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1. I NTRODUCTION

Let L1
+(0, l) denote the set of all nonnegative functions fromL1(0, l). l is a positive number.

Let f ∈ L1
+(0, l) andµf its distribution function

µf (t) = |{x ∈ (0, l) : f(x) > t}| for t ≥ 0,

where, here and below,|I| is the measure of the setI. Let f ∗ denote the decreasing rearrange-
ment off ,

f ∗(x) = sup{t > 0 : µf (t) > x}.
It is known thatf ∗ is nonnegative, right continuous and that [2]

(1.1)
∫ t

0

f ds ≤
∫ t

0

f ∗ ds, t ∈ [0, l],

(1.2)
∫ l

0

f ds =

∫ l

0

f ∗ ds.
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2 SAMIR KARAA

The increasing rearrangement off is simply f ∗∗ defined byf ∗∗(t) = f ∗(l − t). A crucial
property of rearrangements is that iff andg are nonnegative withf ∈ L1(0, l) andg ∈ L∞(0, 1)
then

(1.3)
∫ l

0

f ∗∗g∗ ds ≤
∫ l

0

fg ds ≤
∫ l

0

f ∗g∗ ds.

We will say thatf andg are equimeasurable or equivalently thatf is a rearrangement ofg
if they have the same distribution function. We will denote this equivalence relation byf ∼ g.
Let f0 be a member ofL1

+(0, l) andC(f0) its equivalence class for the relation∼, i.e.,

C(f0) = {f ∈ L1
+(0, l), f ∗ = f ∗0}.

A functionσ : [0, l] → [0, l] is measure-preserving if, for each measurable setI ⊂ [0, l], σ−1(I)
is measurable and|σ−1(I)| = |I|. Let Σ be the class of such functions. According to Ryff [6],
to eachf ∈ L1

+(0, l) there correspondsσ ∈ Σ such thatf = f ∗ ◦ σ. In particular, we have

C(f0) = {f ∈ L1
+(0, l), f = f ∗0 ◦ σ, σ ∈ Σ}.

Let p andq be inL1
+(0, l) and consider the second-order differential equation

(1.4) (p−1(x)y′(x))′ + q(x)y(x) = 0, y(0) = 1, (p−1y′)(0) = 0.

1A solution of the equation is a functiony such thaty andy′ are absolutely continuous and
the equation is satisfied almost everywhere. In the first part of this paper we are interested in
finding the supremum and the infimum ofy(l) when the couple(p, q) varies in the setC =
C(f0)× C(g0), whereg0 is also a member ofL∞+ (0, l). Consider

Problem 1. Determineinf y(l), (p, q) ∈ C.

Problem 2. Determinesup y(l), (p, q) ∈ C.

To solve these problems, we shall use a kind of calculus of variations which does not work
in C; this class is not convex. Following Essen [3] and [4], and recalling thatC(f0) andC(g0)
are weakly relatively compact inL1(0, l), we introduce the setK = K(f0) ×K(g) consisting
of all weak limits of sequences ofC in [L1(0, l)]2. To simplify notations, we use the symbol≺
introduced by Hardy, Littlewood and Polya [5]. We say thatf majoratesg, writteng ≺ f , if∫ x

0

g∗ dt ≤
∫ x

0

f ∗ dt, x ∈ [0, l],

∫ l

0

g∗ dt =

∫ l

0

f ∗ dt.

We note that ifg ≺ f (f andg are inL∞+ (0, l)) then

ess supg ≤ ess supf,

ess inff ≤ ess infg.

The relationsg ≺ f andf ≺ g imply thatf ∼ g. In [7], it is shown that

K(f0) = {f ∈ L1
+(0, l), f ≺ f0},

andK(f0) is the convex hull ofC(f0). K(f0) is closed and weakly compact inL1(0, l). More
generally,K(f0) is weakly compact inLp(0, l) if f0 ∈ Lp

+(0, l), 1 ≤ p ≤ ∞. According to [1],
C(f0) in the set of "∞-dimensional" extreme points ofK(f0). That is iff ∈ K(f0) − C(f0),

1The choice ofp−1 instead ofp is essential for the study of our problems.
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COEFFICIENTS OFORDINARY DIFFERENTIAL EQUATIONS 3

then for anym ≥ 1, one can findf1, . . . , fm linearly independent inK(f0) andθ1, . . . , θm ∈
(0, 1) such that

m∑
i=1

θi = 1,
m∑

i=1

θifi = f.

The following result is given in [1].

