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In this note, we describe a method for establishing trigonometric inequalities
that involve symmetric functions in the cosines of the angles of a triangle. The
method is based on finding a complete set of relations that define the cosines of
such angles.
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1. Introduction

This note is motivated by the desire to find a straightforward proof of the fact that
among all equifacial tetrahedra, the regular one has the maximal solid angle sum
[9]. This led to a similar desire to find a systematic method for optimizing certain
trigonometric functions and for establishing certain trigonometric inequalities.

Let us recall that a tetrahedron is callequifacial (or isoscelekif its faces are
congruent. Itis clear that the three angles enclosed by the arms of each corner angle
of such a tetrahedron are the same as the three angles of a triangular face. Less
obvious is the fact that the faces of an equifacial tetrahedron are necessarily acute-
angled B], [9].

Letus also recall that ifl, B andC are the three angles enclosed by the arms of a
solid anglel/, then thecontentZ of V' is defined as the area of the spherical triangle
whose vertices are traced by the arm3/obn the unit sphere centered at the vertex
of V' [5]. This contentE is given (in ], for example) by

E /1 —cos2A—cos?2B —cos?C + 2cos Acos BcosC
(1.1) tan — = .
2 1+ cos A+ cosB + cosC

The statement made at the beginning of this article is equivalent to saying that
the maximum of the quantityl(1) over all acute triangles BC is attained atA =
B = C = 7/3. To treat (..1) as a function of three variabless A, cos B, and
cos C', one naturally raises the question regarding a complete set of relations that
define the cosines of the angles of an acute triangle, and similarly for a general
triangle. These questions are answered in Theoramand 2.3, The statement
regarding the maximum of the quantity. {) over acute triangled BC' is established
in Theorem3.1. The methods developed are then used to establish several examples
of trigonometric inequalities.
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2. Triples that can Serve as the Cosines of the Angles of a
Triangle

Our first theorem answers the natural question regarding what real triples qualify as
the cosines of the angles of a triangle. For the proof, we need the following simple

lemma taken together with its elegant proof frorh [The lemma is actually true for
any number of variables.

Lemma 2.1. Letu, v, andw be real numbers and let
(2.1) s=u+v+w, p=uv+ow+wu, ¢=uvw.
Thenu, v, andw are non-negative if and only i, p andq are non-negative.

Proof. If s, p, andg are non-negative, then the polynomfdll’) = 72 —sT?+pT —q
will be negative for every negative value 6f Thus its roots:, v, andw (which are
assumed to be real) must be non-negatwve.

With reference to4.1), it is worth recording that the assumption thatp, and
g are non-negative does not imply thatv, andw are real. For example, { is a
primitive third root of unity, and if(u, v, w) = (1,¢, (%), thens = p = 0 andg = 1.
For more on this, sed.]].

Theorem 2.2. Letu, v and w be real numbers. Then there exists a trianglBC'
such thatu = cos A, v = cos B, andw = cos C if and only if

(2.2) utv+w>1
(2.3) uvw > —1
(2.4) u? + v+ w? + 2uvw = 1.

The triangle is acute, right or obtuse according to whethetv is greater than,
equal to or less than.
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Proof. Let A, B, andC be the angles of a triangle and 1gtv, andw be their cosines.

Then .9 is trivial, (2.2) follows from

A B C
(2.5) cosA+cosB+cosC:1+4sin§—|—sin§+sin§,
or from Carnot’s formula
(2.6) LZCOSA—I—COSB—FCOSO—L

R

wherer and R are the inradius and circumradius aBC, and ¢.4) follows by
squaringsin A sin B = cos C + cos A cos B and usingsin? § = 1 — cos? #. For (2.5),
see [, 678, page 166], forA 6), see 10|, and for more onZ.4), see f].

