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1. Introduction

LetA denote the class of functionsf(z) of the form

f(z) = z +
∞∑

n=2

anz
n

which are analytic in the open unit discE = {z ∈ C : |z| < 1}. A functionf ∈ A
is said to be starlike with respect to the origin inE if it satisfies

Re

(
zf ′(z)

f(z)

)
> 0 (z ∈ E).

Also, a functionf ∈ A is called as convex inE if it satisfies

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 (z ∈ E).

MacGregor [2] has shown the following.

Theorem A. If f ∈ A satisfies∣∣∣∣f(z)

z
− 1

∣∣∣∣ < 1 (z ∈ E),

then ∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1

(
|z| < 1

2

)
so that

Re

(
zf ′(z)

f(z)

)
> 0

(
|z| < 1

2

)
.

Therefore,f(z) is univalent and starlike for|z| < 1
2
.
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Also, MacGregor [3] had given the following results.

Theorem B. If f ∈ A satisfies

|f ′(z)− 1| < 1 (z ∈ E),

then

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 for |z| < 1

2
.

Therefore,f(z) is convex for|z| < 1
2
.

Theorem C. If f ∈ A satisfies

|f ′(z)− 1| < 1 (z ∈ E),

thenf(z) maps|z| < 2
√

5
5

= 0.8944 . . . onto a domain which is starlike with respect
to the origin, ∣∣∣∣arg

zf ′(z)

f(z)

∣∣∣∣ <
π

2
for |z| < 2

√
5

5

or

Re
zf ′(z)

f(z)
> 0 for |z| < 2

√
5

5
.

The condition domains of TheoremA, TheoremB and TheoremC are some
circular domains whose center is the pointz = 1.

It is the purpose of the present paper to obtain some sufficient conditions for
starlikeness or convexity under the hypotheses whose condition domains are annular
domains centered at the origin.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Conditions for Starlikeness
and Convexity

Mamoru Nunokawa, Shigeyoshi Owa,

Yayoi Nakamura and Toshio Hayami

vol. 9, iss. 2, art. 32, 2008

Title Page

Contents

JJ II

J I

Page 5 of 12

Go Back

Full Screen

Close

2. Starlikeness and Convexity

We start with the following result for starlikeness of functionsf(z).

Theorem 2.1.Letf ∈ A and suppose that

0.10583 · · · = exp

(
− π2

4 log 3

)
(2.1)

<

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣
< exp

(
π2

4 log 3

)
= 9.44915 . . . (z ∈ E).

Thenf(z) is starlike for|z| < 1
2
.

Proof. From the assumption (2.1), we get

f(z) 6= 0 (0 < |z| < 1).

From the harmonic function theory (cf. Duren [1]), we have

log

(
zf ′(z)

f(z)

)
=

1

2π

∫
|ζ|=R

(
log

∣∣∣∣ζf ′(ζ)

f(ζ)

∣∣∣∣) ζ + z

ζ − z
dϕ + i arg

(
zf ′(z)

f(z)

)
z=0

=
1

2π

∫
|ζ|=R

(
log

∣∣∣∣zf ′(ζ)

f(ζ)

∣∣∣∣) ζ + z

ζ − z
dϕ

where|z| = r < |ζ| = R < 1, z = reiθ andζ = Reiϕ.
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It follows that∣∣∣∣arg

(
zf ′(z)

f(z)

)∣∣∣∣ =

∣∣∣∣ 1

2π

∫
|ζ|=R

(
log

∣∣∣∣ζf ′(ζ)

f(ζ)

∣∣∣∣) (
Im

ζ + z

ζ − z

)
dϕ

∣∣∣∣
≤ 1

2π

∫ 2π

0

∣∣∣∣log

∣∣∣∣ζf ′(ζ)

f(ζ)

∣∣∣∣∣∣∣∣ ∣∣∣∣ 2Rr sin(ϕ− θ)

R2 − 2Rr cos(ϕ− θ) + r2

∣∣∣∣ dϕ

<
π2

4 log 3

1

2π

∫ 2π

0

2Rr |sin(ϕ− θ)|
R2 − 2Rr cos(ϕ− θ) + r2

dϕ

=
π2

4 log 3

2

π
log

R + r

R− r
.

LettingR → 1, we have∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ <
π

2 log 3
log

1 + r

1− r

<
π

2 log 3
log 3

=
π

2

(
|z| = r <

1

2

)
.

This completes the proof of the theorem.

Next we derive the following
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Theorem 2.2.Letf ∈ A and suppose that

0.472367 . . . = exp

(
−3

4

)
(2.2)

<

∣∣∣∣f(z)

z

∣∣∣∣
< exp

(
3

4

)
= 2.177 . . . (z ∈ E).

Then we have ∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1

(
|z| < 1

2

)
,

or f(z) is starlike for|z| < 1
2
.

Proof. From the assumption (2.2), we have

f(z) 6= 0 (0 < |z| < 1).

