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ABSTRACT. In this note, we describe a method for establishing trigonometric inequalities that
involve symmetric functions in the cosines of the angles of a triangle. The method is based on
finding a complete set of relations that define the cosines of such angles.
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1. I NTRODUCTION

This note is motivated by the desire to find a straightforward proof of the fact that among
all equifacial tetrahedra, the regular one has the maximal solid angle sum [9]. This led to a
similar desire to find a systematic method for optimizing certain trigonometric functions and
for establishing certain trigonometric inequalities.

Let us recall that a tetrahedron is calledequifacial(or isosceles) if its faces are congruent. It
is clear that the three angles enclosed by the arms of each corner angle of such a tetrahedron
are the same as the three angles of a triangular face. Less obvious is the fact that the faces of an
equifacial tetrahedron are necessarily acute-angled [8], [9].

Let us also recall that ifA, B andC are the three angles enclosed by the arms of a solid angle
V , then thecontentE of V is defined as the area of the spherical triangle whose vertices are
traced by the arms ofV on the unit sphere centered at the vertex ofV [5]. This contentE is
given (in [5], for example) by

(1.1) tan
E

2
=

√
1− cos2 A− cos2 B − cos2 C + 2 cos A cos B cos C

1 + cos A + cos B + cos C
.

The statement made at the beginning of this article is equivalent to saying that the maximum
of the quantity (1.1) over all acute trianglesABC is attained atA = B = C = π/3. To
treat (1.1) as a function of three variablescos A, cos B, andcos C, one naturally raises the
question regarding a complete set of relations that define the cosines of the angles of an acute
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triangle, and similarly for a general triangle. These questions are answered in Theorems 2.2 and
2.3. The statement regarding the maximum of the quantity (1.1) over acute trianglesABC is
established in Theorem 3.1. The methods developed are then used to establish several examples
of trigonometric inequalities.

2. TRIPLES THAT CAN SERVE AS THE COSINES OF THE ANGLES OF A TRIANGLE

Our first theorem answers the natural question regarding what real triples qualify as the
cosines of the angles of a triangle. For the proof, we need the following simple lemma taken
together with its elegant proof from [7]. The lemma is actually true for any number of variables.

Lemma 2.1. Letu, v, andw be real numbers and let

(2.1) s = u + v + w, p = uv + vw + wu, q = uvw.

Thenu, v, andw are non-negative if and only ifs, p andq are non-negative.

Proof. If s, p, andq are non-negative, then the polynomialf(T ) = T 3 − sT 2 + pT − q will
be negative for every negative value ofT . Thus its rootsu, v, andw (which are assumed to be
real) must be non-negative. �

With reference to (2.1), it is worth recording that the assumption thats, p, andq are non-
negative does not imply thatu, v, andw are real. For example, ifζ is a primitive third root of
unity, and if(u, v, w) = (1, ζ, ζ2), thens = p = 0 andq = 1. For more on this, see [11].

Theorem 2.2. Let u, v and w be real numbers. Then there exists a triangleABC such that
u = cos A, v = cos B, andw = cos C if and only if

u + v + w ≥ 1(2.2)

uvw ≥ −1(2.3)

u2 + v2 + w2 + 2uvw = 1.(2.4)

The triangle is acute, right or obtuse according to whetheruvw is greater than, equal to or less
than0.

Proof. Let A, B, andC be the angles of a triangle and letu, v, andw be their cosines. Then
(2.3) is trivial, (2.2) follows from

(2.5) cos A + cos B + cos C = 1 + 4 sin
A

2
+ sin

B

2
+ sin

C

2
,

or from Carnot’s formula

(2.6)
r

R
= cos A + cos B + cos C − 1,

where r and R are the inradius and circumradius ofABC, and (2.4) follows by squaring
sin A sin B = cos C + cos A cos B and usingsin2 θ = 1 − cos2 θ. For (2.5), see [4, 678,
page 166], for (2.6), see [10], and for more on (2.4), see [6].

Conversely, letu, v, andw satisfy (2.2), (2.3), and (2.4), and lets, p andq be as in (2.1).
Then (2.2), (2.3), and (2.4) can be rewritten as

(2.7) s ≥ 1, q ≥ −1, s2 − 2p + 2q = 1.