Proposition 1.1. Leth, g ∈ L1
+(0, l). Then the following are equivalent

(i) g ≺ f .
(ii) For all h ∈ L∞+ (0, l),∫ x

0

gh dt ≤
∫ x

0

f ∗h∗ dt,

∫ l

0

g dt =

∫ l

0

f dt.

(iii) For all h ∈ L∞+ (0, l),∫ x

0

g∗h∗ dt ≤
∫ x

0

f ∗h∗ dt,

∫ l

0

g dt =

∫ l

0

f dt.

(iv) We have ∫ l

0

F (g) dt =

∫ l

0

F (f) dt,

for all convex, nonnegative functionsF such thatF (0) = 0, F is Lipschitz.

As previously remarked we will consider the following problems

Problem 3. Determineinf y(l), (p, q) ∈ K.

Problem 4. Determinesup y(l), (p, q) ∈ K.

Similar problems may be considered for the differential equation

(1.5) (p−1(x)y′(x))′ − q(x)y(x) = 0, y(0) = 1, (p−1y′)(0) = 0.

Let then

Problem 5. Determineinf y(l), (p, q) ∈ K.

Problem 6. Determinesup y(l), (p, q) ∈ K.

Proposition 1.2. Lety be the solution of(1.4) [resp.(1.5)]. Then

inf y(l) ≤ cos(Al) ≤ sup y(l),

resp.

inf y(l) ≤ cosh(Al) ≤ sup y(l),

whereA = (||f0||L1||g0||L1)1/2.

These estimates hold since the functions

p ≡ l−1||f0||L1 and q ≡ l−1||g0||L1

are respectively members ofK(f0) andK(g0).
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4 SAMIR KARAA

2. OSCILLATION AND NONOSCILLATION CRITERIA

To simplify this section, we assume thatp, p−1 andq are inL∞+ (0, l).

Lemma 2.1. If ∫ l

0

p(x) dt

∫ l

0

q(x) dt ≤ 1,

then a solution of(1.4) does not vanish in[0, l].

Proof. Let y0 be a solution of (1.4) vanishing in(0, l], and denote bya its smallest zero. We
have

(2.1) (p−1(x)y′0(x))′ + q(x)y0(x) = 0, (p−1y′0)(0) = 0, y0(a) = 0.

Multiplying (2.1) byy0, we then integrate by parts to obtain∫ a

0

p−1(y′)2 dx =

∫ a

0

qy2 dx ≤ y2
max

∫ a

0

q dx,

and then apply the inequality (y′ andp are linearly independent)

|ymax| ≤
∫ a

0

|y′| dx <

(∫ a

0

p dx

) 1
2
(∫ a

0

p−1(y′)2 dx

) 1
2

.

By substitution of the bound for|ymax| into the first inequality and cancelling the term
∫ a

0
p−1(y′)2 dx,

the conclusion follows (by contradiction) sincea ≤ l. �

Lemma 2.2. If

(2.2) ‖p‖∞ ‖q‖∞ <
( π

2l

)2

,

then a solution of(1.4) does not vanish in[0, l].

Proof. Let y0 be as in the previous proof, so thatλ0 = 1 is the first eigenvalue of the problem(
p−1(x)y′(x)

)′
+ λq(x)y(x) = 0, (p−1y′)(0) = 0, y(a) = 0.

According to a variational principle,

λ0 = inf
y(a)=0

∫ a

0
p−1(x)y′(x)2 dx∫ a

0
q(x)y(x)2 dx

≤ ‖p‖−1
∞ ‖q‖−1

∞ inf
y(a)=0

∫ a

0
y′(x)2 dx∫ a

0
y(x)2 dx

= ‖p‖−1
∞ ‖q‖−1

∞ π2(2a)−2.

Hence,

a2 ≥
(π

2

)2

‖p‖−1
∞ ‖q‖−1

∞ ,

which contradicts (2.2). �

The proof shows that if‖p‖∞ ‖q‖∞ = π2/(2l)2, then a solution of (1.4) may vanish only at
x = l. It is not difficult to show that this case holds only whenp andq are constants.

The following lemma gives sufficient conditions for oscillations.

Lemma 2.3. Assume thatp is nondecreasing,p−1 ∈ C1[0, l] andp(x) ≤ h−1 on [0, l], whereh
is a positive constant. There exists a numberH > 0 (depending onh) such that ifq ≥ H a.e.
on (0, l) then every solution of(1.4) changes its sign on(0, l).
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COEFFICIENTS OFORDINARY DIFFERENTIAL EQUATIONS 5

Proof. Let z(x) = (l−x)2(l +x)2. Multiplying both sides in (1.4) byz(x) and integrating over
(0, l), we obtain

(2.3)
∫ l

0

y(x)[(p−1z′)′(x) + q(x)z(x)] dx = 0.