Applying the harmonic function theory (cf. Duren [1]), we have

log

(
f(z)

z

)
=

1

2π

∫
|ζ|=R

(
log

∣∣∣∣f(ζ)

ζ

∣∣∣∣) ζ + z

ζ − z
dϕ,

where|z| = r < |ζ| = R < 1, z = reiθ andζ = Reiϕ.
Then, it follows that

zf ′(z)

f(z)
− 1 =

1

2π

∫
|ζ|=R

(
log

∣∣∣∣f(ζ)

ζ

∣∣∣∣) 2ζz

(ζ − z)2
dϕ.
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This gives us∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ 1

2π

∫
|ζ|=R

∣∣∣∣∣log

∣∣∣∣f(ζ)

ζ

∣∣∣∣
∣∣∣∣∣ 2Rr

R2 − 2Rr cos(ϕ− θ) + r2
dϕ

<
3

4

1

2π

∫
|ζ|=R

2Rr

R2 − 2Rr cos(ϕ− θ) + r2
dϕ

=
3

4

2Rr

R2 − r2
.

MakingR → 1, we have∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ <
3

4

2r

1− r2
< 1

(
|z| = r <

1

2

)
,

which completes the proof of the theorem.

For convexity of functionsf(z), we show the following corollary without the
proof.

Corollary 2.3. Letf ∈ A and suppose that

(2.3) 0.472367 · · · = exp

(
−3

4

)
< |f ′(z)| < exp

(
3

4

)
= 2.117 . . . (z ∈ E).

Thenf(z) is convex for|z| < 1
2
.

Next our result for the convexity of functionsf(z) is contained in

Theorem 2.4.Letf ∈ A and suppose that
(2.4)

0.778801 · · · = exp

(
−1

4

)
<

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ < exp

(
1

4

)
= 1.28403 . . . (z ∈ E).
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Thenf(z) is convex for|z| < 1
2
.

Proof. From the condition (2.4) of the theorem, we have

zf ′(z)

f(z)
6= 0 in E.

Then, it follows that

(2.5) log
zf ′(z)

f(z)
=

1

2π

∫
|ζ|=R

(
log

ζf ′(ζ)

f(ζ)

)
ζ + z

ζ − z
dϕ,

where|z| = r < |ζ| = R < 1, z = reiθ andζ = Reiϕ.
Differentiating (2.5) and multiplying byz, we obtain that

1 +
zf ′′(z)

f ′(z)
=

zf ′(z)

f(z)
+

1

2π

∫
|ζ|=R

(
log

∣∣∣∣ζf ′(ζ)

f(ζ)

∣∣∣∣) 2ζz

(ζ − z)2
dϕ.

In view of Theorem2.1, f(z) is starlike for|z| < 1
2

and therefore, we have

Re
zf ′(z)

f(z)
≥ 1− r

1 + r

(
|z| = r <

1

2

)
.

Then, we have

1 + Re
zf ′′(z)

f ′(z)
= Re

zf ′(z)

f(z)
+

1

2π

∫
|ζ|=R

(
log

∣∣∣∣ζf ′(ζ)

f(ζ)

∣∣∣∣) (
Re

2ζz

(ζ − z)2

)
dϕ

>
1− r

1 + r
− 1

2π

∫
|ζ|=R

1

4

2Rr

|ζ − z|2
dϕ

=
1− r

1 + r
− 1

4

2Rr

R2 − r2
.
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LettingR → 1, we see that

1 + Re
zf ′′(z)

f ′(z)
>

1− r

1 + r
− 1

4

2r

1− r2

=
1

3
− 1

4
· 4

3

= 0

(
|z| = r <

1

2

)
,

which completes the proof of our theorem.

Finally, we prove

Theorem 2.5.Letf ∈ A and suppose that

0.10583 . . . = exp

(
− π2

4 log 3

)
<

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ < exp

(
π2

4 log 3

)
= 9.44915 . . . (z ∈ E).

Thenf(z) is convex in|z| < r0 wherer0 is the root of the equation

(4 log 3)r2 − 2(4 log 3 + π2)r + 4 log 3 = 0,

r0 =
π2 − 4 log 3− π

√
π2 + 8 log 3

4 log 3
= 0.15787 . . . .

Proof. Applying the same method as the proof of Theorem2.5, we have

1 + Re
zf ′′(z)

f ′(z)
= Re

zf ′(z)

f(z)
+

1

2π

∫
|ζ|=R

(
log

∣∣∣∣ζf ′(ζ)

f(ζ)

∣∣∣∣) (
Re

2ζz

(ζ − z)2

)
dϕ

>
1− r

1 + r
− π2

4 log 3

2Rr

R2 − r2
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where|z| = r < |ζ| = R < 1, z = reiθ andζ = Reiϕ.
PuttingR → 1, we have

1 + Re
zf ′′(z)

f ′(z)
>

1− r

1 + r
− π2

4 log 3

2r

1− r2

=
1

(1− r2)4 log 3

{
(4 log 3)r2 − 2(4 log 3 + π2)r + 4 log 3

}
> 0 (|z| < r0).

Remark1. The condition in TheoremA by MacGregor [2] implies that

0 < Re

(
f(z)

z

)
< 2 (z ∈ E).

However, the condition in Theorem2.2 implies that

−2.117 · · · < Re

(
f(z)

z

)
< 2.117 . . . (z ∈ E).

Furthermore, the condition in TheoremB by MacGregor [3] implies that

0 < Re f ′(z) < 2 (z ∈ E).

However, the condition in Corollary2.3 implies that

−2.117 · · · < Re f ′(z) < 2.117 . . . (z ∈ E).
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