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ABSTRACT. In this paper, bounds are obtained for the location of vertical asymptotes and other
types of singularities of solutions to certain nonlinear differential equations. We consider several
different families of nonlinear differential equations, but the main focus is on the second order
initial value problem (IVP) of generalized superlinear Emden-Fowler type

y"'(z) =p(@)[y(@)]", y(@o) =4, y(xo)=B, n>1
A general method using bounded operators is developed to obtain some of the bounds derived in
this paper. This method allows one to obtain lower bounds for the chsed and A < 0 under
certain conditions, which are not handled by previously discussed bounds in the literature. We
also make several small corrections to equations appearing in previous works. Enough numerical
examples are given to compare the bounds, since no bound is uniformly better than the other
bounds. In these comparisons, we also consider the bounds of Eliason [11] and Bobisud [5]. In
addition, we indicate how to improve and generalize the bounds of these two authors.

Key words and phrasesBounded operator, Comparison methods, Generalized Emden-Fowler equations, Nonlinear differen-
tial equations, Vertical asymptote.
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1. INTRODUCTION

Many papers have been written on oscillatory and/or nonoscillatory behavior of differential
equations. The literature for this topic will not be cited here since it is too vast. However, most
nonlinear differential equations do not have closed form solutions, so a numerical method must
often be used, such as Runge-Kutta type methods. If a singularity is present in the solution,
then such methods may give meaningless results. Hence, it would be useful to have easily
computable (preferably closed form) bounds for the location of such singularities, since the
interval of existence of the solutions must contain the interval on which the numerical method
is applied. In this way, we can ‘move forward’ to the singularity starting at the initial vajue
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2 STEVEN G. FROM

Hence, lower bounds for singularities to the rightgfare of especially important interest. It

is the aim of this paper to supply a number of easily computable lower bounds. In some cases,
we shall also obtain some upper bounds for the singularity. We focus on asymptote (vertical)
singularities, but the methods used can work for other types of singularities as well.

In this paper, we shall present bounds for the location of certain types of singularities of cer-
tain nonlinear differential equations of order two or higher. We shall focus on those differential
eqguations which have vertical asymptotes.

The common theme of this paper is maximization or minimization of certain operators com-
bined with comparison techniques, in addition to standard integration techniques.

Definition 1.1. A solutiony = y(x) has a vertical asymptote at= ¢ if ¢ > x,

lim y(z) = 400, and lim y'(z) =+c0.

Throughout this paper, we assume the existence of a singularity to the right oiVe
shall be interested in the location of the first vertical asymptote to the righ¢ of this pa-
per. Conditions guaranteeing the existence of vertical asymptotes and other types of singulari-
ties/noncontinuation can be found in the works of Eliason ([9], [10], [11]), Bobisud [5], Hara
et al. ([16], [17]), Burton[[¥], Burton and Grimmer![6], Petty and Johnson [27], Skitb [28],
Kwong [29], and Tsukamoto et al. [31]. Throughout this paper, we assume the existence of a
singularity to the right of;y of some type. We mainly focus on the case of a vertical asymptote.
For singularities to the left af, the obvious modifications can be made. The emphasis is on
obtaining easily computable bounds. Many of these bounds are obtained merely by finding the
unique root of certain equations and are sometimes of closed form and computable by hand.
We shall present enough numerical examples to compare the bounds discussed in this paper,
since no single bound is always the best. A very general method is discussed to obtain lower
bounds for the location of vertical asymptotes, which can be generalized to certain other kinds
of singularities (such as a derivative blow-up). This general method handles some cases which
are not handled by the bounds given in Eliason [11] and Bobisud [5]. It can also be extended
to handle many families of'" order nonlinear equations. Let us first consider methods for
obtaining bounds for for the generalized superlinear Emden-Fowler IVP:

(1.2) y'(x) = p()[y(@)]", y(xo) = A, y'(xo) =B, n>1

Several authors have discussed existence and uniqueness of solutjons to (1.1). None of these
results will be presented here. The interested reader should see the good survey paper by Erbe
and Raol[12]. See also Taliaferro [29]. For results on oscillation and nonoscillation see Wong
([32], [33]). See also Biled [3], Dang et all |[8], Fowler [13], Habets [15], and Harris [18].
Only a few authors discuss locations of vertical asymptotes. Since this is the main point of
interest of this paper, we briefly present the most germaine results of these authors here for the
convenience of the reader.

First we present some results given in Eliason [11].

Theorem 1.1(Eliason [11]) Suppose(x) is continuous onzg, ¢| and positive onz, c). Let
y(x) be a solution to[(1]1). Suppose > 0 and B = 0. If y(z) is continuous oriz, ¢), then
upper and lower bounds farsatisfy

(1.2) a2 [ o <o) < 4% [ oo
where
(1.3) pr(t) = inf p(z), pu(t)= sup p(z)

0<z<t 0<z<t
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and

(1.4) 2(n) = [2(n + 1)) 2

I'(-) denotes the gamma function. Liet, and Uy ; denote the Eliasofil1] lower and upper
bounds fore, obtained from[(1]2) above.

Theorem 1.2 (Eliason [11]) Supposey(z) is continuous onz, ¢) and positive on(x, ¢).
Supposel > 0 and B = 0. If y(z) is continuous ory, z*), then the following hold:

a) If p(z) is nondecreasing ofx,, c|, then an upper bound faris defined by

(1.5) A’ /C Vpa(t)dt < z(n),

wherep(z) is given by[(L]7).
b) If p(x) is nonincreasing offy, |, then a lower bound for satisfies

(L6) A5 [ oaltidt = +(o),
wherep(z) is the average value @f(x) on [z, z], i.e.,
(r —x9)7 ! ffo p(t)dt, if x> x,
palx) =

p(z0), if z = x.

Let Ly, and Ug » denote the lower and upper bounds of Eliagfi] obtained from

(1.5) and[(1.F7) above. Note that the upper bounds of Thedrefns 1[I and 1.2 are valid for
B > 0 also. However, the lower bounds are not valid unl¢$s,) = B = 0. We shall
obtain later several new lower bounds for the cdse- 0.

(1.7)

Next, we present some results of Bobisud [5]. The lower bounds of Bolisud [5] are valid
under more general conditions than the lower bounds of Eliason [11]. However, Bobisud [5]
does not present any upper bounds dorlt should be mentioned that the lower bounds of
Bobisud [5] are for the more general differential equatién= p(x) f(y). However, they are
the only lower bounds given in the literature for the cése- 0. (We shall also discuss the
above more general differential equation later and discuss theAcasé for some choices of
f(y), a case not considered by Bobisud and Eliason.) We shall also discuss thé eage
whenp(x) may have a singularity at = .

Theorem 1.3(Theorem 2 of Bobisud [5])Suppose(z) is continuous orjz, ¢| and positive
on [zg, ¢). Supposeg(x) > M > 0for xy < z < ¢; is the solution to

(1.8) y'(x) =p(x), fly@), ylxo)=A, () =DB.
Supposed > 0, B >0andA+ B > 0. If f(y) >0and f'(y) >0, M <y < oo, and ify(z)
has a vertical asymptote at= ¢, then an implicit lower bound for satisfies

* du ¢ B
(1.9) [ < / e wplwdo + (e o)

Let L, denote the lower bound of Bobis[is] obtained from[(1.9).

As a consequence of Theorém]|1.3, we obtain the following corollary, which is a small cor-
rection of Theorem 2.2.8 of Erbe and Raol[12].
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Corollary 1.4. Suppose(x) is continuous ofix, c]. Suppose(x) > M > 0forzy <z < c.
Then a lower bound for in IVP is implicitly given by

Al=n ¢ B
(1.10) p— < /xo(c—w)p(w)dw+ E(c—xo).
Equivalently,

1

¢ B
p— < AT /xo(c —w)p(w)dw + Z(C — Zo),

providedA > 0.

Theorem 1.5(Theorem 3 of Bobisud [5])Let y(z) be a solution to[(1]8). Suppogéy) is
continuous fory > A, with f(y) > 0fory > Aif A > 0,and f(y) > 0fory > 0if A = 0.
Suppose(z) > 0 has a nonnegative derivative @A, co). If A > 0 and B > 0, thenc satisfies

(1.11) /\/ +2ff </xo\/mczt.

Let Lp 3 denote the lower bound ofobtained from[(1.11).

p(xo

The results of Bobisud [5] and Eliasan [11] require continuity@f) atx = z,. This limits
the applicability of these results fo (1.8) whén= y(z,) = 0 since the initial conditiom = 0
often will necessitate a singularity at= z, in the functionp(z). One of the main contributions
of this paper is to handle this singular case. In Eliason [11], the author remarks, in reference to
(1.1), that ‘due to the methods of our proof, we are not able to draw many conclusions for the
casey'(xy) = B < 0, nor for the boundary conditiongz,) = A = 0, ¢'(z9) = B > 0." In
this paper, we shall present lower boundsdewven in some cases wherer) has a singularity
at zo. Moreover, we will show that the methods used can be extended to other differential
eqguations of much more general form than Emden-Fowler type. The methods used are based on
maximization and minimization of certain operators as well as classical integration techniques.

2. NEw BOUNDS FOR A >0

Throughout this section, it is always assumed that- 0. Consider the following IVP of
Emden-Fowler type:

(2.1) y'(2) = p(2)[y(@)]", y(xo) = A, y'(xo) =B, n>1

To obtain bounds for the vertical asymptetef (2.1), we first need a few lemmas. It will be
helpful to consider the more general differential equation

(2.2) y'(2) = (& = @0)’a(x) - f(y(2)), ylwo) = A, y(w) =B,

whereg(z) > 0 is continuous orjzg,c0), n > 1, andé is real. Thus,[(2]2) allows for a
singularity in the coefficient function a, if & < 0. We will sometimes write[ (2]1) anfl (2.2) in

the more respective compact forgis= py™ andy” = (x — z0)%q(z) f(y). To prove some new
results, we will first need some lemmas. Lenm4 2.1 is a generalization and slight variation of
Lemma 0.2 of Taliaferrd [29].

