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ABSTRACT. In this note, we describe a method for establishing trigonometric inequalities that
involve symmetric functions in the cosines of the angles of a triangle. The method is based on
finding a complete set of relations that define the cosines of such angles.
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1. INTRODUCTION

This note is motivated by the desire to find a straightforward proof of the fact that among
all equifacial tetrahedra, the regular one has the maximal solid anglelsum [9]. This led to a
similar desire to find a systematic method for optimizing certain trigonometric functions and
for establishing certain trigonometric inequalities.

Let us recall that a tetrahedron is calleguifacial(or isoscelekif its faces are congruent. It
is clear that the three angles enclosed by the arms of each corner angle of such a tetrahedron
are the same as the three angles of a triangular face. Less obvious is the fact that the faces of an
equifacial tetrahedron are necessarily acute-angled [8], [9].

Let us also recall that ift, B andC are the three angles enclosed by the arms of a solid angle
V, then thecontentE of V' is defined as the area of the spherical triangle whose vertices are
traced by the arms df’ on the unit sphere centered at the verteX’of5]. This contentV is
given (in [5], for example) by

E 1 —cos2A—cos?2B—cos2C + 2cos Acos BcosC

1.1 tan — =
(1.1) a5 1+ cos A+ cos B+ cosC

The statement made at the beginning of this article is equivalent to saying that the maximum
of the quantity [(1.]l) over all acute triangleE3C is attained atA = B = C' = «/3. To
treat [1.1) as a function of three variables A, cos B, andcos C, one naturally raises the
guestion regarding a complete set of relations that define the cosines of the angles of an acute
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triangle, and similarly for a general triangle. These questions are answered in Thgolems 2.2 and
[2.3. The statement regarding the maximum of the quaiftity (1.1) over acute triahBtess
established in Theorem 3.1. The methods developed are then used to establish several examples
of trigonometric inequalities.

2. TRIPLES THAT CAN SERVE AS THE COSINES OF THE ANGLES OF A TRIANGLE

Our first theorem answers the natural question regarding what real triples qualify as the
cosines of the angles of a triangle. For the proof, we need the following simple lemma taken
together with its elegant proof froml[7]. The lemma is actually true for any number of variables.

Lemma 2.1. Letu, v, andw be real numbers and let
(2.1) s=u+v+w, p=uv+ow+wu, ¢=uvw.
Thenu, v, andw are non-negative if and only i, p and ¢ are non-negative.

Proof. If s, p, andq are non-negative, then the polynomfdll’) = T3 — sT? + pT — q will
be negative for every negative valueof Thus its roots:, v, andw (which are assumed to be
real) must be non-negative. O

With reference to[(2]1), it is worth recording that the assumption ¢hat andg are non-
negative does not imply that v, andw are real. For example, { is a primitive third root of
unity, and if (u, v, w) = (1, ¢, ¢?), thens = p = 0 andq = 1. For more on this, se€ [11].

Theorem 2.2. Letu, v and w be real numbers. Then there exists a triangl8C' such that
u = cos A, v = cos B, andw = cos C'if and only if

(2.2) u+v+w>1
(2.3) uvw > —1
(2.4) u? 4+ v + w? + 2uow = 1.

The triangle is acute, right or obtuse according to whethew is greater than, equal to or less
than0.

Proof. Let A, B, andC' be the angles of a triangle and letv, andw be their cosines. Then
(2.3) is trivial, [2.2) follows from

A B C
(2.5) cosA+cosB—|—cosC’:1—|—4sin5+sin§+sin§,
or from Carnot’s formula
(2.6) %:cosA+cosB+cosC—1,

wherer and R are the inradius and circumradius dfBC, and [2.4) follows by squaring
sin Asin B = cosC + cos Acos B and usingsin?d = 1 — cos?§. For ), seel[4, 678,
page 166], for[(2)6), see [110], and for more pn|(2.4), see [6].

Conversely, lets, v, andw satisfy [2.2),[(2.B), and (J.4), and letp andq be as in[(Z.]L).
Then [2.2),[(Z.B), and (2.4) can be rewritten as

(2.7) s>1,¢q>—1, s> —2p+2¢=1.

