conjugate. In addition, we assume
that for all j, Re z; > 0 unless stated otherwise. Consequertly,> 0 for all £. This latter
requirement can be seen in Secfign 2 to arise naturally in a broader setting for the satisfaction
of inequalities similar to Newton'’s.

When it comes to the question of whether Newton’s inequalities continue to hof{dph
with self-conjugate variables, the answer is, in general, negative. One observation is that
if z; # 0 for all j, then{Ej(xy,o,...,2,)} satisfies Newton’s inequalities if and only if
{Ep(zyt, 2yt ..., 21} does[[5]. In addition, it is shown in[3] that if,, 2o, . . . , z,, form the
spectrum of an M— or inverse M—matrix, th¢@,. } satisfies Newton’s inequalities. However,
it is still an open question as to under what conditions Newton’s inequalities carry over to the
complex domain.

On the other hand, it is demonstrated.in [4, 5] that when self-conjugate variables are allowed,
{E}} satisfies the so-called Newton-like inequalities. Specificallypfer A < 1, set

(1.3) Q= {z:|argz| < cos™' VA},
and letxy, xo, ..., x, € Q be self-conjugate, then accordingto [4],
(1.4) E? > \Ey_1Ejq

for all £&. We comment tha{ (I} 3) implies the dependence oh z1, z,, ..., z,. Besides, it
is illustrated in [5] that when, z,, ..., z, represent the spectrum of the Drazin inverse of
a singular M—matrix, Newton-like inequalities hold in the form [of [1.4) witl2 < X < 1
being independent af;, xs, . .., x,. It should be noted that Newton-like inequalities go back
to Newton’s whem\ = 1.

In light of condition [1.2), we now extend the formulation of Newton-like inequalities. Sup-
pose thatt), > 0 for all k. For the sam® < X < 1 as in [1.4), we consider the following
condition on{ £ }:

(1.5) EvEy > ANEp 1B

for all £ < I. We observe thaf (1.5) leads {o (1.4). Nevertheless, the converse is generally
not true, thus the term generalized Newton-like inequalitieg fof (1.5). In order to sef that (1.5)
is indeed a stronger condition thdn (1.4), we take the instance When 0.]] From (1.4), it
follows that

ElEji1 > AEy1E} | > N Ej1EEp o,
implying that
EvEyi1 > NV E,1Ey s

instead of the tighter inequalit, Ey..1 > AEj_; Ej+» from (1.3) on letting = k& + 1.

As another consequence 1.5), it can be easily verified that toeing evenE,i/k >

\/XE;i(erQ). This also turns out to be an improvement over the existing result in [4].

With the introduction of the generalized Newton-like inequalities in the formh of (1.5), there
is a quite intriguing question of whether they hold phy}. Motivated by [2] 4] 5], we shall
utilize an inductive argument to show that the answer is in fact affirmativé&p} with self-
conjugate variables if2. We mention that the proof of Newton’s inequalities, see for example
[2,16,7] for several variants, is essentially inductive, so is that of the Newton-like inequalities
in [4]. The approach that we adopt in this work is mainly inspired by [2].

1This somehow amounts to the requirement of no internal zeros. However, it is clarified later that this require-
ment is actually met with self-conjugate variable$2in
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2. PROOF OF GENERALIZED NEWTON-LIKE INEQUALITIES

Recall thatt, = Ei(z1,9,...,2,), Wherexy,zy,...,z, € C are assumed to be self-
conjugate. We begin with the following well-known observation.

Let p(z) = [[,_,(z — %), the monic polynomial whose zeros arg z», ..., z,. Then, in
terms of Ey, p(x) can be expressed as
2.1 xr) = -1 k(n)E "k,
(2.1) p(z) ’; () B

The first few lemmas below validate the generalized Newton-like inequalities for the cases
whenn = 2, 3. Seeing the fact that Newton’s inequalities are satisfied g} with real vari-
ables, we only need to look at the cases in which one conjugate pair is present in the variables.
In what follows,a, b, andc are all real numbers.

Lemma 2.1. For k = 0,1,2, setEy, = Ex(x1,22), Wherez; 5 = a + ib anda® + v* > 0. Then

E? > AE By forany0 < A < 2.

Proof. Let p(z) = (x — x1)(z — z5) be the monic polynomial with zerag andx,. Clearly,
p(z) = 2? — 2ax + a® + b®. Next, by comparing with[ (2|1), we obtain that = « and

Ey = a? + b2 ThusE? — AEyEy = a®> — Ma? + b?) > 0 forany0 < \ < af—ij O

The proof of Lemma 2]1 indicates thatif+5* > 0, thena? /(a?+b%) provides the best upper
bound on\ in the generalized Newton-like inequalities for the case when2. Alternatively,
A can be thought of as the best lower boundid(a? + v?) if X is prescribed while: andb are
allowed to vary. Besides, Lemma R.1 indicates that the case of a purely imaginary conjugate
pair should be excluded since they only lead to the trivial result.