Lemma 2.1(Comparison lemma)Suppose; () and¢,(x) have the form

(2.3) ¢1(7) = (v — $0>9Q1(x)
(2.4) and 9s() = (& — 20)’ (),
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whered is a real number, and whereg, () and ¢,(z) are continuous positive functions on
[zg, 00). LetY;(z) andY;(x) be respective solutions on some interVak [zy, zo +A), A > 0,
of the equations

Yi'(z) = (v — xo)e%(x)f(yl(x))
(2.5) and

Yy (2) = (¢ — 20) ga(a) f (Ya(2))
wheref(y) > 0 is continuous and nondecreasing. Suppose
(2.6) Yi(zo) < Ya(xe) and Y(xo) < Yj(x0).
If ¢1(z) < g2(x) ON [z, 00), thenY;(z) < Ys(z), forzin I.

Proof. Since the proof is similar to that of Lemma 0.2 of Taliafefrad [29], we merely sketch a few
key steps that are different from the proof given in Taliaferrd [29]. Proceeding as in Taliaferro
[29] with some modifications, we obtain, foy < x < zy + A:

@7) Yifa) = Vilwn) + 2 = 20)Y/(w0) + [ (0= ) (£~ w0 'O F GO, i =12
o

The above integral will exist (near= x,) since it is essentially an integrated form of the second

derivative ofY;, : = 1, 2. This is an important point especially fér< 0. Subtraction gives

Yi(t) = Ya(t) < / (& = 8)(t = 20) [ (8) (Vi (1)) — go(t) f(Ya(t))]dL,
which is nonpositive since the integrand is nonpositive. The lemma may also be proven by
considering the difference functidn(¢) = Y;(t) — Y2(t). Forz in (xg, ¢), there existg = d(x)

in (zg, ) such thatD(x) = ¢1(d) f(Y1(d)) — ¢2(d) f(Y2(d)), which is nonpositive. However,
equation|[(2.]7) will be useful later. O

Remark 2.2. The famous Thomas-Fermi equation
(28) y// _ $71/2y3/2

has many applications in atomic physics and has the form (2.2) discussed in Lemma 2.1 as well
as the Emden-Fowler equation

y// — :I:meylfe.
See Hille ([19], [20]) for a discussion df (2.8). We shall consider differential equdtioh (2.8) later
in Section$ P and|3. Before presenting the next few lemmas, we need to define some upper and
lower coefficient functions. For IVP (3.2), define
(2.9) qr(r) = inf q(t), qu(z)= sup q().

ToStsw zo<t<z
Theng,(z) andq; (z) are nondecreasing and nonincreasing, respectively.

Lemma 2.3. Consider IVP [(2.2). Supposgz) > 0 is continuous orjz, oo) and ¢(z) is
differentiable oz, c0). LetZ, denote the zero s&f, = {x € [zo, ) : ¢'(z) = 0}. Suppose
that Z, has no accumulation points. Then

(@) ¢r(x) andg,(x) are continuous offiy, ).
(b) Letq)(z) = L(qn(x)), ¢,(z) = L(qu(z)). Theng)(z) andg,(z) are continuous on
[z9,00) \ Z,, the complement df, in [z, c0).
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(c) ¢;.(x) and ¢, () have finite left-handed limits at each point> z, (but may not be
continuous at: in Z,), that s, forz > x

lim ¢} (¢) and lim ¢ (t)
t—x— t—x—
exist as real numbers.

Proof. We merely sketch a few key steps, since the result is intuitively clear. The conditions
on the zero sef, guarantees that only a finite number of zeros can exigtgjmo), by the
Bolzano-Weierstrass Theorem. $pandg, are piecewise continuous off, in [zo,c). The
same is true fog; andgq,,. Since there are only a finite number of continuous ‘pieces’, the
results (a)—(c) now follow easily. O

Lemmg 2.8 above will be needed in subsequent lemmas and theorems which use L'Hospital’s
Rule in a deleted left half neighborhood:of. From Lemma 2]3, it would follow that

(2.10) li(m) q; () and li(rr*l)_ q.,(z)

exist, wherer, andz* are any asymptotes of solutions|to (2.2) wjthr) replaced by, (z) and
q.(z), respectively. Throughout this paper, when we wyjtér, ) andq, (=*), we shall mean the
respective limits given in (c) above. Also, we assume throughoutZhats no accumulation
points.

Remark 2.4. From Lemma4 2.3, we can conclude that there existggin (o, z.) or (zo, z*)
such that on the respective interval, we have:

(@) v,¥ (x) andYL(3) (x) are continuous on the respective intervialgy, z.) and (zgo, z*),
and
(b) ¢; andq,, are continuous there.

Now let us give a major idea for comparison purposes throughout the rest of the paper. Many
methods are based upon comparing the following three IVPs:

(1)
(2.11) y(@) = (z —20)’q(2) f(y(x)),  y(wo) = A, ¥ (20) = B.
. Vertical asymptote at = ¢ (actual IVP of interest in this paper)
2
(2.12) Y, (2) = (z — 20)’qu(x) f(Yu(2)), Yu(zo) = A, Yi(wo) = B.
Vertical asymptote at = z*.
(3)
(2.13) Yi(x) = (v —w0)’qr(2) f(Yr(2)), Yi(wo) = A, Yi(z) = B.

Vertical asymptote at = x,.
By comparison, we have:* < ¢ < z, and

Yi(x) <y(z) <Yy(z), x¢<z<2a”,

andYr(z) < y(x), z* < x < c. In some cases, it may be that only the solutions of (1) and (2)
have asymptotes, in which case only a lower bound:foain be found. However, if (1) has an
asymptote, then so does (2).
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Lemma 2.5. Let Y, (z) be a solution of[(2.12) witlg(z) > 0 continuously differentiable on
[z, 00). Suppose

w - f'(w)

Z = lim ————= > 1, possibly infinite
wW—00 (w)

Then

. Yo (z)

lim ———~%=0.

xz—(z*)~ YUI(ZE)
Proof. Let
YU(x>

R = lim sup > 0.

/
First, we establish thak is real. Forz > z, there is al = d(z) in (zo, z) such that
Yu(z)  A+Y,/(d)(x — x)
Y,/ () Y., (z) ’
from which it follows that) < R < 2* — 29 < 0. Also,
Yo/ (@) B [t = 20) qu(t) f(Ya(t))dt
Yu() B Yu() .
Let us consider two cases.

(2.14)

Case 1.0 > 0. From [2.14), several consecutive applications of L'Hospital’s Rule and Lemma

[2.3 gives

Y ()
lim = lim
z—(z*)~ YU(LE) z—(z*)~ Y”(.I')

u

L [P0 V) ) 6
= [ V@) qu@) @ —xo]

>  lim {Z (
z—(x*)~ u

/
> Z lim (Yu (3:)) ,

since the expression in parenthesis is nonnegative. &ined, this necessitatéan, ., ,+- (1%'((3) —

+00, sincel < R < oo. Thus,lim, ;- 5‘2}(?) —0.

Case 2.0 < 0. From [2.14), we have
Vi) | B+ @ =)’ 7 aut) - FVa(0)de
Yu(z) — Y. (x)

Applying L'Hospital’s Rule several times in succession in conjunction with Lefnma 2.3 again
and proceeding in much the same manner as done inCase 1 above, we obtain (we omit details)

/ y , ,
lim YU(:E) > lim <Z . M + M) > 7. lim Yu('r> ’
T— (%)~ Yu(l‘) x—(z*)~ Yu(,f) qu(x) a—(z*)~ Yu(l')

Yy ()
Yu(z)

from which it follows again thalim,, _, (,+- = +00.
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Lemma 2.6. LetY,,(¢) be a solution of| (2.12). Suppose
Y1) w - f'(w)
lim =0andZ = lim ———=
Suppose’(x) > 0 is continuous ofixy, co). Then
Y, ()Y 1+7Z
YO0 _ 14
r—()= [Yy(1)] 2
Proof. We apply L'Hospital's Rule and Lemnjia 2.3. After much cancellation and simplification,
we finally obtain

> 1, possibly infinite

o GOYZ@O) 1 V(@)Y ()

ey [YIOP 2 ene V()Y (2)
Ll @) @) | Y@ (s fa()
_zﬂlw)—{ 2 (Va()) +2Yé(x)<“()+x—xo)}

— 1 lim {Yu(x)f%YU(x))} _ 1+ 7
upon application of Lemmas 2.3 and|2.5. O

Remark 2.7. The above lemmas remain trug(fc) is merely differentiable on some left deleted
neighborhood of* or z, that is, on an intervele* — 9, z*) or (x, — d, z..) for somes > 0. This
will be an important observation needed later.

Remark 2.8. Lemmd 2.6 holds in particular for the generalized Emden-Fowler chdige=
y",n > 1, corresponding to IVH (I} 1) witl = 7.

For comparison purposes, I8t (x) andY, (x) be solutions to

(2.15) Y/ (z) = pr(@)[Yo(2)]", Yi(zo) =A, Yi(zo) =B
(2.16) Y, () = pu(@)[Yu(@)]",  Yu(zo) = A, Yj(zo) =B
where

pr(z) = inf p(z) and p,(x) = sup p(x).

Tost<w zo<t<z
Let y(x) denote a solution to

(2.17) y'(@) = p@)y(@)]", ylwo) = A, y(w0) = B.