We show first that

α = 1− u2, β = 1− v2, γ = 1− w2
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are non-negative. By Lemma 2.1, this is equivalent to showing thatα + β + γ, αβ + βγ + γα,
andαβγ are non-negative. But it is routine to check that

α + β + γ = 2(q + 1) ≥ 0,

4(αβ + βγ + γα) = ((s− 1)2 + 2(q + 1))2 + 4(s− 1)3 ≥ 0,

4αβγ = (s− 1)2(s2 + 2s + 1 + 4q) ≥ (s− 1)2(1 + 2 + 1− 4) ≥ 0.

Thus−1 ≤ u, v, w ≤ 1. Therefore there exist uniqueA, B andC in [0, π] such thatu = cos A,
v = cos B, andw = cos C. It remains to show thatA + B + C = π.

The sum ofu + vw, v + wu, andw + uv is s + p and

s + p = s +
s2 + 2q − 1

2
≥ 1 +

1− 2− 1

2
= 0.

Thus at least one of them, sayw + uv, is non-negative. Also, (2.4) implies that

(w + uv)2 = u2v2 + 1− u2 − v2 = (1− u2)(1− v2) = sin2 A sin2 B.

Sincesin A, sin B, andw + uv are all non-negative, it follows thatw + uv = sin A sin B, and
therefore

cos C = w = −uv + sin A sin B = − cos A cos B + sin A sin B = − cos(A + B).

It also follows from (2.2) that

2 cos
A + B

2
cos

A−B

2
= cos A + cos B ≥ 1− cos C ≥ 0

and hence0 ≤ A + B ≤ π. ThusC andA + B are in[0, π]. Fromcos C = − cos(A + B), it
follows thatA + B + C = π, as desired. �

Now let s, p and q be given real numbers and letu, v, andw be the zeros of the cubic
T 3 − sT 2 + pT − q. Thusu, v andw are completely defined by (2.1). It is well-known [12,
Theorem 4.32, page 239] thatu, v andw are real if and only if the discriminant is non-negative,
i.e.

(2.8) ∆ = −27q2 + 18spq + p2s2 − 4s3q − 4p3 ≥ 0.

If we assume that (2.7) holds, then we can eliminatep from ∆ to obtain

∆ = −(s2 + 2s + 1 + 4q)(s4 − 2s3 + 4s2q − s2 − 20sq + 4s− 2 + 20q + 4q2).

Also (2.7) implies thats2 + 2s + 1 + 4q = (s + 1)2 + 4q ≥ 22 + 4(−1) ≥ 0, with equality if
and only if (s, q) = (1,−1). Moreover, when(s, q) = (1,−1), the second factor of∆ equals
zero. Therefore, with (2.7) assumed, the condition that∆ ≥ 0 is equivalent to the condition

(2.9) ∆∗ = −s4 + 2s3 − 4s2q + s2 + 20sq − 4s + 2− 20q − 4q2 ≥ 0,

with ∆ = 0 if and only if ∆∗ = 0. From this and from Theorem 2.2, it follows thatu, v andw
are the cosines of the angles of a triangle if and only if (2.7) and (2.8) (or equivalently (2.7) and
(2.9)) hold. Also, the discriminant of∆∗, as a polynomial inq, is 16(3 − 2s)3. Therefore for
(2.9) to be satisfied (for anys at all), we must haves ≤ 3/2. Solving (2.9) forq, we re-write
(2.9) in the equivalent form

(2.10)


f1(s) ≤ q ≤ f2(s), where

f1(s) =
−s2 + 5s− 5− (3− 2s)3/2

2
, f2(s) =

−s2 + 5s− 5 + (3− 2s)3/2

2
.
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Figure 1.

Figure 1 is a sketch of the regionΩ0 defined byf1(s) ≤ q ≤ f2(s), 1 ≤ s ≤ 1.5, using the
facts thatf1(s) andf2(s) are increasing (and thatf1 is concave down andf2 is concave up) on
s ∈ [1, 1.5]. Note that the points(s, q) of Ω0 satisfyq ≥ f1(1) = −1, rendering the condition
q ≥ −1 (in (2.7)) redundant. We summarize this in the following theorem.