Conversely, lets, v, andw satisfy ¢.2), (2.3), and ¢.4), and lets, p andq be as
in (2.1). Then @.2), (2.3, and ¢.4) can be rewritten as

(2.7) s>1, ¢>—1, s*—2p+2¢=1.
We show first that
a=1—-u? B=1-v% v=1—w?
are non-negative. By Lemmal, this is equivalent to showing that + 5 + -,
aff + B + ya, andafy are non-negative. But it is routine to check that
a+pB+v=2(q+1) >0,
4(af + By +ra) = ((s = 1) +2(¢ + 1))* +4(s = 1)° 2 0,
dafy=(s—1)*(s* +2s+1+4q) > (s —1)*(1+2+1—-4) >0.

Thus—1 < u,v,w < 1. Therefore there exist uniqug B andC' in [0, 7] such that
u = cos A, v = cos B, andw = cos C'. It remains to showthatl + B + C = 7.
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The sum ofu + vw, v + wu, andw + uwv is s + p and

2121 1-2-1

Thus at least one of them, say+ uv, is hon-negative. Also2(4) implies that

0.

(w+uv)? = v?v? + 1 —u* —v? = (1 — u?)(1 — v?) = sin® Asin® B.

Sincesin A, sin B, andw + uv are all non-negative, it follows that + uv =
sin A sin B, and therefore

cosC =w = —uv + sin Asin B = — cos Acos B 4 sin Asin B = — cos(A + B).

It also follows from @.2) that

A+ B A—-B
2 cos ; coS 5 =cosA+cosB>1—cosC >0
and hence) < A+ B < 7. ThusC andA + B are in[0,7]. FromcosC =

—cos(A + B), it follows thatA + B + C' = 7, as desiredy

Now let s, p andq be given real numbers and letv, andw be the zeros of the
cubicT?® — sT? + pT — q. Thusu, v andw are completely defined by2 (1). It is
well-known [12, Theorem 4.32, page 239] thatv andw are real if and only if the
discriminant is non-negative, i.e.

(2.8) A = —27¢° + 18spq + p°s* — 4s°q — 4p® > 0.
If we assume that(7) holds, then we can eliminatefrom A to obtain

A= —(s* +25+ 1+ 4q)(s* — 25> +4s*°q — 5% — 20sq + 45 — 2 + 20q + 44°).
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Also (2.7) implies thats? + 2s + 1 + 4q = (s + 1)® + 4¢q > 22 + 4(—1) > 0, with
equality if and only if(s, q) = (1, —1). Moreover, whers, ¢) = (1, —1), the second
factor of A equals zero. Therefore, with (/) assumed, the condition that > 0 is
equivalent to the condition

(2.9) A* = —s* 4 25° — 45%q + 57 + 20sq — 45 + 2 — 20q — 4¢° > 0,

with A = 0 if and only if A* = 0. From this and from Theorem 2, it follows that
u, v andw are the cosines of the angles of a triangle if and onlg.ifYand ¢.5) (or
equivalently £.7) and ¢.9) hold. Also, the discriminant ai\*, as a polynomial in
q, is 16(3 — 25)3. Therefore for 2.9) to be satisfied (for any at all), we must have
s < 3/2. Solving @.9) for ¢, we re-write ¢.9) in the equivalent form

fi(s) < q < fo(s), where

(210) —s2+55—5—(3—23)3/2 —52+58—5+(3—25)3/2
fi(s) = 5 , o fa(s) = 2 :

Figure 1 is a sketch of the regiéhy defined byf;(s) < g < fo(s), 1 < s < 1.5,
using the facts thaf; (s) and f,(s) are increasing (and thgt is concave down and
f2is concave up) om € [1,1.5]. Note that the pointgs, ¢) of Q) satisfyqg > f1(1) =
—1, rendering the condition > —1 (in (2.7)) redundant. We summarize this in the
following theorem.

Theorem 2.3. Let s, p, and g be real numbers. Then the zeros of the culdic—

sT? + pT — q (are real and) can serve as the cosines of the angles of a triangle if

and only if(s, p, ¢) lies in the regior) defined by

(2.11) 2 —2+2¢—1=0,
(2.12) 1<s<15
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(10)

(1-1)

q = fa(s) q
Acute
triangles
k3
g = fi(s)
Obtuse
triangles

® The region shown, not drawn to scale,
is the part of the (s, g)-plane containing
points (s,qg) that can be realized by
triangles A BC under the correspondence
cos A+ cos B + cosC = s,
cos A cosB cosC =q.