Lemma 2.9.Consider IVP (2.1|2). Let= 1;2” Suppose(z) > 0is continuously differentiable
[z9,00) and thatA > 0 and B > 0. Then

€

lim  €]Y, ()] Y/ (2) = Pu(x*).
x—(z*)~ 1—¢€
Proof. From Lemma 23, we have
. (1 - oY)
lim z =1,
(@)~ pu() - [Yu ()7
which implies that
, V1—€Y!(x)
lim =
=@/ pu()[Ya(z)]'
Rearranging terms, we finally conclude
. e—1 ! _ pu(x*>
im @)l Yole) =\ T2
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thereby proving the lemma. O

Lemma 2.10. Let Y7 (z) be a solution of{(2.13) with(z) > 0 continuously differentiable on
[zg, 00). Suppose; (x) is continuously differentiable o, o),

gl
7= tim 2L

w—oe f(w)
possibly infinite, tha{ (2.11) has a vertical asymptote at z., andd < 0. Then:

Y
a) lim Ij(x)
= (e.)~ Y[ (2)

= 0, provided

(2.18) Z>1—6+&m[@—x@-(ﬂﬂ®>}

v>10 qr ()

LY 1+ 7
b) 1 =
L TMer T 2

Proof. We prove part (a) only since the proof of (b) follows in a very similar way to the proof
of Lemmd 2.6. Proceeding as in the proof of Lenima 2.5, we obtain

Y, Y
R = lim sup L/(m) < limsup é)(x)
z—(Ts) ™ YL(:C) z—(x%)~ YL (ZE)
Y
= limsup L(@) p AR
o (@)~ ZYi(fE’) + YL(J:> ’ |::E—$0 + qi(w):|

upon application of results in Tayldr [30] on L'Hospital’s Rule. Cleailx R < oco. We shall
rule outR > 0, using [2.1B8). We have

R< where

Z+ RL’
0 (2,
X ¢ (z )
Ty — Xg qL(x*)
Suppose on the contrary th&t> 0. ThenZ + RL < 1. By condition [2.18), we have
0 (s
Z>1+($0—Q3*)( +QL(:E))7

Ty — X QL($*>

I =

which givesZ + RL > 1, a contradiction. S& = 0 andlim,_.,, - YL(””% = 0, as claimed. [

Y/ (z
Part (a) can also be proven more easily by considering the divergence of the igﬁfé%%&%dx

ast — z_, but the L'Hospital's Rule argument used here will be needed in later sections.

Remark 2.11. For the generalized Emden-Fowler IP (1.1), conditfon (2.18) reduc@s+o0

andZ =n)
@
1> (S5 o) 41

which holds automatically ip(z) is nondecreasing ir, in particular. It will also hold for
certain choices of nonincreasipgr) provided thap(z) does not decrease ‘too fast'.
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Lemma 2.12. Consider IVP(2.13). Supposep(z) > 0 is continuously differentiable on
(9, 00), pr(x) is continuously differentiabled > 0 and B > 0. Suppose IVR2.13 has a
vertical asymptote at = z,. Then, ifd < 0, we have

lim eV (2)Y(2) = ———/qr (),

()" 1—¢

provided

(2.19) N> sup (‘qi(x) Az — x0)> 10

T>x0 qrL ("L‘)

Proof. Follow the proof of Lemma 2]9, using Lemina 2.10, part (b), instead of Lemma 213.

Note that Lemmas 2.10 afd 2]12 remain truguif
any lower bound for.

is replaced byup, ., whereL is

r>x0

Remark 2.13. In Lemmas 2.10, 2.12, the sets of conditions under whjgh) andp’, (=) will
be continuously differentiable include (but are not exhausted by) the cases below:

(1) qr(z), pr(x) are nonincreasing or nondecreasing:a) co).
(2) qr(x), pr(x) are ‘bath-tub’ shaped, that is, there isa@n> x, with:
QI<'I)7 If Zo S X S .13/,
qr(z) = . ,
Q2(x)7 if z>uz )
whereq, (+), ¢2(-) continuously differentiable functions are such thgt:') = ¢, ('),

¢1 () is nonincreasing ofxy, 2’) andgy(x) is nondecreasing on’, co).
(3) gr(z) andpy(z) are unimodal.

Lemmas of typé 2|5 arjd 2.6 will be indispensable throughout this paper.
We are now in a position to state and prove several main results. Throughout Sgffiions 2—4
below, we assume the existence of a vertical asymptate-at > x,.

Theorem 2.14.Let y(z) be a solution to IVP[(1]1). Suppose > 0. Suppose(z) > 0 is
continuously differentiable ofx, c]. Lete = 1> and letZ, = {z > z, : p/(z) = 0}. Suppose
Z, has no accumulation points. Then:

a) Letpu(x) = Squogtga: p(t) and

(2.20) g1(z) = min (eAelB, \/%\/pu(x)> , T > X.

Then a lower bound,; for ¢ is the unique root (value af) satisfying
(2.21) (zo — z)g1(x) = A“.

b) Letpr(z) = inf,,<i<. p(t). Suppose(z) > 0 0on[zg, co). Suppose’, (z) is continuous
on [z, 00). Let

€

V1—e

(2.22) hi(z) = max (eAElB, pL(ac)> , T > Xp.
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Suppose
(H1) lim inf <(a: — o) - \/PL ) > A (‘ 1) , possibly infinite
r—00 —€
or limsup <(a:—x0 vVpr(x) ) < A( Lo
(H2) sup (zog — z)hi(z) > A and
r>x0
(H3) 1+ sup(x — xo) ( P >> < nall hold.
T>T0 pL(x)
Then an upper bound; for c is the largest root of
(2.23) (o — z)hy(x) = A°.

Proof. Of (a): Letu = u(z) = [Y,(z)]°. By the Mean Value Theorem, there exigts- d(x) in
(xo, x) such that

(2.24) w(z) = u(xg) + u'(d) - (x — x0).
Differentiation ofu(z) produces

(2.25) u' = e(Y,) Y]

and

(2.26) u’ = e(Y,) Y 4+ e(e — )YV

To bound/(d) in (2.24), we obtain fron (2.26) that'(x) = 0 for values ofz (if any) satisfying

r@Vala)]

(2.27) Y!(z) = .

Substitution of this into[(2.25) results in

i

[/ ()] = \/1—_6[1@(96)]6‘1+g Pu() -
By choice ofe, for anyx satisfying [2.2]7), we have
’ €
(2.28) |u'(x)] = 1| |_ - Pu() .

By Lemmd 2.9,[(2.28) holds also as— (z*)~. From all this, we may infer that
[u'(d(x))] < —g1(z*) andu/(d(z)) > g1(z¥), o <z < x*,
which implies that

A€ .
r>T)— ——, To<r<xT .
g1(z*)
Sinceu(ry) = A andu/(zy) = e A<~ B, we obtain from|[(2.24) that
Ae
/ d * —
w(da) = ——
and
Ae .
To — )
")
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upon lettingr — (z*)~. Thus,(z¢—x*)g:(z*) > A holds. But we also havero—L1)g: (L) =
Ac. Since(zy — z)gi(x) is strictly increasing in:, we must have:* > L;. Sincec > z*, we
havec > L. This completes the proof of part (a).

The proof of part (b) is analogous except we aseénstead ofg; andp;, instead ofp, in the
above arguments, along with Lemma 2.10. For this reason, we only give the details for the parts
of the proof that are different from the proof of part (a).

To prove (b), we proceed as in the proof of (a). Hypothésig (H1) guarantees that the zero set
of the equationzy — xz)h,(z) = A€ is bounded above by a real number> z,. Hypothesis
guarantees that this zero set is nonempty. HypotHesjs (H3) allows us to apply Lemjma 2.12

to obtain|u/(d(x))| > J<=+/p,(x) and

u(d(z)) < hi(x), mo <z <a*.

Thus,(zg — x.)h1(z.) < A holds. Now suppose on the contrary that> U;. By the Interme-
diate Value Theorem, there would exist a rebin [z, Z) of the equatiorizy — x)h,(x) = A°.
Soz' > Uy and(zg — 2')hy(2") = A°. Soz’ is a root of(zg — z)hi(x) = A€, a contradiction
to U; being the largest such root. We can conclude that U;. Sincec < z,, we must have
¢ < Uy andU; is an upper bound af. This completes the proof. O

Remark 2.15. If any upper bound fot is available (call itV), then it should be computed first.
Then a search for a lower boundodan be confined to a search on the compact intéryal/],
sincezy < L < U must hold. However, if (H3) does not hold, it may be the case that condition

(H3’) holds:

(H3) n>1+ Sl>1}2 (x — z9) <_]9le((;;)) ,

where L is any lower bound ot. In this situation, we would want to compufe = L first
instead. In any cas3) can also be replaced by the requiréiment;, - Yil@) _ ),
* YL(I)

Remark 2.16. The above theorem makes use of the operater Y. In this paper, we shall
also consider operators of the form:= ¢*¥«, o < 0, u = (z — x)~'Y,. The author has also
considered the operatois= Y, (Y,))?, e; < 0, €2 < 0, andu = (Y, + Y, + )¢, but these did

not consistently provide better lower bounds.

Remark 2.17. Note that the existence of a lower boubgddoes not depend on the initial values
A > 0andB > 0. However, the existence of an upper boundmay depend on the values
of A andB, if p.(z) is not constanty(x) is nondecreasing), for example. In fact, we shall see
that more stringent conditions guaranteeing the existence of an upper bouhdref usually
more necessary than those guaranteeing the existence of a lower batintbothe remaining
problems considered in this paper.

Remark 2.18. In his concluding comments section, Eliason/[11] mentions that the methods
used in his paper cannot be used for the following cases:

1) B<O (2) A=0 and B>0.

He also mentions that these cases certainly are of interest. A check of the literature revealed
no subsequent work providing bounds for these two cases. Whkefi. Bobisud [5] provides

lower bounds whe# = 0 for a more generaf(y), however. Theorerh 2.14 clearly provides
bounds in Casg 1. In Sectiph 3, we shall offer bounds for Case 2. Moreover, the methods of this
paper can also provide bounds for the following cases:

(3 A<0 and B>0 4 A=0, B=0, 3" (z) >0.
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We elect to discuss (3) and (4) in a future work. However, for an example of Case (3), see
Example 4.8.

Remark 2.19. We can relax the requirement thdt:) > 0. We merely neeg(z) to be eventu-
ally positive, at least in the case of providing lower bounds:foiVe would use; (x) instead
of p,(z) in part (a) of Theorerp 2.14 above, where

Py, (z) = max(0, pu(z)) .
The conditionp(x) > 0 on [z, 00) is necessary to have any chance to obtain upper bounds for
¢, however.

Next, we consider a few other bounds tom the case ofA > 0. One is a modification
of a bound given in Eliason [11]. The others are based upon a numerical integration, after a
transformation, of the differential equatign (2.17).

The following theorem is a generalization of a theorem given in Hillé [20] and Eliason [11].

Theorem 2.20.Consider IVP|( .) Suppogé&(z) < 0, z > . Supposq“ Vp(t)dt — oo
asx — oo. Then:

a) there exists with xy < ¢ < oo and lim y(x) = +o0

T—Cc™

b) If, in addition, B? > 2220) A7+1, then

(2.29) ’/1+n \/ dt<_Af

wheree = 5. LetUy denote the upper bound forgiven by|(2.29).
c) If B2 > n+1 () An+1 . then there exists a constahf > 0 independent af such that

y(x) SM(C—:E)ﬁ, o<z <c.