Lemma 2.2. Suppose that ¢ > 0. For0 < k < 3, setEy, = Ey(x1, xq, x3), Wherer, » = a£ib
andzs; = c¢. Then Newton’s inequalities

E; > By 1B, k=12

hold if and only if either
((a—/3b>c,

c\2 V3 2 .
\ (a—i) +<b—730) > 2
or
( a+\/§b§c,

(a— %)2 + <b+ \/7§C>2 < 2.

\

3 )
FE5 = c(a® + b?). Itis a matter of straightforward calculation to verify that > Ej,_, E}.,, for
k = 1,2 if and only if

Proof. Similar to the proof of Lemmf 2.1, we derive that = 2ut¢, £, = @+P+2c gng

la —c| > /3b,

la? + b — ac| > V/3bc,
which leads to the conclusion. O
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A similar conclusion can be reached for the case when 0. Note thathb can always be
assumed to be nonnegative. For any fixed 0, the region as characterized by the necessary
and sufficient condition in Lemnja 2.2 is illustrated in Figurg 2.1.

|z-17|=c
z=£t+c

=& t+c
|z-n|=c

Figure 2.1: The shaded region, whefrés a real parametert = ¢ + iv/3¢/3, andn = ¢/2 — iv/3¢/2, represents
the condition orw andb, with ¢ being fixed, such that Newton’s inequalities hold.

It can been seen from the formulas 6 as given in the proof of Lemnja 2.2 thgE}, } has
no internal zeros if we further assume thatz,, z3 € ). In fact, such a property dfE; } can
be readily verified to be true even when z,, x5 € ) are all real.

We also comment that according 1d [3], Newton’s inequalities are uphel@Zan with
x1, T, . . ., x, being the spectrum of an M— or inverse M—matrix. Hence Lerfnma 2.2 also char-
acterizes the region in which the eigenvalues 8fa3 M- or inverse M—matrix are located. In
Figure[ 2.1, this region is represented by the shaded part within the first quadrant.

The next lemma concerns the fulfillment of the generalized Newton-like inequalities when
n = 3.
Lemma 2.3. Suppose that, b, ¢ > 0 witha?+0* > 0. For0 < k < 3, setE, = Ey(x1, 12, 73),
wherezx; » = a £ b andzs; = c. Then for any\ such that0 < A\ < Lb? {E}} satisfies the

a?+
relationship that
EvEy > A\Ep 1B

forall £ <.

Proof. It suffices to show the conclusion for the case= a'fW
k =1,2,3, as given in the proof of Lemnja 2.2, we have that

With the formulas forEy,

a’ (a—c)? 2ab*c
T Er R T Ty TRere T
a? 1
E; Wz 1 b2 EEs 9 [a*(a — ¢)* + 2a°V° + 4ab’c + b'] > 0,
and
a2 1 2 2 2
1By — 5 EoBs = g [2a(a — o) + 246" + V%] > 0.
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This completes the proof. O

Throughout the rest of this paper, we shall mainly focus on the scenari®¢hat > 0 for
eachj in addition tozx,, =, . . ., z,, being self-conjugate. Such a requirement plays a key role
in the justification of Lemm3. It also guarantees thgtc,, xo, . . ., x,) > 0. Recall that?
is the region defined as if (1.3). We now fixx A < 1 and assume that;, zs,...,z, € (.
Lemmg 2.8 can then be rephrased as follows.

Lemma 2.4. For self-conjugatery, =5, x3 € €, denoteF, = Ei(x1, x2, x3), where0 < k < 3.
Then
EvEy > AEp_1 B

forall £ <.

Following an inductive approach, the main question now is whether the generalized Newton-
like inequalities continue to hold as the number of variableéscreases, with the assumption
that such inequalities hold ofF } with variableszy, zs, . .., z,.

The lemma below updates the elementary symmetric functions when a nonnegative variable
c is added to the existing variablés, s, ..., z,}.