Theorem 2.3.Lets, p, andq be real numbers. Then the zeros of the cubicT 3 − sT 2 + pT − q
(are real and) can serve as the cosines of the angles of a triangle if and only if(s, p, q) lies in
the regionΩ defined by

s2 − 2p + 2q − 1 = 0,(2.11)

1 ≤ s ≤ 1.5(2.12)

and any of the equivalent conditions (2.8), (2.9) and (2.10) hold. The boundary ofΩ consists of
the line segment defined by

s = 1, q = p ∈ [−1, 0]
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and corresponding to degenerate triangles (i.e. triangles with a zero angle), and the curve
parametrized by

(2.13) s = 2t + 1− 2t2, q = t2(1− 2t2), p = t2 + 2t(1− 2t2), 0 ≤ t ≤ 1

and corresponding to isosceles triangles having angles(θ, θ, π − 2θ), whereθ = cos−1 t. It is
clear thatπ − 2θ is acute for0 < t < 1/

√
2 and obtuse for1/

√
2 < t < 1. Acute and obtuse

triangles correspond toq > 0 andq < 0 (respectively), and right triangles are parametrized by

q = 0, p =
s2 − 1

2
, s ∈ [1,

√
2].

3. M AXIMIZING THE SUM OF THE CONTENTS OF THE CORNER ANGLES OF AN

EQUIFACIAL TETRAHEDRON

We now turn to the optimization problem mentioned at the beginning.

Theorem 3.1. Among all acute trianglesABC, the quantity (1.1) attains its maximum atA =
B = C = π/3. Therefore among all equifacial tetrahedra, the regular one has a vertex solid
angle of maximum measure.

Proof. Note that (1.1) is not defined for obtuse triangles. Squaring (1.1) and using (2.7), we see
that our problem is to maximize

f(s, q) =
4q

(s + 1)2

overΩ. Clearly, for a fixeds, f attains its maximum whenq is largest. Thus we confine our
search to the part of (2.13) defined by0 ≤ t ≤ 1/

√
2. Therefore our objective function is

transformed to the one-variable function

g(t) =
t2(1− 2t2)

(t2 − t− 1)2
, 0 ≤ t ≤ 1/

√
2.

From

g′(t) =
2t(2t− 1)(t + 1)2

(t2 − t− 1)3
,

we see thatg attains its maximum att = 1/2, i.e at the equilateral triangle. �

4. A M ETHOD FOR OPTIMIZING CERTAIN TRIGONOMETRIC EXPRESSIONS

Theorem 3.1 above describes a systematic method for optimizing certain symmetric functions
in cos A, cos B, andcos C, whereA, B, andC are the angles of a general triangle. If such a
function can be written in the formH(s, p, q), wheres, p, andq are as defined in (2.1), then one
can find its optimum values as follows:

(1) One finds the interior critical points ofH by solving the system

∂H

∂s
+

∂H

∂p
s =

∂H

∂q
+

∂H

∂p
= 0,

s2 − 2p + 2q = 1,

1 < s < 1.5,

∆ = −27q2 + 18spq + p2s2 − 4s3q − 4p3 > 0.
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Equivalently, one usess2 − 2p + 2q = 1 to write H as a function ofs andq, and then
solve the system

∂H

∂s
=

∂H

∂q
= 0,

1 < s < 1.5,

∆∗ = −s4 + 2s3 − 4s2q + s2 + 20sq − 4s + 2− 20q − 4q2 > 0.

Usually, no such interior critical points exist.
(2) One then optimizesH on degenerate triangles, i.e., on

s = 1, p = q, q ∈ [−1, 0].

(3) One finally optimizesH on isosceles triangles, i.e., on

s = 2t + 1− 2t2, p = t2 + 2t(1− 2t2), q = t2(1− 2t2)), t ∈ [0, 1].

If the optimization is to be done on acute triangles only, then

(1) Step 1 is modified by adding the conditionq > 0,
(2) Step 2 is discarded,
(3) in Step 3,t is restricted to the interval[0, 1/

√
2],

(4) a fourth step is added, namely, optimizingH on right triangles, i.e., on

(4.1) p =
s2 − 1

2
, q = 0, s ∈ [1,

√
2].

For obtuse triangles,

(1) Step 1 is modified by adding the conditionq < 0,
(2) Step 2 remains,
(3) in Step 3,t is restricted to the interval[1/

√
2, 1],

(4) the fourth step described in (4.1) is added.

5. EXAMPLES

The following examples illustrate the method.

Example 5.1.The inequality

(5.1)
∑

sin B sin C ≤
(∑

cos A
)2

is proved in [3], where the editorwonders if there is a nicer wayof proof. In answer to the
editor’s request, Bager gave another proof in [1, page 20]. We now use our routine method.

Usingsin A sin B − cos A cos B = cos C, one rewrites this inequality as

s + p ≤ s2.