® The line s = 1 corresponds to degenerate
triangles, i.e., triangles with a zero angle.

® The curves ¢ = fi(s) and g = fa(s)
correspond to isosceles triangle.

® The regions ¢ >0, g < 0, and g =10

correspond to acute, obtuse, and right
riangles, respretively.

Figure 1.
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and any of the equivalent conditions §), (2.9) and (2.10 hold. The boundary df
consists of the line segment defined by

s=1, q¢q=pel-1,0]

and corresponding to degenerate triangles (i.e. triangles with a zero angle), and the
curve parametrized by

(2.13) s =2t +1-2t*, q=1*(1-2t*), p=t*+2t(1-2*), 0<t<l1

and corresponding to isosceles triangles having angle$, = — 260), whered =
cos~!t. Itis clear thatr — 26 is acute for0 < ¢+ < 1/+/2 and obtuse fod /v/2 <
t < 1. Acute and obtuse triangles correspond;to 0 andg < 0 (respectively), and
right triangles are parametrized by

s2—1
2 M

s € [1,V2].

q=0, p=
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J

3. Maximizing the Sum of the Contents of the Corner Angles of “\v ™M
an Equifacial Tetrahedron <X

We now turn to the optimization problem mentioned at the beginning.

Theorem 3.1. Among all acute trianglegl BC, the quantity {.1) attains its maxi-
mum atA = B = C' = «/3. Therefore among all equifacial tetrahedra, the regular

one has a vertex solid angle of maximum measure. Trigonometric Inequalities
Mowaffaq Hajja
Proof. Note that (..1) is not defined for obtuse triangles. Squaringl) and using vol. 8, iss. 1, art, 29, 2007
(2.7), we see that our problem is to maximize
. 4q Title Page
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Contents
over (). Clearly, for a fixeds, f attains its maximum wheaq is largest. Thus we « N
confine our search to the part ¢f.(39 defined by0 < ¢ < 1/v/2. Therefore our
objective function is transformed to the one-variable function < >
t2(1 — 2t2 Page 10 of 24
oy = LE=20) Ve e
(22—t —1) G
0 Back
From
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4. A Method for Optimizing Certain Trigonometric Expressions

Theorem3.1above describes a systematic method for optimizing certain symmetric
functions incos A, cos B, andcos C, whereA, B, andC' are the angles of a general
triangle. If such a function can be written in the fodi{s, p, ), wheres, p, andq

are as defined in2(1), then one can find its optimum values as follows:

1. One finds the interior critical points df by solving the system

OH O0H OH O0H
E—Fa—psza—q—Fa—p:,
s2—2p+2¢=1,

1 <s< 1.5,

A = —27¢° + 18spq + p°s* — 4s3q — 4p* > 0.

Equivalently, one uses® — 2p + 2¢ = 1 to write H as a function of andg,
and then solve the system

8H_8H_0
ds  0q
1 <s<1.5,

A" = —s* +25% — 45%q + s> + 20sq — 45 + 2 — 20q — 4¢* > 0.
Usually, no such interior critical points exist.

2. One then optimize$#! on degenerate triangles, i.e., on

s=1, p=gq, qe€[-1,0].
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3. One finally optimized? on isosceles triangles, i.e., on

s=2+1-22 p=t>+2t(1-2t%), q=t*(1-2t%), tecl01].

If the optimization is to be done on acute triangles only, then

1. Step 1 is modified by adding the conditign> 0,
2. Step 2 is discarded,

Trigonometric Inequalities

Mowaffaq Hajja

3. in Step 3¢ is restricted to the interval, 1/1/2], vol. 8, iss. 1, art. 29, 2007
4. afourth step is added, namely, optimizifigon right triangles, i.e., on
Title Page
s2—1
(4.1) p= 5 q=0, se€ [17 \/5] Contents
For obtuse triangles, K LY
< >

1. Step 1 is modified by adding the conditign< 0,

. Page 12 of 24
2. Step 2 remains,

. . . . Go Back
3. in Step 3 is restricted to the interval /v/2, 1],
. . . Full Screen
4. the fourth step described ir.(l) is added.
Close

journal of inequalities
in pure and applied
mathematics

issn: L443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:mowhajja@yahoo.com
http://jipam.vu.edu.au

5. Examples

The following examples illustrate the method.
Example5.1 The inequality

(5.1) ZsinBsinC’ < (Z cosA)2

is proved in B], where the editowonders if there is a nicer wayf proof. In answer
to the editor’s request, Bager gave another prooflirppge 20]. We now use our
routine method.