We show first that
a=1—-u f=1—-0% yv=1—u?
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are non-negative. By Lemna 2.1, this is equivalent to showingithat? + v, af + By + va,
anda3~ are non-negative. But it is routine to check that

a+0+v=2(q+1) >0,
dlaf+ By +ya) = ((s — 1) +2(g+1))* +4(s - 1)* > 0,
4afy=(s—1)* (s> +25+1+4q) > (s —1)*(1+2+1—4) >0.

Thus—1 < w,v,w < 1. Therefore there exist uniqug B andC'in [0, 7] such that, = cos A,
v = cos B, andw = cos C. It remains to show thal + B + C' = .
The sum ofu + vw, v + wu, andw + uv is s + p and

24291 1—-2-1

Thus at least one of them, say+ uv, is non-negative. Also| (2.4) implies that

(w+ w)* = v*v? + 1 —u? —v* = (1 —u?)(1 — v?) = sin® Asin? B.

0.

Sincesin A, sin B, andw + wv are all non-negative, it follows that + wv = sin Asin B, and
therefore

cosC' = w = —uv + sin Asin B = — cos Acos B + sin Asin B = — cos(A + B).

It also follows from [2.2) that
A+ B A-B

2 cos 5 cos 5 =cosA+cosB>1—cosC >0
and henc® < A+ B < x. ThusC andA + B are in[0, 7]. Fromcos C = —cos(A + B), it
follows thatA + B 4+ C' = w, as desired. O

Now let s, p and ¢ be given real numbers and let v, andw be the zeros of the cubic
T3 — sT? + pT — q. Thusu, v andw are completely defined by (2.1). It is well-known [12,
Theorem 4.32, page 239] thatv andw are real if and only if the discriminant is non-negative,
i.e.

(2.8) A = —27¢% + 18spq + p*s* — 45°q — 4p® > 0.
If we assume thaf (2.7) holds, then we can eliminaft®m A to obtain
A= —(5* 425+ 1+ 4q)(s* — 25> + 4s%q — 5% — 20sq + 4s — 2 + 20q + 4¢°).

Also (2.7) implies tha? + 2s + 1 + 4g = (s + 1)? + 4¢ > 22 + 4(—1) > 0, with equality if
and only if(s,q) = (1, —1). Moreover, wher(s, q) = (1, —1), the second factor A equals
zero. Therefore, witf (2]7) assumed, the condition that 0 is equivalent to the condition

(2.9) A* = —s' +25% — 45°q + 8° + 20sq — 4s + 2 — 20q — 4¢* > 0,

with A = 0 if and only if A* = 0. From this and from Theorem 2.2, it follows thatv andw

are the cosines of the angles of a triangle if and only if| (2.7) (2.8) (or equivalently (2.7) and
)) hold. Also, the discriminant ak*, as a polynomial iry, is 16(3 — 2s)3. Therefore for

(2.9) to be satisfied (for anyat all), we must have < 3/2. Solving [2.9) forg, we re-write

(2.9) in the equivalent form

fi(s) < ¢ < fa(s), where

(2.10) —s2 4+ 55— 5 — (3 —2s)%?2

—5% + 55— 5+ (3 — 25)3/2
2 ’ '

fi(s) = 5

fa(s) =
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——
k3| Lo
oo =
p—

q = fa(s) q

Acute
triangles

(1.0) = 4

g = fi(s)
Obtuse

triangles

#® The region shown, not drawn to scale,
is the part of the (s,q)-plane containing
points (s,q) that can be realized by
triangles 4 BC' under the correspondence
cos A+ cos B + cosC = s,
cos A cos B cosC =q.

® The line s = 1 corresponds to degenerate
triangles, i.e., triangles with a zero angle.

® The curves g = fi(s) and g = fa(s)
correspond to isosceles triangle.

® Theregions g >0, g<0,and g=10
correspond to acute, obtuse, and right
riangles, respretively.

(1-1)
Figure 1.

Figure 1 is a sketch of the regidp, defined byf;(s) < g < fo(s), 1 < s < 1.5, using the
facts thatf, (s) and f,(s) are increasing (and thdt is concave down angh is concave up) on
s € [1,1.5]. Note that the pointss, q) of €, satisfyq > f,(1) = —1, rendering the condition
g > —1(in (2.7)) redundant. We summarize this in the following theorem.