It is clear thatH = s2− s− p has no interior critical points, since∂H/∂p + ∂H/∂q = −1. For
degenerate triangles,s = 1 andH = −p = −q and takes all the values in[0, 1]. For isosceles
triangles,

(5.2) H = (2t + 1− 2t2)2 − (2t + 1− 2t2)− (t2 + 2t(1− 2t2)) = t2(2t− 1)2 ≥ 0.

ThusH ≥ 0 for all triangles and our inequality is established.
One may like to establish a reverse inequality of the forms + p ≥ s2 − c and to separate

the cases of acute and obtuse triangles. For this, note that on right triangles,q = 0, andH =

J. Inequal. Pure and Appl. Math., 8(1) (2007), Art. 29, 11 pp. http://jipam.vu.edu.au/
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s2 − s− (s2 − 1)/2 increases withs, taking all values in[0, 1/8]. Also, with reference to (5.2),
note that

d

dt
(t2(2t− 1)2) = 2(4t− 1)t(2t− 1).

Thust2(2t− 1)2 increases on[0, 1/4], decreases on[1/4, 1/2], and increases on[1/2, 1].
The first three tables below record the critical points ofH and its values at those points, and

the last one records the maximum and minimum ofH on the sets of all acute and all obtuse
triangles separately. Note that the numbers 1/8 and1.5−

√
2 are quite close, but one can verify

that 1/8 is the larger one. Therefore the maximum ofs2 − s− p is 1/8 on acute triangles and1
on obtuse triangles, and we have proved the following stronger version of (5.1):∑

sin B sin C ≤
(∑

cos A
)2

≤ 1

8
+

∑
sin B sin C for acute triangles∑

sin B sin C ≤
(∑

cos A
)2

≤ 1 +
∑

sin B sin C for obtuse triangles

Isosceles
Acute Obtuse

t 0 1/4 1/2
√

2/2 1
H 0 1/64 0 1.5-

√
2 1

Degenerate
s = 1

q -1 0
H 1 0

Right
q = 0

s 1 1.5
H 0 1/8

Acute Obtuse All
max H 1/8 1 1
min H 0 0 0

We may also consider the function

G =
s + p

s2
.

Again, G has no interior critical points since∂G/∂p = 1/s2. On degenerate triangles,s = 1
andG = 1 + q and takes all values in[0, 1]. On right triangles,q = 0 and we have

G =
s2 + 2s− 1

2s2
,

dG

ds
=

1− s

s3
≤ 0.

ThereforeG is decreasing fors ∈ [1, 1.5] and takes all values in[17/18, 1]. It remains to work
on isosceles triangles. There,

G =
(1− t)(1 + t)(4t + 1)

(2t2 − 2t− 1)2
and

dG

dt
=

2t(2t− 1)(2t2 + 4t− 1)

(2t2 − 2t− 1)3
.

Let r = (−2 +
√

6)/2 be the positive zero of2t2 + 4t− 1. Then0 < r < 1/2 andG decreases
on [0, r], increases on[r, 1/2], decreases on[1/2, 1]. Its values at significant points and its
extremum values are summarized in the tables below.

Isosceles
Acute Obtuse

t 0 (−2 +
√

6)/2 1/2
√

2/2 1
G 1 (7 + 2

√
6)/12 1 (1 + 2

√
2)/4 0

Degenerate
s = 1

q -1 0
G 0 1

Right
q = 0

s 1 1.5
G 1 17/18

Acute Obtuse All
max G 1 1 1
min G 17/18 0 0
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Here we have used the delicate inequalities

17

18
<

1 + 2
√

2

4
<

7 + 2
√

6

12
< 1.

As a result, we have proved the following addition to (5.1):

17

18

(∑
cos A

)2

≤
∑

sin B sin C ≤
(∑

cos A
)2

for acute triangles.

Example 5.2. In [1], the inequality (8) (page 12) readsp ≥ 6q. To prove this, we take

H =
p

q
=

s2 − 1 + 2q

2q
.

It is clear thatH has no interior critical points since∂H/∂s is never 0. On the set of degenerate
triangles,s = 1 andH is identically 1. On the set of right triangles, we note that asq → 0+,
H → +∞, and asq → 0−, H → −∞. On the set of isosceles triangles,

H =
t2 + 2t(1− 2t2)

t2(1− 2t2)
=

1

1− 2t2
+

2

t

dH

dt
=

4t

(1− 2t2)2
− 2

t2
=
−2(2t− 1)(2t3 − 2t− 1)

t2(1− 2t2)2

Since2t3 − 2t− 1 = 2t(t2 − 1)− 1 is negative on[0, 1], it follows thatH decreases from∞ to
6 on[0, 1/2], increases from 6 to∞ on [1/2, 1/

√
2], and increases from−∞ to 1 on[1/

√
2, 1].