Proof. The proof is similar to that given in Hillé [20], exceptt) = t~%/? there. Multiplication
of (2.17) by2y’ gives

2y'()y"(t) = 2y'(O)p(t)y(t)".
Integration by parts fromy, to = and using)/(¢) < 0 gives

2p(x) 2p()

/ 2 > n+1 2 n+1
(2.30) y'(x)* > D11 ()" + [B D1l ——A
(2.31) = f]p—gy(x)"“ + co, say.

Let Uy denote the upper bound efdefined by|(2.29). Multiplying by(z)~'~" and taking
square roots, we get

(2.32) v \/ ) + o),

where [2.3P) is valid oy < d < ¢ for somed 2 zo. Integration of [(2.3R) fromx = d to
T = w gives

@) i) - \/ 2) + coy(w)- 1.

The left-hand side of (2.33) remains boundeduas» 0. The integral in[(2.33) diverges t®
asw — oo, sinceff0 Vp(t)dt — oo asxz — oo. Thus, there exists with zy < ¢ < oo such
that lim y(z) = +oo. This proves part (a).

r—c—
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To prove part (b), we proceed in an analogous manner, starting (2.29) above. Since
co > 0 by assumption, fromj (2.33), we obtain

2 1n 2 ¢
) T > [ / NroLs

Letting z = x, proves part (b). By the Mean Value Theorem, for integrals, there is am

(x, c) with
2 ¢ 2
Vi [ Ve =\ [ Vi@ o).

Sincep/(t) < 0, we deduce

2 1-9 2
@ 2\ [T Ve ).

n—1
Consequently, we obtain

(2.34) y(x) < K”;l) \/:277 ] PO (e — )75

This proves part (c). O

Example 2.1. Consider the IVP

1

y" = m?ﬁ ?/(0) =1, y’(O) =1.

Then a vertical asymptote exists to the solutigm), by Theorenj 2.20 above. Theorem 1 of
Bobisud [5] is not applicable here, sin p' ng]i,?/g = 2 does not satisfylim 1@l .

oo [P(2)]3/2

Remark 2.21. Theoreni 2.20 requireg(z) < 0. It is interesting to note that if'(z) > 0
andp(x) is absolutely monotone ojxy, oo) (as defined by Boas[[4]), then certain derivative
inequalities found in Boas [4] and PariC [26], together with Bernstein’s Theorem, can be used

to prove existence of vertical asymptotes using Lemmas 2.5 apd 2.6 above. We omit details
here, since the emphasis is on bounds:for

Remark 2.22. In Theoren) 2.20, the conditioR? > 22%0) A+ is a generalization of a condi-
tion given by Hille ([19], [20]) and Eliason which guarantees the existence of a vertical asymp-
tote for the Thomas-Fermi equation

y// _ x_1/2y3/2
y(xo) = A, y'(zg) =B, (20>0).

Application of Theorem 2.20 in this case leads to the following upper bound on
c< (x3/4 + g\/gA_l/4>

which is Equation (1.9) of Eliason [11] and Equation (4.4) of Hille/[20]. We shall have a little
more to say about the Thomas-Fermi equation in Seftion 3 later.
Theorem 2.23.Consider the IVP[(1]1). Suppogér) > 0 is continuous oz, o).
a) Letu* denote any initial upper bound fet Let
2 *) Al

w; = B*> and
n+1
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Let D; = wy — wy and Dy = 277%12 and supposé); < 0. Then a lower bound., for ¢

IS given by
NEE
wy + Dy 5 )

provided the expression in brackets is positive.
b) Suppose that either* exists or that

D3 = inf p(z)>0.

2A
(2.35) Ly =a9+ ——
n—1

zo<z<oo
DefineD, as follows:
Ds, if D; >0
D4 == .
u*, if D3=0.
Letws; = 2“(77”%. If w; < ws, then an upper bound, for ¢ is given by
A _ _
(236) U2 =9+ m <’UJ1 1/2 + W4 1/2> .

Proof. Starting with

(2.37) 'y = p(x)y"y
and integration of both sides ¢f (2]37) eventually results in

e e] 2 / 2 / -
c— T :/ B2 — MA’I'H + My(t)nﬂ dt
A 77‘|'1 77+1

the Generalized Mean Value Theorem for integrals. By the change of
nT—l

b
variablez = 1 — (i) , we obtain
y(t)

1 / -
(2.38) c—xg= ﬂ [wg + (w1 — 2p—(t)fl”“) zDz] dz .
n—1Jo n+1
Sincep(t') < p.(U1), the result now follows by the convexity of the integrandof (2.38) and the
Midpoint Rule approximation to the integral ¢f (2]38). This completes the proof of part (a).
The proof of (b) is very similar except the Trapezoidal Rule approximation is used at the end
of the proof instead. Hence, the proof of (b) is omitted. O

[NIE

for somet’ € (z, ¢),

SIS

Remark 2.24. We may take:* = U, whereU, is given in Theorerp 2.14 above. Also, the lower
boundZ would exist, in particular, ip(x) is nonincreasing i, and the upper bound would

exist, in particular, ifp(x) is nondecreasing im, provided that(zo) = A andy'(z¢) = B
satisfied the other conditions of the theorem. The bounds of this theorem are of closed form and
are offered as more easily computable alternatives to other bounds already discussed. We shall
numerically compare many of the bounds discussed in this paper in subsequent examples. We
may replace, (u*) in part (a) by any constari, if there exists” > 0 such that) < p(z) < P,

for x > xy. Similarly, we may replace’,(D,) by any constant) such that) > 0 and

Q < P(x), for z > xo. For example, ifzy = 0, andp(z) = 22, we may useP = 1 and

Q=2

Next, we show that the methods of Eliason![11] can be modified to produce a lower bound
for cin the cased > 0 andB > 0, after applying comparison results discussed earlier.
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Theorem 2.25.Supposed > 0 and B > 0 in IVP (1.1). Under the conditions stated in
Theorem B, a lower bounf; for ¢ is the unique root (value af) of:

(2.39) A% / VB (Ddt = =(n).
wherez(n) is given by[(14) and

(2.40) Pu(z) = sup lp(t)' (1+M>n] .

ro<t<z A
Proof. Let w be the operator given by = w(x) = Y, (x) — B(xz — x¢). Then
w =Y —A W'=Y w(x)=A w(xg)=0.
IVP (I.1) becomes

@41 o) = (s |

By comparison with the IVP
(2.42) W"(x) = (pu(x)) - [W(x)]", W(xe) =A, W!'(xg) =0,

applying Lemma 2]1, we see that if IVP ([L.1) has an asymptoie-atc and IVP [2.42) has
asymptote at: = z*, thenc > z*. Butz* is at least as large as the unique roof of (2.39) above,
by Theoreny 1]1. This completes the proof. O

w(x) + B(z — xo)
w(z)

|) o, wte =4 wea) -o.

Next, we state that Theordm [L.5 (Theorem 3 of Bobisud [5]) can be extengécd)tihat are
not nondecreasing after applying Lemmg 2.1. We omit the straightforward proof.

Theorem 2.26.Consider IVP[(1.]1). Under the conditions of Theofen 1.5, omitting the nonneg-
ative derivative op(z) requirement, a lower bounflg 4 for c is the unique root of the equation

:/;mdt.

o d

(2.43) / — ‘

4 \/p(xo) +2 [, f(w)d

Next, we state a famous inequality which will be used to obtain one more lower bound for

¢, whenp(x) is nonincreasing in. Since there are many versions of this inequality, we state a
form most convenient for our use here. It is the Griss inequality, a special case of Chebyshev-
type inequalities. For a discussion on these inequalities, see Barza and Persson [1], Beesack
and Péaric [2], and Mitrinovic, P&€aric and Fink [22].

Gruss Inequality. Let F'(x) andG(x) be continuous ofu, b]. Supposé is nonincreasing and
G is nondecreasing oja, b]. Then

b b b
(2.44) (b—a)/ F(x)G(x)dxg/ F(:z:)d:z:/ G(z)dz .

Theorem 2.27.Consider IVP[(L]l) witid > 0, B > 0. Suppose(z) > 0 is continuous on
[A, 00). If p(x) is nonincreasing oA, co), then a lower bound.; for ¢ is the unique root of
the equation
1
(2.45) —lAl_” = (x — xo) " A (2) Ay (),
/’7 —
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where

(HM)"Hé_l

(2.46) I(t)=(t — xo)_l/ p(u)du .

Zo

T T 1

Proof. As done in the proof of Theorem 2]25, the substitutior: w(z) = Y, () — B(x — )
into (1.1) leads to the equivalent IVP

w'(z) = (pu) - {w(x) Bl ‘”ﬂ ) (@),

w(x)
(2.47) w(zg) = A4, w'(xg) =0.
So
(2.49) w0 < (o [1+ 2wy
Integration of [(2.4B) fromx, to =, using Griss’ Inequality, gives
(2.49) w'(z) < I(x) < / {1 + M} dt) [w(@)],

using the obvious inequality’ w(t)"dt < (x — xo)(w(x))". Integration of[(2.49) one more
time yields, after division byu(x)?, nilAl—” < (z — x9)tAi(2)As(z). The result follows
upon lettingz — (z*) and usingLs < z* < c.

Next, we shall numerically compare the new bounds given in this paper to those of Eliason
[11] and Bobisud[5]. The bounds of Bobisud [5] are more general from the standpoint of being
valid for the more general differential equatigh = p(x) f(y). However,p(z) is not allowed
to have a singularity in his Theorems 2 and 3 (Theorleris 1.8 apd 1.5 above), whereas we shall,
in Sectior] B, allow for the possibility of a singularity jrfz) atz = z,. Thus, the new bounds
complement, and in some cases, improve on the bounds of the above two authors as we shall
see in subsequent examples. O

Next, we present a few numerical examples to compare the lower bounds and upper bounds
(if they exist) ofc.

Example 2.2. Tablg 2.1 below gives a numerical comparison of various lower and upper bounds
for ¢ for the IVP

y'(x) = (3" + e™)y(@), ylzo) =A>0, y(m)=DB>0

wherey = (3 —¢®)~! for various choices af,. The actual value aof is c = Ln3 ~ 1.0986123.
Here,p(z) = 3e¢® + ¥, =3, e = —1.