Theorem 2.3. Let s, p, andg be real numbers. Then the zeros of the cibic- s72 + pT — ¢
(are real and) can serve as the cosines of the angles of a triangle if and dBlyifq) lies in
the region() defined by

(2.11) s2—2+2¢—1=0,

(2.12) 1<s<15

and any of the equivalent conditions (2.8), {2.9) g§nd (2.10) hold. The bound@rgaisists of
the line segment defined by

s=1, q¢=pel-1,0]

J. Inequal. Pure and Appl. Math8(1) (2007), Art. 29, 11 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

TRIGONOMETRICINEQUALITIES 5

and corresponding to degenerate triangles (i.e. triangles with a zero angle), and the curve
parametrized by

(2.13) s=2t+1-22 qg=1t*(1-2t*), p=t*+2t(1-2t*), 0<t<1

and corresponding to isosceles triangles having angle8, = — 260), wheref = cos™' ¢. Itis
clear thatm — 20 is acute for0 < ¢ < 1/4/2 and obtuse fol //2 < t < 1. Acute and obtuse
triangles correspond tg > 0 andq < 0 (respectively), and right triangles are parametrized by

s2—1
2

s e [1,V2.

q=0, p=

3. MAXIMIZING THE SUM OF THE CONTENTS OF THE CORNER ANGLES OF AN
EQUIFACIAL TETRAHEDRON

We now turn to the optimization problem mentioned at the beginning.

Theorem 3.1. Among all acute trianglest BC', the quantity[(1.]1) attains its maximum at=
B = C = w/3. Therefore among all equifacial tetrahedra, the regular one has a vertex solid
angle of maximum measure.

Proof. Note that[(1.]L) is not defined for obtuse triangles. Squafing (1.1) and {ising (2.7), we see
that our problem is to maximize

_ 4
f(SNJ)—m

over(). Clearly, for a fixeds, f attains its maximum wheaq is largest. Thus we confine our
search to the part of (2..3) defined by< ¢ < 1/+/2. Therefore our objective function is
transformed to the one-variable function

t2(1 — 2t?)
1) = ——->5 0<t<1/V2.
g(t) E_i_1p St /V2
From
2t(2t — 1)(t +1)2
S = 22 =D 1
(t2 —t—1)
we see thay attains its maximum at= 1/2, i.e at the equilateral triangle. O

4. A METHOD FOR OPTIMIZING CERTAIN TRIGONOMETRIC EXPRESSIONS

Theorenj 3.J1 above describes a systematic method for optimizing certain symmetric functions
in cos A, cos B, andcos C', where A, B, andC' are the angles of a general triangle. If such a
function can be written in the for (s, p, ¢), wheres, p, andq are as defined i.1), then one
can find its optimum values as follows:

(1) One finds the interior critical points df by solving the system
OH [OH__OH OH
ds  Op dqg  Op ’
2 —2p+2¢ =1,
1 < s < 1.5
A = —27¢* + 18spq + p*s* — 45°q — 4p® > 0.
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Equivalently, one use€ — 2p + 2¢ = 1 to write H as a function ok andg, and then
solve the system

8H_8H_O
ds  dq
1 <s< 1.5,

A = —s* +25% — 45%q + s* + 20sq — 45 + 2 — 20q — 4¢*> > 0.
Usually, no such interior critical points exist.
(2) One then optimize&/ on degenerate triangles, i.e., on
s=1, p=gq, qe€[-1,0].
(3) One finally optimized? on isosceles triangles, i.e., on
s=2t+1-2t% p=t"+2t(1-2t%), q=t*(1-2t%)), t€l0,1].
If the optimization is to be done on acute triangles only, then

(1) Step 1 is modified by adding the conditign> 0,

(2) Step 2 is discarded,

(3) in Step 3 is restricted to the intervad, 1//2],

(4) afourth step is added, namely, optimizifigon right triangles, i.e., on

s2—1

5 q¢=0, se[l,V2].

(4.2) p=

For obtuse triangles,

(1) Step 1 is modified by adding the conditign< 0,
(2) Step 2 remains,

(3) in Step 3, is restricted to the intervdl /v/2, 1],
(4) the fourth step described in (4.1) is added.

5. EXAMPLES

The following examples illustrate the method.

