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ABSTRACT. In this paper, we give new inequalities involving some special (resppecial)
functions, using their integral (resg-integral) representations and a technique developed by A.
McD. Mercer in [11]. These inequalities generalize those givenlin([1],[[2], [7]and [11].
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1. INTRODUCTION AND PRELIMINARIES

In [1], Alsina and M. S. Tomas studied a very interesting inequality involving the Gamma
function and they proved the following double inequality

%gugl, r €[0,1], n € N,
n! = I'(1 4 nx)
by using geometric method.

In view of the interest in this type of inequalities, many authors extended this result to more
general cases either for the classical Gamma function or the basic one, by using geometric or
analytic approaches (see [2]] [7],[12]).

In [11], A. McD. Mercer, developed a very interesting technique which was the source of
some inequalities involving the Gamma, Beta and Zeta functions.

He considered a positive linear functiodatlefined on a subspacé& (1) of C(I) (the space
of continuous functions of), where/ is the interval(0, a) with a > 0 or equal to+-co, and he
proved the following result:

(1.1)

051-07


mailto:mouna.sellami@ipeimt.rnu.tn
mailto:kamel.brahim@ipeit.rnu.tn
mailto:Neji.Bettaibi@ipein.rnu.tn
http://www.ams.org/msc/

2 M. SELLAMI, K. BRAHIM, AND N. BETTAIBI

Theorem 1.1.For f, ¢ in C*(I) such thatf(z) — 0, g(z) — 0 asx — 0* andg is strictly
increasing, put
L(f)

¢:9m

and letF" be defined on the ranges ffand g such that the compositiors( f) and F'(g) each
belong toC*(I).
a) If Fis convex then

(1.2) LIF(f)] = LIF(¢)].
b) If F'is concave then
(1.3) LIF(f)] < LF(¢)].

In this paper, using the previous theorem, we obtain some generalizations of inequalities
involving some special angtspecial functions.
Note that fora € R, the function
F(t) =1t
is convex ifa < 0 or > 1 and concave i < a < 1.
So, for f andg satisfying the conditions of the previous theorem, we have:

L(f*) > L(¢*) if a<0 or a>1 and L(f*) < L(¢®) if 0<a<l.
Substituting forg this reads:

LT (e L)

if a <0ora > 1(resp.0 < a < 1). In particular, if we takef (z) = 2% andg(x) = z° with
£ > 6 > 0, we obtain the following useful inequality:

(L)) _ [L(z7)]"

L(z2%) < L(zoB)

where, we follow the notations of [11], argl correspond to the case (< 0 or o > 1) and (
0 < a < 1) respectively.

Throughout this paper, we will fix €]0, 1] and we will follow the terminology and notation
of the book by G. Gasper and M. Rahmah [4]. We denote, in particulad, o€

(1.4)

1 — g% n—1
la], = q>(a;Q)nZH(l—aqk),n:1,2,...,oo.
- q k=0
Theg-Jackson integrals froito a and fromo0 to oo are defined by (se&l[5])
(L5) | f@de == a3 flaae,
0 n=0
(L.6) | e =00 3 e
0

n=—oo

provided the sums converge absolutely.
Theg-Jackson integral in a generic interyal b] is given by (se€ [5])

(1.7) / b fla)d,z = /0 ’ Fla)dyx — /0 " H@)doa
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2. THE GAMMA FUNCTION
Theorem 2.1. Let f be the function defined by

[TeY(1 + 2)]"

then for all0 < o < 1 (resp.a > 1) f is increasing (resp. decreasing) 00, co).

Proof. First, we recall that the Gamma function is infinitely differentiablej@nrtoco| and we
have

Vz €]0, +oof, Vn € N, T™(z) = / 2~ [Log(t)|"e~"dt.
0
Now, we consider the subspaCé(7) obtained fromC'(1) by requiring its members to satisfy:
(i) w(z) = O(z?) (foranyd > —1) as z — 0,
(i1) w(z) = O(x¥) (for any finitey) as z= — +oo.
Forw € C*(I), we define

(2.2) L(w) = /000 w(z)(Log(z))* e “dx.

The linear functional. is well-defined orC*(I) and it is positive.
Then, by applying the inequality (1.4), we obtain for- 6 > 0,

[TCM(1+6)])" [P+ 3]°
TCY(1+ad) = TCI(1+af)

(2.3)

This completes the proof. O

In particular, we have the following result, which generalizes inequality (4.1) of [11].

Corollary 2.2. For all z € [0, 1] we have:

F(Qn) ) @ F(Qn) 1+ @ o ot _
(2.4) F[<2n>(1(+>]a) < [r(2n>(<1+2£) < [P (1)) if a>1
and
(25) [F(Qn)(l)] a—1 < [F(Qn)(l + x)]a _ [F(2n) (2)}& o .

— T +ax) ~ T +a)
Takingn = 0, one obtains:

Corollary 2.3. For all z € [0, 1],

1 [T(1 + z)]* .
(2.6) Ti+a) S Tldan) =0 T azt
and
2.7) L+ 1 if 0<a<l.

" I'l+ar) " T(1+4+a)
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3. THE ¢-GAMMA FUNCTION

Jackson([b] defined @analogue of the Gamma function by

(3.1) T, (z) = ((q‘f.q;;; (1-q'  2#0,-1,-2,....