This example illustrates many points which seem to hold in many other examples considered
by the author, but not presented here. These are:

1) If p(z) is nondecreasing im andn > 2 the Theorem 3 lower bound of Bobisud [5],
Lps = Lp, is the best bound, unless is near the asymptote, in which case the
new bound,,, is best. The Theorem 2 bound of Bobisud [B} 3, is more generally
applicable, but not as good &s, in this case.

2) No bound is the best in all cases (all choicesg)t This has been observed in many
other IVPs for a wide range qf(z) behavior and value of > 1. It does not seem
possible to easily compare all bounds in this paper analytically for this reason. Hence,

J. Inequal. Pure and Appl. Math?(1) Art. 1, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

18 STEVEN G. FROM

To Ly Lo Lgs Lps Ls Uh Uy Ugi Ugp

—2.0 0.011 —-1.990 0.317 0.882 0.864 19.17 11.69 6.16 1.80
—1.0 0.419 —-0.992 0.373 0.954 0.887 6.15 4.25 3.38 1.63
0.0 0.819 0.333 0.573 1.034 0.942 2.00 1.71 1.86 1.41
0.5 0989 0.890 0.769 1.067 0.996 1.32 1.26 141 1.28
1.0 1.094 1.093 1.038 1.087 1.078 1.10 1.17 1.13 1.13

Table 2.1:Lg 3 = L 4 Sincep(x) is nondecreasing.

we shall give enough numerical examples to compare the various asymptote bounds and
also to illustrate the application of theorems obtained in this paper.

3) Among the upper bounds, the upper bound of Eliason [}, andUy are usually
the best. However, there were many IVPs for which the computer algebra package
MAPLE would not computeP,(z) given by [1.7), which is needed to compufe »
mainly becausé’,(x) is often not of closed form. The above example was chosen so
that P4 (x) would be of closed form. Note that the upper boudnds of closed form and
is easily hand computable. These two new upper bounds are also more accurate than
Ug 2, if x4 iS not too far frome.

4) Aniterative version of the Runge-Kutta (4,4) (RK) numerical method was applied to this
problem to obtain a sequence of ‘pseudo’-lower and upper bounds. The current lower
bound value ofL; was taken as the new value of at each iteration. Thus, the RK
method was successively applied on intervals of the fogm= [L{), L{* "], where
L) = jteration K value of thel; lower bound. ThusL(lK“) is the L; lower bound
for the IVP

y// — (3693 4 €2x)y37
y(Li) = L), Y (@) = gL,
wherey(-) andy/(-) are the RK approximations af andy/, respectively. The RK
method was applied to eadly interval, moving forward from below to a final lower

bound approximation ta*. Table below gives the values be) and Ul(K), the
K iteration value (approximation dﬁl(LgK)). After 20 iterations, however, these

K K
K U

0.818507 2.000000
1.068355 1.141719
1.098107  1.09909
1.098545 1.098545
1.098545 1.098545
1.098545 1.098545

O U= W N~

Table 2.2:

values start deteriorating, because of truncation and round-off error. Also, the ‘pseudo’-
upper bounds are no longer real upper boundsifor 4. Here, the ‘final’ value of
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L, = 1.098545 is in error by only6.73 x 10~°, using 5000 equally-spaced values in
interval I at each iteration.

Example 2.3. Consider the IVPs below. The Runge-Kutta method was used to approximate
in IVPs (a) and (b), since the exact solution was unknowi »(not applicable or computable
not considered). The results are given in Tabl¢ 2.3

@) y"(z) = (z+ 1)~ y(=)]>, y(0) = 2,5(0) = 1 (c = 0.960).
(0) y"(z) = (z + 1) y(2)]*, y(0) = 1,y (0) = § (c = 1.33).
© y'(x) = |25] @), y(0) = 1, y(0) = 2. The exact solution ig(z) —

(2£2)", with ¢ = 1.00.

1—x
(d) v"(2) = [exp(a® —2x+4)]- (y(x))3, y(0) = %, y'(0) = ﬁ,p(m) iS nonmonotonic
(bathtub-shapedy,is unknown.

€)' (z) = [Z—W} (y(x))?, y(0) = 5.828, '(0) = 6.005. The exact solution is

y(z) = (3 — vz +8)~ !, withc = 1, p(z) is decreasing.

IVP Ly Ly Ly Lps Lps Le¢ Ly Ui Uy Ugy Uny

(@) 0.71 0.73 041 NA 0.78 0.30 093 2.00 1.61 1.14 NA
(b) 1.05 1.07 047 NA 1.01 097 1.10 1.75 1.54 1.96 NA
(¢) 050 0.82 023 NA 0.60 0.88 0.65 2.59 2.43 3.57 1.67
(d) 050 NA 024 NA 098 NA 1.15 NA NA 394 NA
() 097 NA 036 NA 079 076 0.39 1.03 NC 1.332 1.008

Table 2.3: NA= not applicable, NC= not computable

Again, we see mixed results, although the new lower bodnd$ 5 , do well. The new upper
boundsU; andU, sometimes do better thdnhg ;, although they are not always computable,
whereas the Eliason bound always is, although it is harder to compute. Nofg;tisathe best
lower bound for IVP (c) and that each of the new lower bounds (., Ls, Lp4) is best or
nearly the best in at least one of the IVPs above. This is the reason why we discuss many lower
bounds in this paper. Among the new lower bounfis,and L, are the easiest to compute.
However,L; can be found in more general situations. When it exigtsis a better bound than
Ug, in most cases. Howevdr ; is more generally applicable.

We shall next present some examples whete) is not nondecreasing im, to illustrate
Theorenj 2.14, part (b).
Example 2.4. Consider the following IVPs.
() y'(w) = [(2? — 222 + 131)e*/%] - (y(2))*®, (0) =1, y'(0) =1L

T

The exact solution ig(z) = 5w Here,e = 1,7 =6/5, ¢ = T, p(x) is decreasing
in z. We obtain: L, = 0.909, Lps = 0.206, Lp4 = 0.264, (Lp3 is not applicable),
Ly =0.907, Ly = 0.482, Lo = 0.439. The Eliason upper boundi$; ; = 1.074. Since
n = g is close to 1, the new bounds are better thign,. Note thatl; andU, are not
applicable here. Alsd/y = 1.0047. SoUy does better thali; ; here. Howeverl/g ;
is more generally applicable.

(b) The IVP of Thomas-Fermi type (see Hille [19], [20] for a discussion of this equation)

y'(x) =27 Py()*?, y() =2, ¥ (1)=1.
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It is easily verified that condition§ (f1}—(H3) of Theorém 2.14 hold. We obthjgs(

is not applicable)., = 4.761, Lg o = 2.465, L = 2.274, Ly = 4.445, Lp 4 = 3.065,

Ly, = 4.763, Uy = 9.000, Ug; = 6.763, U, = 8.256, Uy is not applicable here.

The exact value ot is unknown. We have#1.763 < ¢ < 6.763 by the foregoing,
however. The RK method discussed earlier converged~o6.164. Extensive curve-
fitting of Padé approximants done by the author found asymptote estimates ranging
fromc ~ 5.964 to ¢ =~ 6.063. These findings are obviously consistent with all the above
bounds. Here, the new lower bounflgs and L, are best and the Eliason upper bound
Ug, is best. (MAPLE would not comput€éy ».)

The new lower bounds often considerably improve on the bounds of Bobisud [5] when either
p(z) is nonincreasing i or n < 2. Many numerical examples considered besides the ones
presented in this paper seem to confirm this observationp(E9mondecreasing angd> 2, the
Bobisud bound.z 3 = L4 Seems to be best. The new upper bounds improve on the Eliason
upper bounds especially in the cases with> 0 andB > 0.

We shall soon discuss the cage= 0 whenp(z) = (x — x0)?¢(x) has at least one singularity,
first atx = xo (whené < 0). We shall obtain bounds ferfor IVPs in which it is not possible
to apply the previous lower bounds of Bobisud [5] or Eliason [11], in Seflion 3. Let us consider
a few examples with nonmonotoni€z).

Example 2.5. Consider the IVP

y'(x) = { :

(222 —x+1

Jer. w0 =1 vo=o

The exact solution ig(z) = 25‘?21:—”;“ with ¢ = 1.00. Herep(z) is not monotonic, is unimodal

with maximum valuep(0.25) ~ 5.971. Since the methods of Eliason [11] requibe = 0,

it should be the case that the Eliason bounds are best here. This is in fact the case for upper
bounds, but not lower. The following bounds were obtained:

Ly = 0.579, Ly = 0.598, Lp, = 0.438, Lp 3 is not applicableLs, = 0.904, Ly = 0.776,

Lg = 0.776.

Only the Eliason upper bounds are applicaldle;; = 1.488. We see that the new modified
Bobisud bound. 5 4 = 0.904 is the best lower bound here.

Example 2.6. Consider the IVP

y'(x) = [

—at AP+ 622 — 4+ T
4(x2 +1)4

} @), y(=1)=+1, y(-1)=—

The exact solution i3 = ,/% with ¢ = 1, andp(z) is unimodal here with maximum

p(—0.0840) ~ 1.7928. Only the new bound.; is applicable here sincé = ¢/(—1) < 0, and
both the bounds of Bobisud/[5] and Eliasonl[11] requie> 0. We obtain(e = —2.00)

Ly = —0.299.

L, can generally be used (under conditions of Thedrem 2.14)f) = B < 0, providedy(z)
remains positive. In this case, we modify(z) of Theoren) 2.14 to get

on(a) = min (A Bl Vi) )
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3. THECASEA=0AND B> 0

In this section, we present methods for finding bounds fotthe cased = 0 andB > 0. Not
only do we present bounds for the continuous coefficijg(it)) case, we also present bounds
for the case of a singularity at= x, of a certain form. As remarked by Eliason [11, p. 483],
‘bounds for the casel = 0 are certainly of interest’. In this section, we will in fact obtain
bounds for the casg = 0 for a more general IVP which allows for a singularityrzat x.

We consider the IVP

(3.1) y'(v) = p(x)[y(@)]",  y(we) =A=0, y'(vo)=B>0,
where
p(x) = (z — 30)%q(z), qx) >0, 0<0,
with vertical asymptote at = c.
If =0, then we may use the new bouhg , given earlier.
When# < 0 andé + n > 1, then Theorerp 3]1 below demonstrates that a modification (after

a transformation ot’,(x)) of the method of Eliasori [11] provides a lower bound favhen
A=0.