Example 5.1. The inequality

(5.1) ZsinBsinC’ < (Z cosA)2

is proved in [3], where the editawonders if there is a nicer wagf proof. In answer to the
editor’s request, Bager gave another proofin [1, page 20]. We now use our routine method.
Usingsin Asin B — cos A cos B = cos C, one rewrites this inequality as

s—l—pSsQ.

Itis clear thatf = s> — s — p has no interior critical points, siné& /0p + dH/dq = —1. For
degenerate triangles,= 1 and H = —p = —q and takes all the values [f, 1]. For isosceles
triangles,

(5.2)  H=2t+1-2t)%— (2t +1—2t%) — (t* + 2t(1 — 2*)) = (2t — 1)* > 0.

ThusH > 0 for all triangles and our inequality is established.
One may like to establish a reverse inequality of the farm p > s — ¢ and to separate
the cases of acute and obtuse triangles. For this, note that on right triapgte$, and H =

J. Inequal. Pure and Appl. Math8(1) (2007), Art. 29, 11 pp. http://jipam.vu.edu.au/
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s? — s — (s> — 1)/2 increases witls, taking all values if0, 1/8]. Also, with reference td (52),
note that

d o 2 _
- (2(2 = 1)%) = 2(4t — )#(2t — 1).

Thust?(2¢ — 1)% increases ofD, 1/4], decreases ofi/4,1/2], and increases o /2, 1].

The first three tables below record the critical pointgfoénd its values at those points, and
the last one records the maximum and minimun¥obn the sets of all acute and all obtuse
triangles separately. Note that the numbers 1/81ahé- v/2 are quite close, but one can verify
that 1/8 is the larger one. Therefore the maximuna®of s — p is 1/8 on acute triangles and
on obtuse triangles, and we have proved the following stronger versipn pf (5.1):

2 1 .
) sinBsinC < (Z cos A) <o+ ) _sin Bsin C for acute triangles

2
Z sin BsinC < (Z cos A) <1+ Z sin B sin C for obtuse triangles

Isosceles Degenerate Right
Acute | Obtuse s=1 ¢g=0
t ol val12] va2r2 [1|[q¢ -1 © s |1]15
H|o|1/64] 0 |[15+/2|1||H|1] O |[H|0|1/8

Acute | Obtuse| All
max H | 1/8 1
min H 0 0 0

We may also consider the function

H

G=212
S
Again, G has no interior critical points sing@G/0p = 1/s?. On degenerate triangles,= 1
andG = 1 + ¢ and takes all values i, 1]. On right trianglesqg = 0 and we have
s2+2s—1 dG 1-s
G=—-——, —= < 0.
252 " ds 3
ThereforeG is decreasing fos € [1, 1.5] and takes all values if17/18, 1]. It remains to work
on isosceles triangles. There,

(1—-t)(1+1t)(4t+1) and dG 2t(2t —1)(2* + 4t - 1)
(22 — 2t — 1)2 dt (2t2 — 2t — 1)3

G =

Letr = (—2 + 1/6)/2 be the positive zero dft?> + 4t — 1. Then0 < r < 1/2 andG decreases
on [0,r], increases ofr,1/2], decreases ofi/2,1]. Its values at significant points and its
extremum values are summarized in the tables below.

Isosceles Degenerate Right
Acute | Obtuse s=1 q=0
t o] (—2+v6) /212 V22 [1|[q|-1] 0 | s]|1] 15
Gl1|(7+2v6)/12] 1 |(1+2v2)/4]|0||G[O0] 1 | G|1]17/18

Acute | Obtuse| All
max G 1 1
minG | 17/18 0 0

H
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Here we have used the delicate inequalities
17 _1+2v2 _7T+2V6 _

B 1 T 1
As a result, we have proved the following addition[to [5.1):

17 2 2 .

- < i inC < :

13 (Z cos A) < Z sin Bsin C' < (Z cOs A) for acute triangles
Example 5.2.1n [1], the inequality (8) (page 12) reagds> 6¢. To prove this, we take

g_P_ 52—1+2q'
q 2q

It is clear thatH has no interior critical points siné®{ /s is never 0. On the set of degenerate

triangles,s = 1 and H is identically 1. On the set of right triangles, we note thatas 07,

H — +o00,and as; — 0~, H — —oo. On the set of isosceles triangles,

1.