Usingsin A sin B — cos A cos B = cos C, one rewrites this inequality as

s+p§32.

Itis clear that = s*—s—p has no interior critical points, siné& /0Op+0H/0q =
—1. For degenerate triangles= 1 and H = —p = —q and takes all the values in
[0, 1]. For isosceles triangles,

(5.2) H=(2t+1-2t*)*— (2t +1—2t*) — (£ +2t(1 - 2t?)) = t*(2t — 1)* > 0.

ThusH > 0 for all triangles and our inequality is established.
One may like to establish a reverse inequality of the fermp > s> — c and to

separate the cases of acute and obtuse triangles. For this, note that on right triangles,

q=0,andH = s* — s — (s* — 1)/2 increases with, taking all values ifj0, 1/8].
Also, with reference to.2), note that

d
E(752(21t —1)%) = 2(4t — 1)t(2t — 1).
Thust*(2t — 1)% increases or0, 1/4], decreases ofi/4,1/2], and increases on
[1/2,1].
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The first three tables below record the critical pointgfoénd its values at those
points, and the last one records the maximum and minimui of the sets of all
acute and all obtuse triangles separately. Note that the numbers 1i&ang/2 are
quite close, but one can verify that 1/8 is the larger one. Therefore the maximum of
s> — s — pis 1/8 on acute triangles antlon obtuse triangles, and we have proved
the following stronger version ob(1):

. . 2 1 . . . Trigonometric Inequalities
Z sin BsinC' < (Z cos A) <g+ Z sin Bsin C for acute triangles

Mowaffaq Hajja

vol. 8, iss. 1, art. 29, 2007

2
Z sin BsinC < (Z Cos A) <1+ Z sin Bsin C' for obtuse triangles
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t [0 4 [12] V212 |1 g |-1] 0 s 1115 Contents
H|0|1/64] 0 [15+/2 |1 H|1 0 H|0|1/8 << >
Acute | Obtuse| All ¢ >
max H | 1/8 1 1 Page 14 of 24
min H 0 0 0
Go Back
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ThereforeG is decreasing fos € [1,1.5] and takes all values ifi7/18,1]. It
remains to work on isosceles triangles. There,

1—t)(14)(4L + 1)
(22 — 2t — 1)?

dG  2t(2t —1)(2t* + 4t — 1)

_
¢= dt (2t2 — 2t — 1)3

and

Letr = (—2 + v/6)/2 be the positive zero d#t> + 4t — 1. Then0 < r < 1/2
andG decreases off), r|, increases oifr, 1/2|, decreases ofi1/2, 1]. Its values at

significant points and its extremum values are summarized in the tables below.

Isosceles Degenerate
Acute \ Obtuse s =1

t 10| (=2++6)/2 | 112 V212 1| [¢|-1] ©
G|1[(7T+2v6)/12| 1 | (1+2v2)/4|0| |[G|O0] 1
R?hot Acute | Obtuse| All
— e |maxG| 1 1 |1
a1 17./18 minG | 17/18 0 0

Here we have used the delicate inequalities

17 1422 7+2V6
< < <

18 4 12
As a result, we have proved the following addition folj:

% <Z cos A) 2 <) sinBsinC < (Z cos A) " for acute triangles.