It is well known that it satisfies
(3.2) Fy(z+1) =[z],Iy(z), T,(1)=1 and lim I'j(z)=TI(z), R(z)> 0.

g—1~

It has the followingg-integral representation (see [8])

(3.3) T,(s) = /0 T Bt
where
;O

is ag-analogue of the exponential function (see [4] and [6]).
In [3], the authors proved that, is infinitely differentiable orj0, +oo[ and we have

(3.4) E; =0 ¢o(—;—5¢,—(1—q)2) = qu%zn = (—(1 = )% ¢)w,
n=0

1

T S
(3.5) Va €]0, 400, Vn € N, Il (z) = /O £ [Log (1)) E; ™ dt.

Now, we are able to state @analogue of Theorem 2.1, and give generalizations of some
inequalities studied in [7].

Theorem 3.1. Let f be the function defined by
T+ )]
8™ (1 + az)

then for all0 < o« < 1 (resp.a > 1) f is increasing (resp. decreasing) 00, co).

(3.6) fz) =

Proof. We considel = <0, ﬁ) and the subspadag*(I) obtained fromC' (/) by requiring its
members to satisfy:

(i) w(z) = O(2?) (foranyd > —1) as x — 0,

(i) w(x) =0(1) as z= — l%q.

Forw € C*(I), we define

1

(3.7) L(w) = /0 7 (@) (Log(2))" By d,.

L is well-defined orC*(I) and it is a positive linear functional aii*(I).
From the inequality[ (1]4) and the relatign (3.5), we obtaindor § > 0

IR > T+ )]

(1 +as) = TP(1+apB)
which achieves the proof. O

(3.8)

In particular, we have the following result.
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Corollary 3.2. Forall = € [0, 1] we have
e e
<

(3.9) <
I (1+a) " TP+ ax)

<[], if a>1

q

and
o] i)
I (1 +az) ~ T8 +a)
Corollary 3.3. For all = € [0, 1],

L[+

3.10 ren ) < if 0<a<l.
q b

11 <1 if a>1
(3.11) Ldta) - O(tar) — 0 " 4=5
and
(3.12) LA+a)]" 1 if 0<a<l.

-~ I,(l+ar) ~T,(14+a)
Proof. By takingn = 0 in Corollary[3.2 we obtain the inequalitigs (311) apd (8.12). O

4. THE ¢-BETA FUNCTION
The ¢-Beta function is defined by (see [4], [8])

_ 11,15—1 ($qa Q)oo T s
(4.1) B,(t,s) = /0 LG ) > 0R(0) >0
and we have
(4.2) B,(t,s) = %

Since B, is a g-analogue of the classical Beta function, we can see the following results as
generalizations of those given inJ11].

Theorem 4.1.For s > 0, let f be the function defined by
B,(1+ xz,s)]”
(4.3) fla) = Dal 20

B,(1+ ax,s)
If 0 < a < 1, fisincreasing or0, +oo.
If & > 1 f is decreasing o0, +oo].

Proof. We consider the interval = (0,1) and the subspacé*(I) obtained fromC(7) by
requiring its members to satisfy:

(i) w(z) = O(z?) (foranyd > —1) as z — 0,

(i) w(x) =0(1) as z — 1.

Fors > 0, we put forw € C*(I),

(4.4) L(w) = /0 w(z) LD

(2¢% q) oo
It is easy to see thdt is well-defined orC* (/) and it is a positive linear functional ari*(7).
Then, from the inequality (1}4), we obtain fér> 6 > 0
[By(1+0,5)]" _ [By(1+8,5)"
B,(1+ad,s) = B,(1+af,s)
This achieves the proof. O

(4.5)
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Corollary 4.2. Forall x € [0,1],s >0

[a + 5] < [By(1+ x,5)]"
[a]g[s]gls + 1g By(a,s) = By(l+az,s) ~ [s|g=

q

(4.6) if a>1.

Proof. Itis a consequence of the previous theorem and the relations:
1 1

B,(1,5) = —, By(2,8) = ———

! [S}q ! [S]q[s + 1]q

and

B,(1+a,s) = [a[i]z]qu(a, s).

5. THE ¢- ZETA FUNCTION

Forx > 0, we put
Log(z) . (Log(x)
) = Toa() E(maw)
and

[z]q
oo = i
Log(x) \ : og
whereFE <—Log(q)> is the integer part 0{?@)
In [3], the authors defined theZeta function as follows

(5.1) M@zzgé} }jq

They proved that it is g-analogue of the classmal Riemann Zeta function and in the additional
assumptiod22—2 ¢ 7, we have for alls € C such thatR(s) >

Log(q)
. 1 00871
=gy | A

(n+a([n]q)

where for allt > 0,
— _ = L) (—¢'.—q¢"%q)
Zt:Ee{"}qt and T,(t) = -2 ’ 1 1/00
q( ) n=1 ! Q( ) (_(L_Lq)oo

Now, we consider the subspaCé(7) obtained fromC'(I) by requiring its members to satisfy:
(i) w(z) = O(z?) (foranyd > —-1) as x — 0,

(i1) w(z) = O(x¥) (for any finitey) as z — +oo.

Forw € C*(I), we define

(5.2) L(w) = /000 w(x)Z,(x)dg.

L is a positive linear functional 06 (I). So, by application of the inequality (1.4), we obtain
forall 3 >0 > 0,

~u+®@u+®r>[~u+m@a+mr
Ly(1 4 ad)y(1 + ad) Ly(1+ aB)(1 + ap)
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