Therefore the minimum ofH is 6 on acute triangles and 1 on obtuse triangles. Thus we have
the better conclusion that

p ≥ 6q for acute triangles

p ≥ q for obtuse triangles

It is possible that the large amount of effort spent by Bager in proving the weak statement that
p ≥ 6q for obtuse triangles is in fact due to the weakness of the statement, not being the best
possible.

One may also takeG = p− 6q. Again, it is clear that we have no interior critical points. On
degenerate triangles,G = −5q, q ∈ [−1, 0], and thusG takes all the values between 0 and 5.
On right triangles,G = p = (s2 − 1)/2 andG takes all values between 0 and 5/8. On isosceles
triangles,

G = t2 + 2t(1− 2t2)− 6t2(1− 2t2) and
dG

dt
= 2(2t− 1)(12t2 + 3t− 1).

If r denotes the positive zero of12t2 + 3t− 1, thenr ≤ 0.2, G(r) ≤ 0.2 andG increases from
0 toG(r) on [0, r], decreases fromG(r) to 0 on[r, 1/2] increases from 0 to 1/2 on[1/2, 1/

√
2],

and increases from 1/2 to 5 on[1/
√

2, 1]. ThereforeG ≥ 0 for all triangles, andG ≤ 5/8 for
acute triangles andG ≤ 5 for obtuse triangles; and we have the stronger inequality

6q +
5

8
≥ p ≥ 6q for acute triangles

6q + 5 ≥ p ≥ 6q for obtuse triangles

Acute triangles Obtuse triangles
Right Isosceles Degenerate Right Isosceles

max G 5/8 1/2 5 5/8 5
min G 0 0 0 0 1/2
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Example 5.3.Here, we settle a conjecture in [1, Cj1, page 18)] which was solved in [2]. In our
terminology, the conjecture reads

(5.3) pQ ≥ 9
√

3

4
q,

whereQ = sin A sin B sin C. The caseq > 0, p < 0 cannot occur sincep ≥ q. Also, in the
caseq > 0, p < 0, the inequality is vacuous. So we restrict our attention to the cases whenp
andq have the same sign and we optimizeH = p2Q2/q2. From

Q2 = (1− cos2 A)(1− cos2 B)(1− cos2 C) = 1− s2 + 2p + p2 − 2sq − q2,

it follows that

H =
p2(1− s2 + 2p + p2 − 2sq − q2)

q2

=
p2(p + 1 + q + s)(p + 1− q − s)

q2

=
(s2 − 1 + 2q)2(s2 + 2s + 1 + 4q)(s− 1)2

16q2

∂H

∂q
=
−(s− 1)2(s2 − 1 + 2q)(2qs2 − 2q − 4q2 + s4 + 2s3 − 2s− 1)

8q3

∂H

∂s
=
−(s− 1)(s2 − 1 + 2q)(4qs2 − q + 2q2 − qs + s4 + s3 − s2 − s)

2q2

At interior critical points (if any) at whichs2 − 1 + 2q = 0, H = 0. For other interior critical
points, we have

E1 := 2qs2 − 2q − 4q2 + s4 + 2s3 − 2s− 1 = 0

E2 := 4qs2 − q + 2q2 − qs + s4 + s3 − s2 − s = 0

E3 := E1 − 2E2 = −2(5s2 − s− 2)q − (3s + 1)(s− 1)(s + 1)2 = 0

If 5s2−s−2 = 0, then(3s+1)(s−1)(s+1)2 = 0, which is impossible. Therefore5s2−s−2 6= 0
and

q =
−(3s + 1)(s− 1)(s + 1)2

2(5s2 − s− 2)

This withE1 imply that(s−1)(s−3)(s+1)2(s2−s−1) = 0, which has no feasible solutions.
We move to the boundary. Asq → 0±, H → +∞. Ons = 1, H = 0. It remains to work on

isosceles triangles. There

H =
2(4t2 − t− 2)2(1− t)3(1 + t)3

(1− 2t2)2

dH

dt
=

8(1− t)2(1 + t)2(4t2 − t− 2)(2t− 1)(12t4 + 4t3 − 10t2 − 4t + 1)

(1− 2t2)3

Let ρ = (1 +
√

33)/8 be the positive zero of4t2 − t− 2. Thenq < 0, p > 0 for t ∈ (
√

2/2, ρ).
By Descartes’ rule of signs [13, page 121], the polynomial

g(t) = 12t4 + 4t3 − 10t2 − 4t + 1

has at most two positive zeros. Since

g(0) = 1 > 0 and g(1/2) =
−9

4
< 0
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then one of the zeros, sayr1 is in (0, 1/2). Also,

g(t) = (4t2 − t− 2)

(
3t2 +

7

4
t− 9

16

)
− 17

16
t− 1

8
.