Lemma 2.5. Suppose thaI:Nl, x9,...,x, € C are self-conjugate such th@k = Ei(zq, 29,

., ) > 0forall k. LetEy, = Ey(xy,29,...,2,,¢), Wherec > 0. ThenE,, > 0 for all k.
Moreover,
~ (n+1—k)E, + ckEy_4

2.2 B, = <k< 1.

In particular, Ey = Eo, andE, ., = cE,.|
Proof. Similar to the proof of Lemma 2|1, we sptv) = [[}_, (v — ;). Denote byp(x) the

j=1
monic polynomial whose zeros arg, zs, ..., z,, andc. Note that according tq (2.1)(z)
andp(x) can be expressed in terms Bf and £y, respectively. The conclusion follows by

comparing the coefficients on both sides of the ideniity) = (x — ¢)p(z). O

Note that formula2) also shows th@k, } has no internal zeros if the same is true for
{Ex}. Moreover, it can be seen frofn (P.2) that the number of internal zeros, if present, tends to
diminish while passing fro £} to { E) }.

Continuing withE;, and £}, as considered in Lemn@@, we demonstrate next that the gen-
eralized Newton-like inequalities carry over froff, } to { ;. } whenever: > 0. For the sake
of simplicity, we define that

(2.3) Dy = BBy — AEp 1 Eqq.
By the inductive assumptiod),; > 0 for all £ < 1.

Theorem 2.6.Letxy, o, ..., x, € C be self-conjugate. Suppose that for@allF, = Ey(x1, 2,

ooy xy) > 0. SetE, = Ey(x1,29,...,T541), Wherez, ., = ¢ > 0. If there exists some
0<AX<l1lsuchthatt,E, > \E,_E;_;forall1 <k <I[l<n-—1,then
(2.4) EvE, > NEy 1Epq

forall 1 <k <I[<n.

We follow the convention thaF,, = 0 if & < 0 or k > n. This kind of interpretation is adopted throughout
whenever a subscript goes beyond its range.
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Proof. By Lemmg 2.5, we have that
(n+ 1)2(EyE, — NE,_1Ey11)
= [(n +1—-Fk)E,+ ck:Ek_l} [(n +1-0)E + clEl_l}
—A(n+2—=k)Epy + c(k —1)Ep_s] [(n — DBy + c(l + 1) B
=(n+2—k)(n—0Dp+c(k—1)1+1)Dy_1,1+c(n+1—k)Dy;
+c(k—1)(n—10)Dy_1;+ (1 +1—k)(EE + *Ey 1B )
—X(n+2+1—k)Ex 1E+c(n—1+k)Ex_1E).

Note thatD;_; > 0 even whenl = k. It remains to show that the sum of the last three terms
above is nonnegative, which can be done by observing that

(1 + [ — ]C)(EkEl + CQEk_lEl_l) Z 20(1 + [ — ]{?) \/EkElEk—lEl—l
> 2c(1 41— k)AE_1 B,

and, consequently, that the sum of those last three terms is bounded beloinby)(n — I +
k)Ep_1E; > 0. O

It should be mentioned that the proof of Theorem 2.6 is basically in the same fashion as
that of Theorem 51 in_J2]. Our result here, however, is more general in that it involves the
generalized Newton-like inequalities @, } with xy, 25, ..., z, € C.

Next we proceed to the case when a conjugate complexpair,» = a % b, wherea > 0,
is added to the existing variabl¢s, zs, ..., z,}. In a way similar to Lemma 2|5, the result

below provides a connection betweBp = Ey (1, xs, ..., z,) andEy, = Ex(x1, 22, ..., Tpia).
It also indicates tha§ £, } is free of internal zeros if £ } is, assuming that,, ;1 .2 € €.

Lemma 2.7. Suppose that, zs, ..., z, € C are self-conjugate such thadl, = Fy(z1,zs,
..., T,) > 0 forall k. Letz, 1,42 = a £ ib be a conjugate pair such that > 0. Denote

Ex = Ex(x1,29,...,2,49). ThenEy > 0 for all k. Moreover, for) < k < n + 2,
n+1—=k)n+2—k)E,+2a(n+2—kkE,_ 1+ (a®> + 0*)k(k — 1)Ep_,
(n+1)(n+2) ’

. ~ ~ ~ 2,12 ~
In particular, By = Fy, By = 2220 B — 2Butnle 0B andE, ) = (a® + 1) B,

(2.5) E, =

Proof. The proof of this conclusion is similar to that of Lemfa|2.5. Denote(ay the monic
polynomial with zeros aty, z,, . .., x,. Setp(x) = (r — z,41)(z — z,0)p(z), Which reduces
to p(z) = (% — 2az + a2 + b%)p(z). A comparison of the coefficients, in termsBf and
in accordance witt] (2}1), on both sides of this latter identity yig¢lds (2.5). O

If a > 0, then on letting

(n+1—k)Ey + akEy_4

2- F:
(2.6) F n+1

and

1—kVE, + S22 LE,
@2.7) G, = ML RE A TR
n-+1

we can rewrite[(2]5) as

(2 8) E _ (n+2— /C)Fk +aka_1
. k n12 .
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It is obvious that Theorein 2.6 applies to bdth and G.. Moreover, there is the following
connection betweeh;, andG,..