2+ 2t(1 — 2t2) 1 2
H= = "
2(1 — 2t2) 1—212 ' ¢
dH 4t 2 =202t —-1)(2° —2t—1)
dt - (1—22)2 2 £2(1 — 2t2)2

Since2t® — 2t — 1 = 2t(t* — 1) — 1 is negative on0, 1], it follows that # decreases fronsxo to

6 on[0,1/2], increases from 6 teo on[1/2,1/+/2], and increases fromoo to 1 on[1/v/2,1].
Therefore the minimum off is 6 on acute triangles and 1 on obtuse triangles. Thus we have
the better conclusion that

p > 6q for acute triangles
p > q for obtuse triangles

It is possible that the large amount of effort spent by Bager in proving the weak statement that
p > 6q for obtuse triangles is in fact due to the weakness of the statement, not being the best

possible.
One may also také' = p — 6¢. Agalin, it is clear that we have no interior critical points. On
degenerate triangle& = —5q, ¢ € [—1,0], and thusG takes all the values between 0 and 5.

On right triangles(z = p = (s* — 1) /2 andG takes all values between 0 and 5/8. On isosceles
triangles,
2 2 2 2 dG 2
G =t*+2t(1 — 2t%) — 6t*(1 — 2t )andE =2(2t — 1)(12t* 4+ 3t — 1).

If » denotes the positive zero 02¢? + 3t — 1, thenr < 0.2, G(r) < 0.2 andG increases from
0toG(r) on|0, 7], decreases fror@(r) to 0 on[r, 1/2] increases from 0 to 1/2 di/2, 1/v/2],
and increases from 1/2 to 5 ¢h/+/2, 1]. ThereforeG > 0 for all triangles, and> < 5/8 for
acute triangles and' < 5 for obtuse triangles; and we have the stronger inequality

)
6qg + 3 > p > 6q for acute triangles

6g +5 > p > 6q for obtuse triangles

Acute triangles Obtuse triangles

Right | Isosceles Degenerate Right | Isosceles
max G | 5/8 1/2 5 5/8 5
min G 0 0 0 0 1/2
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Example 5.3. Here, we settle a conjecture [n [1, Cj1, page 18)] which was solved in [2]. In our
terminology, the conjecture reads

(5.3) pQ > %q,

where() = sin Asin BsinC. The case > 0,p < 0 cannot occur sincg > ¢. Also, in the
caseq > 0,p < 0, the inequality is vacuous. So we restrict our attention to the casesmwhen
andq have the same sign and we optimide= p?Q?/¢*. From

Q% = (1 —cos® A)(1 — cos® B)(1 — cos* C) = 1 — 8% +2p + p* — 2sq — ¢,
it follows that
PP(L—s*+2p+p* — 25 — ¢°)

H = 7
_PPlp+1l+q+s)p+l—q—s)
= "
(P = 1429)%(s* + 25+ 1+ 4q)(s — 1)?
n 1642
OH  —(s—1)*(s*—142q)(2¢s> —2q — 4¢* + 5" + 25 — 25 — 1)
g 8¢°
OH  —(s—1)(s> = 1+2q)(4gs° —q+2¢° — g5+ s" + 5> — s> — 5)
ds 2q?

At interior critical points (if any) at which? — 1 + 2¢ = 0, H = 0. For other interior critical
points, we have

Ei:=2¢s> —2¢— 4+ s'+2s* —25s -1 =0

Fy:i=4gs* —q+2¢ —qs+ s+ — s> —s5=0

By =F —2E, =255 —5—-2)g— 35+ 1)(s = 1)(s +1)> =0

If 552—s—2 = 0, then(3s+1)(s—1)(s+1) = 0, which is impossible. Therefofg?—s—2 # (
n
and (Bs+1)(s—1)(s+1)?
2(5s? — s —2)
This with £, imply that(s —1)(s —3)(s+1)?(s? — s — 1) = 0, which has no feasible solutions.
We move to the boundary. As— 0¥, H — +o00. Ons = 1, H = 0. It remains to work on
isosceles triangles. There