Theorem 3.1. Supposé + n > 1in IVP (3.1). Supposeg(z) > 0 on [z, o) is continuously
differentiable. Consider the auxiliary IVP:

(3.2) Z"(x) = [(95 — xo)””’lqu(m)} Z(x)]", Z(xg) =B, Z'(xy)=0.

Then any lower bound for a vertical asymptote[of](3.2) is also a lower bound for

Proof. Letu(z) = 22 Then IVP (2.12) withf (y) = " becomes

(3.3) (= xo)u"(2) + 2u'(x) = [(x — 20) q(x)(x — @) "u(2)"],
u(zg) = B, u'(xp) =0,

where we have applied L'Hospital’s Rule to obtain

(z — )Yy (z) — Yu(x)

u'(z9) = lim

T—T0 (ZIZ' — [L’())2
= lim Y/ (@) — lim —Yu(a:)
T—x0 2 T—T0 2(33' — Z’o)
V) V@)
2 z—zo 2
A solution to [3.8) must be bounded above by a solution to
(3.4) Z"(x) = [(z = 20)""qu(@)] - [Z(2)]", Z(20) =B, Z'(x0) =0

upon application of comparison techniques to I\fPs|(3.3) (3.4), andwi$ing> 0, q(x) <
qu().

Let L5 denote the lower boundy ; applied to IVP[(3.4) instead.

Next, we offer a simple lower bound in the cage- n > —1, which is more generally
applicable thar.z 4 or Ls. O

Theorem 3.2. Consider IVP[(3.1) witd = 0, B > 0. Suppose(z) > 0 is continuous on
[z, 00). Supposé + n > —1. Then a lower bound; for c is the unique root of the equation

x Bl—n
(3.5) [ = = 2
xo n— 1
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Proof. IVP (3.7) will be transformed to obtain an auxiliary IVP for comparison purposes.
(3.6) Y (@) = (& = 20) qu(@)[Ya(2)]"
1
- (o= )| 242
< (2 = 20) "y () [Y, ()",
LettingV = Y/, we obtain the auxiliary IVP
3.7) Vi(x) = [(x = 20)"Mqu(2)] - (V(2))",  V(xo) =B.

Clearly, the location of the vertical asymptote[of {3.7) will be to the right of any vertical asymp-
tote of (3.6), by comparison lemmas given earlier. Integratiof of (3.7) produces

/Oo VIV = /z(t — 20) g, (t)dt

B o
or

B ’ 0+
- = [ (t—x9)"q.(t)dt.
zo

The proof is complete. O
For our final method, we present a method which uses a variation of the method used to derive

L, in Sectior{ 2. Sinced = 0, however, we cannot use théz) = [Y,(z)] transformation as
done there. Instead, we consider the operator z,)~'Y,,, i.e.,

(3.8) w(z) = (Yu(x) ) .

T — X9
First, we need some lemmas.

Yu(2)
r—x0

Lemma 3.3. Letu(z) =
on [zg,00). Then

o < x < z*. Suppose(z) > 0 is continuously differentiable

lim u(z)u”(x) _ 147
z—(x*)~ [UI(ZL')]Q 2
Proof. Applying L'Hospital’'s Rule, we obtaiY, = Y,(z),Y.) = Y."(z))
. u(z)u”(x) , (x — 20)?Y, Y — 2(x — x0) Y, Y, + 2Y?
im —2—~% = lim
e—(@*)~  [u/(z)]? e—@)~ | (x —20)2(Y))2 — 2(x — 20)Y, Y + V2
V()Y (z) 1+

= lim ,
e—(@)~  [Y!(2)]? 2
upon application of Lemmas 2.5 and[2.6 wijtty) = y". O

Lemma 3.4. Supposey(xz) > 0 is continuously differentiable ofx, ). LetT(z) = (z —

o) [u(z)) ' (z), e = 2. Then
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Proof.

. u'
lim sup ——
z—(x*)~ U

"

<l “
msup —m—
- m_}(x*)? (1 — e)u’u*

u’ %
< lim sup - lim p
e~ | (1 — €)u—¢ ?u’; z—(z*) U
By Lemmd 3.8, the latter limit equals 1. So

)"
z—(z*)~

(x — x0)(1 — €)u(x)'=2¢’

usingu” < (z —zo)" Y/, asz — (z*)~. (In fact, the above argument shows that all ‘lim sup’s
above can be replaced by usual limits.) Thus

— 0+n .
lim sup T(ZE) < lim sup \/(IE ZEO) Qu(ZU) US
z—(z*)~

(z* —x )9+3+1
li(m)i T(z) < 0

W) _ yp.
1—e¢

x—(z*)~

0
Lemma 3.5. Let K (x) be continuously differentiable and strictly at one sign[ef co). Sup-
poselimsup | K (z)| < oo. Then|K(z)| < Kj on [z, z*), where Ky = max(K,, K, K3),

%],Bn: [[E*— 1

K, = |K(z0)|, K2 = sup |K(t)| < oo, K3 = limsup |K(x)|, Zy = {t € [xo,2") : K'(t) = 0}.
teZ,
;,a:*),n: 1.2.3

z—(z*)~
Proof. Let A,, = [xg, 2* —

sup |K(z)] < max (Kl,K27
€A,
and

1
()
n
(EGBn

Let us showsup | K (z)| < K3 + ¢ for arbitrarily smallo > 0. By definition of limit superior,
JintegerN such that

< sup |K(z)].
J?EBn

sup |K(z)| < K3+94.
rEBN
Thus,

sup |K(x)] < max (

zE€[z0,2*)

sup |K(z)],  sup |K<:c>r)
rEA, reB,
< maX(Kl, KQ, Kg + 6),
implying that

sup K(x) < Ko+6.

x€[z0,2*)

Sinced > 0 is arbitrary, the result follows.

O
Armed with the knowledge of the above lemmas, we are now ready to prove the following
theorem.
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Theorem 3.6. Consider IVP[(3.]1). Suppogéz) > 0 is continuously differentiable o, ).
Let

(3.9) G7(z) = min (%BeJrn_IQ(xo)a 16_ E(x - fo)eﬂTi1 Qu(x)) ’

wheree = 1;—” Suppose that eithet +7 > 1 or 0 +n > 0 andw(z) = (Y“—(x)>e has a

T—x0
strictly monotonic derivative/’(x). Then a lower bound; for ¢ is the unique root (value af)
satisfying the equation
(3.10) (xo — 2)Gr(x) = B
Proof. It is useful to recall the method of proof of Theorém 2.14 earlier. We use a device and
method here that is similar, except we use a different operator betthe operator given by

w = w(z) = ( V() ) — u(z)",

T — X

whereu(z) = 249 o £ 2, andu(z,) = B. Then:

T x—x0
!/ — !/
w' = eu M,
Ze(e — Du?,

which equals zero at a value of> z (if any) satisfying

w// _ eue—lu// + (u/)

(3.11) () = | U]
1—e¢
Now the Mean Value Theorem implies
w(z) = w(z) +w'(d(z)) - (x —x0), o <d(z) <z, z09<z<2".

Proceeding as in the proof of Theorém 2.14, a direct computation shows'that for such
values ofz, satisfies:

(3.12) ' (z)] = : Eu(@efl \/ u(z) - (z — xo)eiuix;z/u(x)n — /()

assuming the right-hand side radical exists for the moment. Cledrty > 0. From [3.12), we
have

)

w'(z)| < ;ieuﬁﬂe1vﬁdxy(Cv—ahygfgggp_x@mdxw)
(313) S 1_i eu(x)e+g_%(x . [L’O) 9+g—1 qu<x) .

If the square root irf (3.12) does not exist, then we can still bguttd)|. In either caselw’(z)|
will be either maximized at = z,, at a value of: satisfying [3.1]) or ag — (z*)~ (where
we shall apply the lemmas given above). Once we bdun:)| on [z, z*), this will allow us
to get a lower bound far*, hence fore. From all the foregoing, we have, fop < = < x*:

(x —zo) sup |uw'(t)]

ro<lt<z

< max ((m — ) - |w'(x0)], € i (=)

\/1__6(1’—1’0) 2 qu(x), \/1——6

(z — $0)M*> ,
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upon application of Lemmja 3.5, where
M* = lim (u(x)) "/ (7).

x—(z*)~
By direct computation|w’(zo)| < [§Bt"q(xo)|, with equality holding if¢ + 7 = 0. By
Lemmd 3.4,

\/1_;_6(1‘* —20) EVu(a) = (=) (2" — mo)M".
Thus
(3.14) (2" —zo) sup [w'(t)|
ro<t<lz*
< max ((x* — ) <—§> B (), € (" — :160)9%27+1 qu(x*)) :
1—e€
Butw(zy) = B°. So
(3.15) w(z) = B+ w'(d(z))(x — x0) .
Since li(rg)_ w(z) =0, lettingz — (z*)~ in (3.15), we obtain
B
P w/(d(z7)

Since|w'(z)| < —Gr(z), x > xo, Wwe have(z*—zo)(—G7(x*)) > B€. But(L;—x0)(—G7(L7)) =
B¢. Since(x — xy)(—G~(z)) is increasing inc, we havel, < z*. Sincez* < ¢, thenL; < c.
This completes the proof. O

Remark 3.7. When# = 0 (p(z) is continuous), we may also consider the Bobisud baupg
whenp(x) is nondecreasing. In this caseg ;3 = Lg4. Whenp(x) is not nondecreasing, we
shall use the new modified boutdg; , sinceL 5 is not applicable in this case.

Remark 3.8. The author has also obtained bounds in the gésg) = A < 0 andB > 0 for
the equationy” = (z — z0)%q(z)|y|"” sgn(y) using a two stage procedure. These results will be
discussed in a forthcoming paper.

Next, we present some numerical examples to compare the baundd.;, Ls andL; in the
caseA = 0, B > 0. First, we consider an example where- 0. In this case, all four bounds
exist.

Example 3.1. Consider the IVP
, 20 — 30z + 1222
yia) = [ (xt — 2 +1)3
Here,p(x) is unimodal o0, co) with

sup /p(z) = v/p(0.526) ~ 45.19.

z€[0,1]

} (y(x)®, y(0)=0, Y (0)=1.