Lemma 2.8. Assuming that > 0, F;, and G, as defined in(2]6) andl (2.7), respectively, satisfy

a’® + b?

(2.9) F, <Gy < Fy

for all .

In the following several technical lemmas we suppose that there existsisame< 1 such
that{E, } satisfies the generalized Newton-like inequaliies|(1.5). Furthermore, as motivated by
[4] as well as by the discussion in Lemnjas|2.1[anfl 2.3, we assume that the following additional
condition holds o andb:

a
2.10 LN/
(2.10) >

which implies thatr,, 1 42 € Q, where(2 is defined as irf (1]3). Note that such a condition also
implies thata > 0.

Lemma2.9.Forall k <,
(2.11) FyGi_1 > M\F1G,
provided that conditior{ (2.10) holds @anandb.

Proof. We first verify the case wheh = [, namelyF;,Gy_,; > AF;_1Gy. By Lemmg 2.8 and
condition [2.1D), it follows that

2
F.Gr_ > a—Fk—le > AF_1G.

a? + b?
For the case wheh < [, using [2.6) and (2]7), we obtain that
(n + 1)2(FkGl,1 — )\kalGl)

2 b2
= [(n +1—- k?)Ek + akEk_l] (n + 2 — Z)El_l + @t

~AM(n+2=k)Ep +alk —1)Eys) |(n+1-1)E +

== (n + 2— k:)(n + 1-— l)DkJ_l + (CL2 + b2)(k — l)le—l,l—Q
a® + b?
a
+ (l — k) [EkEl,1 + ((12 -+ bQ)Ek71E172:| - A
+ CL(’/L +1-1+ k’)EkflElfl,

_|_

(n + 1-— /{)(l — 1)Dk,l72 + Cl(k) — 1)(n + 1-— Z)Dkfl,lfl

a? + b?
a

(n +1+1— k)EkflElfl

whereDy,, is defined as ir1_(_2']3). Note that, ;_» > 0 even wherl = k+1. It therefore suffices
to show that the sum of the last three terms above, denotéd isynonnegative. Clearly,

2 b2
S > 20— VM@ L) B 1 Frt A+ 14+ 1= k) Ey 1By
a
+ (I(TL +1-— l + k?)Ek_lEl_l.
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Sett = —VA([Z% Thus
S>al2(l—k)t—(n+1+1-k)+n+1—(—k)|Ew1E
=a(l—t)[(n+1)1+t)— (1 —k)(1—t)]Er1E1 >0
sincel <t < 1. O
Lemma 2.10.For all & </,
(2.12) Gr1F, > AGi—2Fi41.
Proof. With (2.6) and[(2.J/) we compute as follows.

(n+ 1)*(Gr_1 F} — M\Gr_2F111)
a’ + b?

— {(n +2—k)Ej_, + (k — 1)E,€_2} [(n+1—1)E + alE_]

a’® + b?

- A |:(n +3— k’)Ek_Q + (k‘ — Q)Ek_3:| [(n — Z)El—i-l + a(l + 1)El}

= (n+3=k)(n—1)Dp1s+ (a® +b*)(k = 2)(l + 1) D911

ta(n+2—k)Dy 1 + = (k= 2)(n— ) De—sy

+ 241 —k)[Exr B+ (@® + V) ErsEi1] — Aa(n+ 3+ 1 — k)Ey_2E,
2 2

+ a4 +b (n—l—l+k)Ek_2El.

a

We again sef to be the sum of the last three terms in the above expression.

S>22+l— \/ a2+b2Ek 2El Aan—l—S—i—l—k)Ek,QEl
a® + b?
+
a
=Xa[22+1—kt—(n+34+1—k)+(n—1—1+k)t*]| ExoE),

(TL —1-1 + k)E’k_QEl

wheret = L,/<t > 1 Hence,
S>xa(t—1)[(n—=1)(t+1)— (I —k)(t—1)+4]E2E >0,
which concludes the proof. O

We comment that, unlike Lemna 2.9, Lemma 2.10 does not require condlition (2.10) to hold
ona andb.

Lemma2.11.Forall k </,
(2.13) FiGy1 2 AFy G,

provided that: andb satisfy condition[(2.70).
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Proof. By (2.6) and[(2.]7), itis clear that

(n+ 1)*(F,Gr_1 — AFy1G))
a’® + b?