Thereforeg(ρ) < 0. Sinceg(1) = 3 > 0, it follows that the other positive zero, sayr2, of
g is in (ρ, 1). ThereforeH increases on(0, r1), decreases on(r1, 1/2) and then increases on
(1/2,

√
2/2). Its maximum on acute triangles is∞ and its minimum ismin{H(0), H(1/2)} =

max{16, 243/16 = 15.1875} = 243/16. This proves (5.3) in the acute case. In the obtuse case
with p < 0, we see thatH increases on(ρ, r2) and decreases on(r2, 1). Its minimum is 0 and
its maximum isH(r2). This is summarized in the following table.

Isosceles
Acute Obtuse,p > 0 Obtuse,p > 0

t 0 r1 1/2
√

2/2 ρ r2 1
H 16 17.4 15.1875 ∞ 0 0.01 0

The critical points together with the corresponding values ofH are given below:

t 0 .18 .5
√

2/2−
√

2/2+ .85 .9 1
H(t) 16 17.4 15.1875 +∞ +∞ 0 .01 0

Acute triangles Obtuse triangles withp < 0
Right Isosceles Degenerate Isosceles

max H ∞ ∞ 0 0.01
min H ∞ 15.1875 0 0

Example 5.4.Finally, we prove inequality (33) in [1, page 17]. In our terminology, it reads

(5.4) p ≤ 2√
3
Q,

whereQ = sin A sin B sin C. Clearly, we must restrict our attention to the triangles withp > 0
and minimizeH = Q2/p2. SinceH tends to+∞ asp tends to 0, we are not concerned with
the behaviour ofH near the curvep = s2 − 1 + 2q = 0.

From

Q2 = (1− cos2 A)(1− cos2 B)(1− cos2 C) = 1− s2 + 2p + p2 − 2sq − q2,

it follows that

H =
1− s2 + 2p + p2 − 2sq − q2

p2

=
(p + 1 + q + s)(p + 1− q − s)

p2

=
(s− 1)2(s2 + 2s + 1 + 4q)

(s2 − 1 + 2q)2

∂H

∂q
=
−8(s− 1)2(s + q + 1)

(s2 − 1 + 2q)3

∂H

∂s
=

8q(s− 1)(3s + 2q − 1)

(s2 − 1 + 2q)3
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It is clear that no interior critical points exist. Atq = 0, H = 1. At s = 1, p = q < 0. On
isosceles triangles,

H =
4(1− t)3(1 + t)3

(4t2 − t− 2)2
and

dH

dt
=

8(1− t)2(1 + t)2(1− 2t)(2t2 + 1)

(4t2 − t− 2)3
.

Thenp > 0 for t ∈ (0, ρ), whereρ = (1 +
√

33)/8 is the positive zero of4t2 − t − 2. On this
interval, the minimum ofH is H(1/2) = 3/4. HenceH ≥ 3/4 and the result follows by taking
square roots.

6. L IMITATIONS OF THE M ETHOD DESCRIBED IN SECTION 4

The method described in Section 4 deals only with polynomials (and polynomial-like func-
tions) in the variablescos A, cos B, andcos C that are symmetric in these variables. There is
an algorithm which writes such functions in terms of the elementary symmetric polynomials
s, p, andq, and consequently in terms ofs and q using (2.11). Finding the interior critical
points in the(s, q) domainΩ involves solving a system of algebraic equations. Here, there is
no algorithm for solving such systems.

For functions insin A, sin B, andsin C, one needs to develop a parallel method. This is a
worse situation since the algebraic relation amongsin A, sin B, andsin C is more complicated;
see [6, Theorem 5]. It is degree 4 and it is not linear in any of the variables. Things are even
worse for inequalities that involve both the sines and cosines of the angles of a triangle. Here,
one may need the theory of multisymmetric functions.
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