20412 —t — 2)2(1 —t)3(1 + )3

H =
(1—2t2)?
dH _ 8(1 —t)*(1 +1)*(4¢* —t —2)(2¢ — 1)(12t* + 4% — 10> — 4t + 1)
dt (1 —2t2)3

Let p = (1 + /33)/8 be the positive zero oft> —t — 2. Theng < 0,p > 0fort € (v/2/2, p).
By Descartes’ rule of signs [13, page 121], the polynomial

g(t) = 12t* + 4% — 10> — 4t + 1

has at most two positive zeros. Since

-9
g(0)=1>0and g(1/2) = = < 0
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then one of the zeros, sayis in (0,1/2). Also,

7 9 17 1
H=(4>—t—2) (3> +-t— — ) — —t——.
9t) = )< "1 16) 68

Thereforeg(p) < 0. Sinceg(l) = 3 > 0, it follows that the other positive zero, say, of
gisin(p,1). ThereforeH increases ori0, ), decreases ofry, 1/2) and then increases on
(1/2,~/2/2). Its maximum on acute trianglesde and its minimum isnin{ 7 (0), H(1/2)} =
max{16,243/16 = 15.1875} = 243/16. This proves|(5]3) in the acute case. In the obtuse case
with p < 0, we see that{ increases offip, 7,) and decreases dm,, 1). Its minimum is 0 and

its maximum isH (r3). This is summarized in the following table.

Isosceles
Acute | Obtusep > 0| Obtusep >0
t] o] nr 172 [V22] p| rn |1
H|16|17.4|15.1875 oo | 0/0.01/0
The critical points together with the corresponding value# are given below:

t | 0] .18 5  [V2/27|v2/2t].85] 9|1
H(t)|16|17.4[15.1875 +oc | +o0 | O |.01[0

Acute triangles| Obtuse triangles withh < 0
Right | Isosceles Degenerate Isosceles
max H | oo o0 0 0.01
minH | oo | 15.1875 0 0

Example 5.4. Finally, we prove inequality (33) in_[1, page 17]. In our terminology, it reads

(5.4) p< %@,

where() = sin Asin B sin C. Clearly, we must restrict our attention to the triangles with 0
and minimizeH = Q?*/p?. SinceH tends to+oo asp tends to 0, we are not concerned with
the behaviour off near the curve = s? — 1 +2¢ = 0.

From

Q% = (1 —cos® A)(1 — cos® B)(1 — cos* C) = 1 — 8% +2p + p* — 2sq — ¢,
it follows that
1=+ 2p+p* —2s¢ — ¢*

H e
_(p+1+qg+s)(pt+1l—q—s)
P2
(s —1)%(s* + 25+ 1 + 4q)
N (s2 —1+2¢)?
OH  —8(s—1)*(s+q+1)
g (- 1+2)
OH  8q(s—1)(3s+2¢—1)
ds (s2 —1+2¢)3
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It is clear that no interior critical points exist. At=0, H = 1. Ats =1,p = ¢ < 0. On
isosceles triangles,
4(1—t)3(1+t)? q dH  8(1—t)*(1+1t)*(1—2t)(2t* + 1)
and — = .

(442 — t — 2)2 dt (442 —t — 2)3
Thenp > 0 for t € (0, p), wherep = (1 + +/33)/8 is the positive zero oft* — ¢t — 2. On this
interval, the minimum off is H(1/2) = 3/4. HenceH > 3/4 and the result follows by taking
square roots.

H—

6. LIMITATIONS OF THE METHOD DESCRIBED IN SECTION

The method described in Section 4 deals only with polynomials (and polynomial-like func-
tions) in the variablesos A, cos B, andcos C' that are symmetric in these variables. There is
an algorithm which writes such functions in terms of the elementary symmetric polynomials
s, p, andg, and consequently in terms efandq using [2.11). Finding the interior critical
points in the(s, ¢) domain( involves solving a system of algebraic equations. Here, there is
no algorithm for solving such systems.

For functions insin A, sin B, andsin C', one needs to develop a parallel method. This is a
worse situation since the algebraic relation ameng, sin B, andsin C' is more complicated;
see[[6, Theorem 5]. It is degree 4 and it is not linear in any of the variables. Things are even
worse for inequalities that involve both the sines and cosines of the angles of a triangle. Here,
one may need the theory of multisymmetric functions.
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