1.
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Example5.2 In [1], the inequality (8) (page 12) rea@s> 6q. To prove this, we
take )

[ p_ s~ 1+ 2q'

q 2q

It is clear thatd has no interior critical points siné&/0s is never 0. On the set of
degenerate triangles,= 1 and H is identically 1. On the set of right triangles, we
note thatag — 0", H — +oo, and as; — 0~, H — —oo. On the set of isosceles
triangles,

P21 -2t) 1 L2
(1212 1-22 ¢t
dH 4t 2 2(2t—1)(2° —2t —1)

dr o (1-202)2 2 £2(1 — 2t2)2

Since2t® — 2t — 1 = 2¢(¢t* — 1) — 1 is negative on0, 1], it follows that H decreases

from oo to 6 on[0, 1/2], increases from 6 teo on [1/2,1/+/2], and increases from

—oo to 1 on[1/4/2,1]. Therefore the minimum aff is 6 on acute triangles and 1 on
obtuse triangles. Thus we have the better conclusion that

p > 6g for acute triangles
p > q for obtuse triangles

It is possible that the large amount of effort spent by Bager in proving the weak
statement thap > 6¢ for obtuse triangles is in fact due to the weakness of the
statement, not being the best possible.

One may also také' = p — 64. Again, it is clear that we have no interior critical
points. On degenerate triangles, = —5q, ¢ € [—1,0], and thusG takes all the
values between 0 and 5. On right trianglés= p = (s* — 1)/2 andG takes all
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values between 0 and 5/8. On isosceles triangles,
dG
G =t* + 2t(1 — 2t*) — 6t*(1 — 2¢*) and - = 2(2t — 1)(12¢* + 3t — 1).

If » denotes the positive zero 2¢* + 3t — 1, thenr < 0.2, G(r) < 0.2 andG
increases from 0 ta-(r) on [0, 7], decreases frony(r) to 0 on|r, 1/2] increases
from 0 to 1/2 on[1/2,1/+/2], and increases from 1/2 to 5 ¢1/+/2, 1]. Therefore
G > 0 for all triangles, and> < 5/8 for acute triangles and < 5 for obtuse
triangles; and we have the stronger inequality

5
6q + 3 > p > 6q for acute triangles
6g+5 >p > 6q for obtuse triangles

Acute triangles Obtuse triangles

Right | Isosceles Degenerate Right | Isosceles
max(G | 5/8 1/2 5 5/8 5
min G 0 0 0 0 1/2

Example5.3. Here, we settle a conjecture ih, [Cj1, page 18)] which was solved in
[2]. In our terminology, the conjecture reads

9v/3

(5.3) pQ > ¢

where() = sin Asin BsinC. The case; > 0,p < 0 cannot occur sincg > q.
Also, in the case > 0, p < 0, the inequality is vacuous. So we restrict our attention
to the cases whemandg have the same sign and we optimide= p>Q?/¢*. From

Q% = (1 —cos® A)(1 — cos? B)(1 —cos* C) = 1 — &% 4+ 2p + p* — 25¢ — ¢,
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it follows that

p*(1—s*+2p+p* — 25¢ — ¢°)

H = =
PPp+l4+qts)ptl—q—s)
— 7
(P = 1429)*(s* + 25+ 1+4q)(s — 1)?
N 16¢2
OH  —(s—1)*(s*—1+42q)(2¢s> —2q — 4¢> + 5" +25° — 25 — 1)
dq 8¢°
OH —(s—=1)(s2 = 1+2¢)(4qs®> —q+2¢*> — qs + s* + s* — 52 — )
ds 2¢?

At interior critical points (if any) at whick? — 1 +2¢ = 0, H = 0. For other interior
critical points, we have

By =2¢s>—2¢—4¢* + 5" +25° —25s -1 =0

Fyi=4¢s> —q+2¢° —qs+s' +s3—s>—s5=0

B3 =F —2E, =255 —5—2)g— 3s+1)(s = 1)(s +1)>=0
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We move to the boundary. As— 0%, H — +o00. Ons = 1, H = 0. It remains
to work on isosceles triangles. There

204t —t — 2)2(1 — t)3(1 + t)3

H =
(1 —2t2)?
dH _ 8(1—t)*(1 +1)*(4¢* —t —2)(2t — 1)(12t* + 4> — 10 — 4t + 1)
dt (1 —2t2)3