Hence,
p(z), 0<z<0.526
pu<$) =

45.19, = > 0.526

The exact solution ig(z) = =2+ with ¢ = 1. Here,d = 0, = 3,¢ = —1, B = 1. We
obtain the lower bounds:

Lps=0815 Ls=0593, Lg=0.614, andL; = 0.462.
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Here, the modified bound s , is the best. Note that the original bounds; , and Lg 3 of
Bobisud [5] are not applicable here, nor are the bounds of Eliason [11]. However, in this paper,
two of the four bounds proposed in this paper are modified versions of these *authors’ bounds
(Lp.4, Ls) and two are derived totally from scratchs(andLy).

Example 3.2. Consider the IVP

v = (B E P, w0 =0, v0) -5

(&

Here,0 = —3,n = 3, q(x) = 12=12+2 is decreasing. We obtairl:s = 0.204, L, = 0.667.
The exact solution ig(x) = % with ¢ = 2. Note thatLz 4 is not applicable here. Neither are
the bounds of Eliason [11] and Bobisud [5].

Example 3.3. Consider the IVP

y"(z) =42 [y(x)]®, y(0)=0, ¥(0)==.

The exact solution ig(z) = 5% with ¢ = 2. We obtain:Ls = 0.500 and L; = 2.000. We see
that the bound_; is exact here. It can be shown that the(and L) bounds are sharp bounds,
in general.

Example 3.4. Consider the IVP

1
y'(w) = 27((6 = 2" +we” + 30)e)[y(2))*, y(0) =0, y(0)=3.
The exact solution ig(z) = 3% with ¢ = In3 ~ 1.0987. The only lower bounds applicable

are the new boundss = 0.375 andL, = 0.712.

Next, we apply the methods of this section to the Thomas-Fermi equationAwvith 0,
Ty = 0.

(3.16) y'(x) = a2 [y(2))P? y(z) =0, y'(z0)=B>0.

The bounds of Bobisud [5] are not applicable here, since 0. Neither are the bounds given

in Equations (5.2)—(5.3) of Eliason [11]. Incidentally, there is a small error in (5.2). In his paper,
1 is denoted by:. The termy(a)]'/? should be replaced Hy(a)]'/* throughout in (5.2). Also,

‘A = 0" should be replaced by\' < 0’ right before Equation (5.10).

Example 3.5. Consider the Thomas-Fermi equation

y//(x) _ x—l/Q(y(x))3/27 y(0) = 0, y’(O) =B>0.

We obtain
3
5 5.064 2
Ly = 2(2) ~—r Le=
B1/4 B1/4 B1/4
Clearly L5 is a better lower bound thaks. However,
Bfl/4
L; =

max (%Bl/4 ﬁ)

’ 10

and from Tablg 3]1 below, we see thiat is only much inferior toL; for B > 100.0. For
B <10.24, Ls = 1.13L;. For B > 10.24, = > 1.13,
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B 0.001 0.01 0.10 0.33 0.50 1.00 2.00
Ls; 2848 16.01 9.01 6.66 6.02 5.06 4.26
L; 2515 14.14 7.95 5.89 5.32 4.47 3.76

B 3.00 5.00 10.00 100.00 1000.0 10° 108
L; 385 339 285 1.60 0901 0.285 0.0506
L; 340 299 251 080 0.253 0.0253 0.0008

Table 3.1: L5 and L values.

4. SOME OTHER FAMILIES

In this section, we turn our attention to some other families of differential equations. First,
consider the IVP:

(4.1) y"(x) = p(x) f(y(x)), ylwo) =A, ¢(w9)=B>0

or justy” = p(x) f(y).
First, let us consider the cagéy) = ¢ for somes > 0. Consider the IVP

(4.2) y'(x) = p(a)e™@ y(zo) = A, y(x) =B>0.

First, we state the following lemma. The proofs are omitted since they are similar to proofs of
earlier lemmas.

Lemma 4.1. Consider IVP[(4.R). Let(x) be continuously differentiable dmy, o). LetY,,(z)
andYy (x) be given by|(2.12) and (2.[13), resp., with= 0 (p(z) = ¢(x)). Leta = —3/2. Then
(@ lim —aee @ . Y!(z) = v/—ay/p.(z*).

z—(z*)~

(0) lim —ae™h®)-¥}(x) = v=ay/pu().

(c) Letw,(z) = eYu(@), Thenxli(ir})_ lwi ()] = vV—ar/puz*).
(d) Letwy(x) = V2@, Thenxli(gri)i lwh(z)| = /—a/pr(a*).
Theorem 4.2. Consider IVP[(4R). Let = =2. Let
gs(x) = min <aeaAB, —\/—_a\/m>
hs(z) = max (an‘AB, —\/—_a\/M) :

Then
a) a lower boundLg for ¢ is the unique root of
(4.3) (zo — @) gs(w) = e

b) Suppose that conditions (H4)—(H5) below hold. Then an upper-béigrfdr ¢ is the
largest root of

(4.4) (w0 — )hs(w) = 4
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(H4)
eaA
li;rig}f [(x — Zp) - pL(a:)} > T
or
BaA
linisup [(x — Zp) pL(a:)] < e
(H5)

sup (zg — x)hg(r) > 4

r>x0

Proof. The proof is similar to the proof of Theor-14 so we merely sketch key steps and
any new ideas needed. For part (a)uét) = u = e*¥+®), Then

UN([E’) _ aanuK:/ + (Y )2a2€ay 0

when
(4.5) yr = [ Pul)e?™
: o o
We can obtain the bound, for any valuexo$atisfying (4.} ),
(4.6) w'(@)] < V=ael** )\ /p, @) = V=av/pu(

Lemma[4.1, parts (a) and (c) show tfﬂ4.6) holds as (z*)~ also. Now apply the Mean
Value Theorem as done in the proof of Theofem2.14.

The proof of part (b) is similar to the proof of part (b) of Theorem R.14. We do not need
a third condition “(H6)” to parallel conditiorj (H3) of Theorgm 2|14, siri€e= oo in Lemma

[2.10, so that the condition
)
Z > sup( pL<x>>+1

e>zo \ Pr()
is automatically satisfied, as can be seen by considering
V(e B

lim

g = Q= .
(e~ (Y (2))? 2
O

It is noteworthy to mention that the operator= ¢*¥+(*) was also considered for the gener-
alized Emden-Fowler IVH (1.1). However, the bounds by this operator were found inferior to
those given earlier for that IVP.

Next, we consider a few numerical examples to compayéo some other lower bounds
discussed earlier. No upper bounds have previously been given in the literature fgr TVP (2.3)
when A is allowed to be nonpositive. However, we also preggnivhen it can be shown to be
a valid a priori upper bound in some examples below.

Example 4.1. Consider the IVP
y'(x) =’ y(0) =2, y(0)=1.

We obtain the Bobisud bound dfs ; = 0.705, which is exact since(z) = 1 is constant.
Theorenj 4.2 giveds = 0.520 andUs = 1.414, both of which are of closed form and computed
by hand. ClearlyLs < ¢ = Lg3 = 0.705 < Us.
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Example 4.2. Consider the IVP
10z — 5
" .
(z) = {(az +2)4
where the exact solution is

}ew y(zo) = A, of(x0) = B,

T+ 2

o= 1

Only the new lower bounds is applicable forA < 0. Only the new boundJg is available as
an upper bound. We obtain the following bounds (‘NAnot applicable) for various,:

o 0.00 150 2.00 250 2.75
A —0.405 0.847 1.386 2.197 2.944
B 0.833 0952 1.250 2.222 2.988
Lgs NA 1901 2295 2.662 2.836
Lps NA 2808 2943 2.984 2.996
Ly 1.200 2.550 2.800 2.950 2.988
Us NA 4217 3.337 3.063 3.114

The new bound4.z 4 and Lg perform best. Onlyig exists forA < 0. Forzy > 1.50, L4 <
B < Ug holds. (¢ = 3)
Note thatLg is easier to compute than eitheg ; or Lg 4, and is a better bound thdns s.

Example 4.3. Consider the IVP

) with ¢ =3.00.

— X

Y@) = @+, y(0) = oo, Y(0)= o

The exact solution is unknown to the author. We obfayy = Lz 4 = 0.689 andLs = 0.668.
Here the Bobisud bound is better. However, ofilyis available as an upper bound with =
8.165. So we may conclude.689 < ¢ < 8.165 holds.

Next, we consider the generalized Emden-Fowler IVP below witlresent:
(4.7) y'(x) = a(@)y'(z) + p(z) - [y(z)]”
y(l‘O):A7 y/(IO):Bu A>Oa B>07 77>1
Supposey(z) has a vertical asymptote at= c. Note that|(4.]7) generalizes the IVP of general-
ized Emden-Fowler type (whergz) = 0 andy/(z) is missing) considered earlier. Hara, et al.
([26], [17]) discuss noncontinuability of such equations. The only type of noncontinuability
we consider here is the case whegte) has a vertical asymptote at= c. First, we need the

following lemmas which we state without proofs, the proofs being similar to proofs of previous
lemmas, part (a) following from L'Hospital's Rule, and (b) following from (a).

Lemma 4.3. Consider IVP[(4.]7). Let(x), b(z) be continuously differentiable dmy, co), with
a(x) >0, b(x) > 00n[zg, 00),

a,(x) = sup a(t), pu(r) = sup p(t).

zo<t<z zo<t<z
LetY, (z) be the solution to the auxiliary IVP
Y (2) = au(@)Y,(2) + pu(2) - [Yu(z))",
Yi(zg) = A, Y.(zg)=B, A>0, B>0.

Supposé&’,(x) has a vertical asymptote at= z*. If a, andb, are continuously differentiable
nearz*, then
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Theorem 4.4. Consider IVP[(4.]7). Under the conditions of the previous lemma, a lower bound
Lq for cis the unique root of

(4.8) (o — x)go(x) = B,

where

(4.9) go(z) = min(eA“'B, R(z)),

e=1"and

(4.10) R(z) = ﬁau(a})Ae + 2\/%\/(%(1‘))21425 +4(1 — €)pu(x).