= [(n +1-— Z)El + (llElfl] |:(Tl + 2 — k>Ek71 + (k - 1)Ek21

a’® + b?
—AM(n+2—k)Epq +alk — 1)Ey_s) [(n +1-10)E + lEl_l]
=1-ANn+2-kn+1-DE 1B+ (1 =N (a®>+ ) (k- 1)IE, oE
a? + b?
+ CL(k‘ — 1)(n +1-— l) a2 - A Ek_QEl
2 b2
+a(n+2— k) (1 _a8 ;; ) Ep 1Epy
>0,
thus verifying the claim. O

For E}, and E;, as defined in Lemm@.?, the next conclusion shows that the generalized
Newton-like inequalities still carry over frofiFy } to { £ } as long as andb satisfy condition

2.19).

Theorem 2.12.Letzy, xs, ..., x, € C be self-conjugate such thay, = Ey(z1,z2, ..., x,) >

0 for all £ and that for somé < \ < 1, ExE; > AE,_1E;, forall k < [. SupposNe that
a and b satisfyb > 0, a®> + > > 0, and condition|(2.10), Le.ogm > VA. SetE, =
Ep(x1, 29, ..., Tnt2), Wherez,, 11,0 = a £ib. Then

(2.14) EyE, > M\Ey 1 Fiyy
forall 1 <k <[<n+1.

Proof. The above conclusion holds trivially dif = 0.
Suppose next that > 0. Using [2.8), we see that

(n+2)2(EyE; — NEy_1Fyi1)
= [(n+2—k)F + akGy_1][(n+2 = )F, + alG,_]
—A(n+3—=k)Fio1 +alk —1)Grs] [(n+ 1= D) Fi1 + a(l + 1)G]
=m+3—Fk)(n+1-0FF — AFy1Fi1)
+a?(k — DI+ 1)(Gro1Gioy — AGr_2GY) + a(n + 2 — B)(FL.G1_1 — AF,_1G))
+alk—1)(n+1=0(Gr 1 Fy — AGr_oF 1) + (1 +1— k) (FuFy + a*Gp1Gyy)
—aX(n+3+1—k)F G +an+1—-14+k)Gp_1F.

By Theorenj 2.6 and Lemmgs P.9 dnd 2.10, the terms in the last expression are all nonnegative
except possibly the sum of the last three. For convenience, we designate this suagaw.
Note that

S >2a(1+1—k)\/FFiGy 1Giy —aX(n+3+1—k)F,_1F,
+aln+1—1+k)Gr 1 F
> 2a(1 +1— k)\V/ A 1GIFGyy —2a\1+1—k)F, G,
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by Theorenj 2J6, Lemnja 2.8, and conditipn (2.10). Continuing Wjttve note further that
S == QCL\//\Fk_lGl(\/Fle_l — \/)\Fk_lGl) Z 0
by Lemmd 2.111, which consequently yielfls (2.14). O

Combining Lemma 2]4 with Theorerps P.6 and 2.12, together with Newton’s inequalities for
the case of real variables, we are now in a position to state the following main result, thus
concluding the inductive proof of the generalized Newton—like inequalities:

Theorem 2.13.Let 2 be the region in the complex plane as defined in|(1.3). For any self-
conjugatery, s, ..., x, € Q, setky = Ey(x1,xs,...,2,), wherek =0,1,...,n. Then

EvEy > AE,_1Ei
forall k <. In particular, E? > \E)_E}.,for1 <k <n-—1.

3. CONCLUDING REMARKS

In this paper we introduce the notion of generalized Newton-like inequalities on elementary
symmetric functions with self-conjugate variables z,, . . ., z,, and show that such inequali-
ties are satisfied as, =, . . . , z,, range, essentially, in the right half-plane. The main conclusion
of this work also mcludes as its special cases Newton-like inequalities [4, 5] as well as the cel-
ebrated Newton'’s inequalities on elementary symmetric functions with nonnegative variables.

The methodology of this paper is an inductive argument. It is motivated largely by the proof
in [2] of Newton'’s inequalities as well as several recent results on Newton’s and Newton-like
inequalities [[4, 6|, [7]. It, however, differs from previous works mostly in that no argument in-
volving mean value theorems, either Rolle’s or Gauss-Lucas’, is required. It therefore serves
as an alternative which may turn out to be useful for the further investigation of some related
problems, particularly problems regarding higher order Newton’s inequalities, Newton’s and
Newton-like inequalities on elementary symmetric functions with respect to eigenvalues of ma-
trices, and such inequalities over the complex domain.
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