Let p = (1 + +/33)/8 be the positive zero oft> — t — 2. Theng < 0,p > 0 for
t € (v/2/2,p). By Descartes’ rule of signd B, page 121], the polynomial

g(t) = 12¢* + 48> — 10> — 4t + 1

has at most two positive zeros. Since
-9
g(0) =1>0 and ¢(1/2) = - < 0

then one of the zeros, sayis in (0,1/2). Also,

) s 7.9 17 1

g(t) = (4t —t — 2) (3t + 4t 16) 16t 3
Thereforeg(p) < 0. Sinceg(1) = 3 > 0, it follows that the other positive zero,
sayrq, Of g isin (p,1). ThereforeH increases orf0, ), decreases ofry,1/2)
and then increases qn/2,+/2/2). Its maximum on acute triangles é® and its
minimum ismin{H(0), H(1/2)} = max{16,243/16 = 15.1875} = 243/16. This
proves {.3) in the acute case. In the obtuse case with 0, we see thatf increases
on (p,re) and decreases dm,, 1). Its minimum is 0 and its maximum i& (r).
This is summarized in the following table.
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Isosceles
Acute | Obtusep > 0| Obtusep >0
t 1 0] r 1/2 V212 p ry |1
H | 16| 17.4| 15.1875| oo 0 0.01/0

The critical points together with the corresponding value# are given below:

t | 0] .18 5 V2/2- | V2/2T | .85] 9 |1
H(t) | 16 | 17.4| 15.1875] +o0 | +oco | O |.01]0

Acute triangles | Obtuse triangles with < 0
Right | Isosceles Degenerate Isosceles
max H | oo o0 0 0.01
min H o0 15.1875 0 0

Example5.4. Finally, we prove inequality (33) inl} page 17]. In our terminology,
it reads

(5.4) p< %Q,

where( = sin Asin Bsin C. Clearly, we must restrict our attention to the triangles
with p > 0 and minimizeH = Q?/p?. SinceH tends to+oco asp tends to 0, we are
not concerned with the behaviour Bf near the curve = s* — 1 + 2¢ = 0.

From

Q* = (1—cos® A)(1 —cos®’ B)(1 —cos?’ C) =1 — 8% + 2p + p* — 25q — ¢,
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it follows that
1—s*+2p+p?—2s5q — ¢*
p+1+qg+s)(p+1—-qg—ys)

H

p2
(s —1)*(s* +2s+1+4q)
(s? =14 2¢)?
OH —8(s—1)*(s+q+1)
9T Po1+2g)
OH  8q(s—1)(3s+2¢—1)
ds (2 —1+2¢)3

It is clear that no interior critical points exist. At=0,H = 1. Ats=1,p=¢ < 0.

On isosceles triangles,

4(1—t)3(1+¢t)3

H = and

dH _ 8(1—#)*(1+1)*(1 —2t)(2t* + 1)

(462 —t — 2)2 dt (462 — t — 2)3

Thenp > 0fort € (0, p), wherep = (1++/33)/8 is the positive zero oft> —t — 2.
On this interval, the minimum of{ is H(1/2) = 3/4. HenceH > 3/4 and the

result follows by taking square roots.
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6. Limitations of the Method described in Section4

The method described in Sectidrdeals only with polynomials (and polynomial-

like functions) in the variablesos A, cos B, andcos C' that are symmetric in these

variables. There is an algorithm which writes such functions in terms of the elemen-

tary symmetric polynomials, p, andg, and consequently in terms efandq using

(2.19). Finding the interior critical points in thes, ¢) domain(2 involves solving a

system of algebraic equations. Here, there is no algorithm for solving such systems.
For functions irsin A, sin B, andsin C', one needs to develop a parallel method.

This is a worse situation since the algebraic relation ansang, sin B, andsin C'

is more complicated; se®,[Theorem 5]. It is degree 4 and it is not linear in any of

the variables. Things are even worse for inequalities that involve both the sines and

cosines of the angles of a triangle. Here, one may need the theory of multisymmetric

functions.
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