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ABSTRACT. For analytic functionsf(z) with f(0) = f’(0) — 1 = 0 in the open unit dis&,
T. H. MacGregor has considered some conditionsffar) to be starlike or convex. The object

of the present paper is to discuss some interesting problenf§fdto be starlike or convex for
2| < 4.
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1. INTRODUCTION
Let .4 denote the class of functiorfgz) of the form

f(z)=2z+ Zanz”
n=2

which are analytic in the open unit dific= {z € C : |z| < 1}. A function f € A s said to be
starlike with respect to the origin i if it satisfies

Re (ZJ{((;)) >0 (2€E).
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Also, a functionf € A is called as convex ifi if it satisfies

2f"(2)
f'(2)

MacGregor([2] has shown the following.

Re<1+ )>O (z € E).

Theorem A. If f € A satisfies
‘M—1‘<1 (z € E),

z

then

so that

Re (Z;;iz))) >0 (|z\ < %) .
Therefore f(z) is univalent and starlike fofz| < 1.
Also, MacGregori[B] had given the following results.
Theorem B. If f € A satisfies
f'(z) =1 <1 (z € E),

then
Zf//(z)
f(2)

1
Re<1+ > > 0 for|z|<§.
Therefore f(z) is convex fofz| < 1.
Theorem C. If f € A satisfies
[f'(z) =1 <1 (z€E),

then f(z) maps|z| < %5 = 0.8944 ... onto a domain which is starlike with respect to the
origin,

arg Z]{(S)‘ < g for |z] < ¥
or
z2f'(2) 2v/5
Re B >0 for |z| < —

The condition domains of Theorém A, Theorein B and Thedrem C are some circular domains
whose center is the poiat= 1.

It is the purpose of the present paper to obtain some sufficient conditions for starlikeness or
convexity under the hypotheses whose condition domains are annular domains centered at the
origin.
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2. STARLIKENESS AND CONVEXITY

We start with the following result for starlikeness of functiof{s).

Theorem 2.1.Let f € A and suppose that

2
(2.1) 0.10583--- = exp <— )

4log 3
2f'(2)
S @)

2
=9.44915... E).
< exp <410g3> (z € E)

Thenf (=) is starlike for|z| < 1.
Proof. From the assumptiof (2.1), we get
f(z) #0 (0 < |z| <1).

From the harmonic function theory (cf. Durén [1]), we have

(1) <& [ (o ) 2 (512)

_ b (log zf’(C)D (+:2
27 |¢|=R f(C) C—z

where|z| =r < |¢(| = R < 1,z = re? and( = Re'.

It follows that
1 CJ”(C)D ( C+z> '
o /qu (log‘ o |)\me=) %

arg ZAGAT I
f(z)
2m / . _
< i/ log ¢f'(¢) 2Rrsin(¢p — 0)
21 Jo f(C) ||| R? —2Rrcos(p —0) +1r?

* 1 [ 2Rr|sin(p—0)|
4log3 27 J, R?—2Rrcos(p —0)+r? v
o w2 z R+r
n 4log3 OgR—r'

dp

dp

<

Letting R — 1, we have

This completes the proof of the theorem.

Next we derive the following
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Theorem 2.2. Let f € A and suppose that

(2.2) 0.472367... = exp <_Z>
f(z)

z

l

3
< exp (Z) =2.177... (z €eE).

< | | < Y
]_ z
2

Proof. From the assumption (3.2), we have

F(2)£0  (0<|z] <1).

Applying the harmonic function theory (cf. Duren [1]), we have

s () = o [ (e 52

where|z| =r < |¢(| = R < 1,z = re? and( = Re'.
Then, it follows that

Then we have
zf'(2)

e

or f(z) is starlike for|z| < 1.

2f'(2) 1 f(©) 202
O <1°g ¢ D EDiag
This gives us
2f'(z 1 2Rr
JJ:((z)) B 1‘ - o /C|R log f(CC)’ R? — 2Rr cos(p — 0) + 12 dip
31 2Rr
4o cj=r B2 — 2Rrcos(p — 0) + TQdSO
3 2Rr
4 R? —r?’

Making R — 1, we have

zf'(2) 3 2r 1
-1 z 1 = Z

o <irmer (Mereg),

which completes the proof of the theorem.

For convexity of functiong (=), we show the following corollary without the proof.

Corollary 2.3. Let f € A and suppose that

3

(2.3) 0.472367--- = exp (_4_1) < |f'(2)| < exp (Z) =2117... (z€E).

Thenf(z) is convex fofz| < 1.

Next our result for the convexity of functior =) is contained in

J. Inequal. Pure and Appl. Matt9(2) (2008), Art. 32, 6 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

CONDITIONS FORSTARLIKENESS AND CONVEXITY

Theorem 2.4.Let f € A and suppose that
2f'(z)
f(z)

1
(2.4) 0.778801--- = exp (_Z) <

1
< exp <Z> =1.28403... (z€E).

Thenf(z) is convex fofz| < 3.

Proof. From the condition(2]4) of the theorem, we have

2f'(2) -

e #0 inE.
Then, it follows that

z2f'(z) 1 ( Cf’(()) (+z2
2.5 1 = — 1 do,
@9 w5 o () e
where|z| =r < |¢(| = R < 1,z = re? and( = Re'.
Differentiating [2.5) and multiplying by, we obtain that
Cr'(©) ) 26z
(=22

SHONEILOIEY )
YR T T /K:R (1 51770

In view of Theorenj 2]1/(z) is starlike for|z| < } and therefore, we have

Rezf/(2)>1—7’ (]z]:7"<%>.

) —1+r
D (Re <<2—sz>2) e

Then, we have

) )1 1@
) e o /|< (1 g‘ 0

>1—7" 1/ 1 2Rr
14+7r 2w \C|:R4|<_Z|2 v

1-r 1 2Rr
147 4 R2—g?
Letting R — 1, we see that

1+ Re

") 1-r 1 2
4R @) 1or 1 2

1(2) 1+7r 41—1r2
1 1 4
3 4 3

which completes the proof of our theorem.
Finally, we prove

Theorem 2.5.Let f € A and suppose that

2
0.10583 ... =exp (_410g3)

zf'(2) w2
< < =9.44915. .. clE).
f) | =7 (4log3 ek
Thenf(z) is convex inz| < ro wherery is the root of the equation

(4log 3)r® — 2(4log 3 + m*)r + 4log 3 = 0,
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2 o 2
n”—4logd —mym +8logd o

4log 3
Proof. Applying the same method as the proof of Theofem 2.5, we have

b = g [ (e ) () 2

> L-r m 2Rr
1+r 4log3 R2—1r2
where|z| =7 < (| = R < 1, z = re and( = Re'.
PuttingR — 1, we have
2f"(z)  1-r 2 o
f(z) ~ 1+r 4log3 1—12
1
= m{@log@r? _ 2(410g3 + 7TZ)7“ +410g3}
>0 ([z] <o)

To =

1+ Re

0
Remark 1. The condition in Theorem]A by MacGregor [2] implies that
O<Re(@)<2 (z e E).
However, the condition in Theorgm 2.2 implies that
—2.117--- < Re (@) < 2.117... (z € E).

Furthermore, the condition in Theorém B by MacGregor [3] implies that
0<Refl(z) <2 (z € E).
However, the condition in Corollafy 2.3 implies that
—2.117--- < Re f'(2) < 2.117... (z €E).
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