Sketch of proofThe proof is very similar to the proofs of Theorejms 2.14[anfl 3.6 given earlier.
Letu(z) = u = [Y,(2)]5, as done earlier. Thew'(z) = 0 when

(4.11) Y/(x) = \/Yu(:r) Nay(2)Y(x) + pu(z) (Yo (z))" |

1—e€
At any suchz, we have
(1 — )(Y(2))? — au(@)Yu(2)Y,(2) — pu(z) - Yi(z))" = 0.
Solving forY,/(z), we obtain

au ()Y (2) + /(a0 ()2, (2)? + 4(1 — €)pu(x) (Y (2))rH
2(1—¢) ’

Y (z) =

the plus sign being retained sinEg(z) > 0.
For values of: satisfying [4.1]L), we have

e | a(@)Yu(@) | V(0u(2))?Ya(2)* +4(1 — e)pu(2)Ye(z) "
2(1—¢) 2(1—¢)

V(au(@)?(Ya(@))* +4(1 - e)pu(z)

o ()] < Jel(Yu(2))

€]

= —’€| ay(z)Y,(x) +

2(1—¢) 2y/1—¢
using(Y, (z))**"~! = 1. So, for values of: satisfying [(4.1[1), if any, we have
/ €] €
< € 2 AZ2e _ .
W' (z)] < o _6)%(93)14 + 2\/m\/(%(ﬂ?)) A%+ A(1 = €)pu(z)

The rest of the proof proceeds as in the last part of the proof of Theorein 2.14, using Lemma
4.3 instead, and is left to the reader.
A theorem could be presented for upper bounds as well, but we omit it here. O

Example 4.4. Consider the IVP

y'(2) = Be )y (@) +p(@)y(@), ¥(2)=2, y(©2)=—.

where
(1522 + 1102 + 135) + (1823 + 482% — 174x — 396)e™"

4(xz + 2)5/2 ’

p(z) =
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which is unimodal with maximum(2.2) ~ 2.84. This example was constructed with the exact

solution
VI +2
LE° ande=3.00.

Y= s —ap
None of the bounds of Eliason [11] or Bobisud [5] are applicable here. Among the new bounds,
only Ly is applicable. We obtaifg = 2.576. Clearly, Ly = 2.576 < ¢ = 3.000 holds.

Finally, we indicate how we might obtain bounds fédor other types of differential equations
not previously considered. Theorems could be presented here; however, to save space, we
merely indicate general strategies and operators likely to be useful for obtaining bounds. We
do this via several examples to conclude this paper. We also indicate possibilities for further
research. The scope of the applicability of the methods given in this paper appear large indeed.

Example 4.5. Consider the IVP

(4.12) V(@) =T w0 =1 y0)=1.

The exact value of is unknown. We obtairl.z» = 0.323, L4 = 0.712. The calculation of
these two bounds requires numerical integration. We now demonstrate a slight variation of the
L, bound which will enable a closed form hand computation of a lower bound fGtearly,

we may rewrite[(4.12) agy = y(z))

s [(%) (k)]

We may treat our ‘coefficient function’ as the expression in brackets which is clearly bounded
above by P,(x)'= 4 and bounded below by’ (x)'= 1. For the variation of_; (similarly for
U1), consider the auxiliary (majorant) IVP:

Y/(2) =4y (@), Y(0)=1, Y(0)=1,

we obtainL; = 4 /% = 0.527, which is better thar. ; » and not much worse thal ,. We also

obtainU; = 1.054. So we may conclude that712 < ¢ < 1.054. This example demonstrates
that we may easily obtain lower bounds for the IVP

y'(@) =Y pil@)giy(x)), ylwo) = A>0, y(wo)=B>0,

i=1
whereg;(-) are given positive functions, ang(x) are given ‘coefficients’.

Example 4.6. Consider the IVP

y'(x) =€, y(0) =

This is not of any of the forms considered earlier. Only the new lower bdynidelow will
handle this IVP. We use the operator

w=e"o  §<Q.

Thenu”(z) = 0 when

(4.13) vy (2) + y(z) = \/xy//(x)_—;%/(gc)
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with a bound onu’(x)

, for anyz satisfying (4.1B), of

[/ (z)| < %e‘swwa@e“”y + 2y

9] s 2 _ 10 sy | 2
< e ety + 2xe™ 4 - = e’ [ 3xe*y + -,
T V=0 S ) 3
2
| (z)| < V/—det)my (\/39: + §e$y> .

Letd = —3. Then
1 2
[/ ()| < \/; <\/3x+ §>

for all = satisfying [4.1B). As done in the proof of Theorem|4.2, let

g1(7) = min (—6_5”0‘4, _T\/i ( 3z + g)) (2o = 0).

ThenL,, a lower bound for, satisfieqzq — x)g;(z) = 1 or

V2 2\ o
x<7< 3x+§>>—e =1,

which givesr = L; ~ 0.805.

Example 4.7. Consider the IVP

1+ 2y(x)
"z) = (Y (2) | —5 0)=0, y'(0)=1.
/@ = w2 (T8, w0 =0, 40)
The exact solution ig(z) = — tan(In(1 — z)), with ¢ = 1 — e~™2 ~ 0.7921 Only the methods

of this paper will provide a lower bound for the asymptote singularity location. Sjifte= 0,

we use the operatar(xz) = [y ()], ¢ < 0. Note that no comparison results are needed here.
Then by direct but messy computatiorf{z) = 0 when

(@14) @) = L0
where
Y () = [y (2)]°[4 + 6y(z) + 6y (x)?]
[1+y(z)?]?
L'Hospital’s Rule establishes
Y@y 3 VI—e
B ) A R

Also, at anyr > 0 satisfying [4.14), we have

el et |4+ 6y(@) 4 6y(x)?
= e(y (7)) - \/ (1+ y(z)?)? :

ju'(z)] <
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Lettinge = —1 and using the fact that the maximum value of the radicand expression occurs
wheny = y(z) ~ 0.4299, we obtain, at any: satisfying (4.14),

2
|u/(7)] < max (1, \/;(2.34026)> — 1.9108.

A lower boundL for c is therefore given by
L = (1.9108)"! = 0.5233.
Clearly,L < ¢=0.7921 holds.

Example 4.8. We now consider an example whetan y(z) = —oo with A = y(xo) > 0.
Consider the IVP
™ ™

(@) = ~29(a) ~2g@) y (-7) =1y (-7) = 2.
The exact solution iy = —tanx with ¢ = 7 ~ 1.571. The transformationt’(z) = —y(x)
produces the IVP
(e

Yi() = 2¥ (@) + 20V (@), ¥ (=) = -1, v (=) =

We may use the same operatdr) = '@, e < 0, used in Theorem 4.2 earlier. Proceeding
as in the proof of Theorem 4.2 (we omit details), a lower bound ferthe unique root of

™ —€
(4.15) (x + Z) glx)=e"°,
where
g(x) = max (—266’6, V=€ M(e)) ,
M (e) = sup |2t 4 2t3}/2e .
t>—1

Unlike earlier, there is no clearcut choice fox 0. Let L(¢) denote the lower bound which is
the root of [4.1p), givera < 0. We thus determined, < 0 satisfying

L(ey) = sup L(e) .

<0

This foundey, = —0.353 with a best lower bound of(¢)) = 0.0562. Clearly, L(¢;) < ¢
holds. However, it is probable that other operators can be found which will produce better
lower bounds. The presence of an inflection point in the solution may contribute to the poor
bounds obtained here. Taljle}4.1 below gives the valudg offor various values of < 0,
includinge = ¢, to see the dependence of the lower boluté) on the ‘operator parameter.
In a future paper, we shall discuss more general formulas for lower bound#efuding the

e —200 -1.75 =150 —-1.25 —1.00
L(e) —0.535 —0.500 —0.452 —0.385 —0.286

e —075 -050 -040 -0.36 —0.353
L(e) —0.208 —0.085 +0.005 +0.048 +0.056

e —035 -034 -030 -020 —0.10
L(e) +0.048 +0.018 —0.101 —0.367 —0.595

Table 4.1:
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caseA > 0, lim y(x) = —oo in the Emden-Fowler case.

Many more examples of IVPs which are handled only by the methods of this paper could be
given. Some will be given in forthcoming papers of third and higher order IVPs and BVPs.

5. CONCLUDING REMARKS

In this paper, we have presented several methods, including a bounded operator approach, for
finding bounds for the vertical asymptaot®f a solution to a given IVP. In some instances, the
new bounds are the only bounds available. In other cases, new bounds improve on bounds of
previous authors in some cases. Although the new bounds are sometimes for a less general IVP
than considered by Bobisud! [5], they handle some cases where the coefficient fyrietion
has a left endpoint singularity and some cases whérg) = A < 0 (the cased < 0 to be
discussed in a forthcoming paper in the generalized Emden-Fowler case).

5.1. Possibilities for Future Research.

(1) Can an upper bound ferbe found in the casd = 0 and¢ < 0 in Theorems 3]1, 3|2
and3.6?

(2) The Runge-Kutta (4,4) method does not seem too efficient when numerically approxi-
mating the solution to an IVP near a vertical asymptote. Can a modification of Runge-
Kutta (4,4) (or other RK) be used to improve efficiency in this case?

(3) Canthe interval analysis methods given in Moore [24] be used in conjunction with lower
bounds forc to get improved bounds far(both upper and lower)?

Other operators of use but not discussed in this paper ar¢y +a(x —z0)), u = (y+by' +
o), u= eVt u= ()% (y)%, andu = [y(z)]¥@, if y(x) > 1. In each case, we try to bound
|/ (x)| at a value ofr whereu”(x) = 0, if any, and examine what happensias- =*, x, or c.
Lower bounds can almost always be found by a judicious choice of the operator ‘parameters’,
which aree, §, §;, d, above. The parameters are chosen to eliminate, as much as possible,
having to know they(x) value at a certain, so that we may (a priori) bourjd’(z)|, at thoser
values where”(z) = 0 and atr = x, z*, x,, possibly.

The methods in this paper can be extended to handle:

(2) 3 and higher order generalized Emden-Fowler IVPs, (details to come in a forthcoming

paper)
(2) problems with derivative blow-up and other IVPs which have noncontinuable solutions
(3) boundary value problems
(4) IVPs with horizontal asymptotes present in their solutions.

However, there are some extra complications in the above problems. The author will report
on further research on these topics in the future.
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