As p is nondecreasing we have for allx ∈ (0, l)

(p−1z′)′(x) = (p−1)′(x)z′(x) + p−1(x)z′′(x) ≥ p−1(x)z′′(x).

Let ε be a positive number such thatz′′ is positive on[l − ε, l]. Suppose thaty(x) ≥ 0 on [0, l].
Then (2.3) implies that

(2.4)
∫ l−ε

0

y(x)[(p−1z′)′(x) + q(x)z(x)] dx ≤ 0.

Let
H > h max

[0,l]
(−z′′)(l − ε)−2(l + ε)−2.

Then,
(p−1z′)′(x) + q(x)z(x) ≥ hz′′(x) + Hz(x) > 0

for all x ∈ (0, l − ε), which contradicts (2.4). �

Lemma 2.4. Any solution of(1.5) is positive and nondecreasing. Moreover, if||p||L1||q||L1 < 1
then

y(l) ≤ (1− ||p||L1||q||L1)−1.

Proof. Let y be a solution of (1.5). We have

y′(x) = p(x)

∫ x

0

q(t)y(t) dt,

which implies thaty(x) ≥ 1 andy is nondecreasing. Therefore,

y′(x) ≤ y(l)p(x)

∫ x

0

q(t) dt.

Integrating both sides of the last inequality over(0, l), we get

y(l)− 1 ≤ y(l)

∫ l

0

p(t) dt

∫ l

0

q(t) dt.

Hence,
y(l) ≤ (1− ||p||L1||q||L1)−1.

�

3. CHARACTERIZATION OF THE EXTREMAL COUPLES

The existence of extremal couples will be discussed at the end of this section. We suppose
thatf0, g0 ∈ L∞+ (0, l) andf0 ≥ h whereh is a positive constant.

Theorem 3.1. Assume that all solutions of(1.4) are positive when(p, q) varies inK(f0) ×
K(g0). Let (p0, q0) be an extremal couple for Problem 3 andy0 the corresponding solution in
(1.4). Thenq0 = g∗0 and in the open set where∫ t

0

p0(s) ds >

∫ t

0

f ∗∗0 (s) ds,
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6 SAMIR KARAA

we haveP ′(t) = 0 where

P (t) =
y′0

2(t)

p2
0(t)

(∫ l

t

p0(t)y0(t)
−2dt

)
− y′0(t)

(p0y0)(t)
, t ∈ [0, l].

If f0 is bounded below by a positive constant then the above set is empty andp0 = f ∗∗0 , i.e., the
infimum over the larger classK coincides with the infimum over the smallest classC.

Theorem 3.2. Assume that all solutions of(1.4) are positive when(p, q) varies inK(f0) ×
K(g0). Let (p0, q0) be an extremal couple for Problem 4 andy0 the corresponding solution in
(1.4). Thenq0 = g∗∗0 and in the open set where∫ t

0

p0(s) ds <

∫ t

0

f ∗0 (s) ds,

we haveP ′(t) = 0 whereP is as above. Iff0 is far from zero then the above set is empty
andp0 = f ∗0 , i.e. the supremum over the larger classK coincides with the supremum over the
smallest classC.

Let ai andbi, (i = 1, 2), be positive numbers such thata1 < a2 andb1 < b2. Define the sets
E andF by

E =

{
p ∈ L∞(0, l), a1 ≤ p ≤ a2,

∫ l

0

p dx = A

}
and

F =

{
q ∈ L∞(0, l), b1 ≤ p ≤ b2,

∫ l

0

q dx = B

}
,

whereA andB are such thata1l < A < a2l andb1l < B < b2l. Then we have

Corollary 3.3. If AB ≤ 1, theninf y(l) when(p, q) varies inE × F is reached by

p0(x) =

{
a1 if x ∈ (0, α),

a2 if x ∈ (α, l),

and

q0(x) =

{
b2 if x ∈ (0, β),

b1 if x ∈ (β, l),

whereα andβ are chosen so that
∫ l

0
p0 dx = A and

∫ l

0
q0 dx = B. The supremum ofy(l) over

E × F is reached bȳp = p∗0 and q̄ = q∗∗0 .

A counterexample. We show that Theorem 3.2 does not hold if the solutions of (1.4) are
allowed to vanish. Setl = 2π, and letp0 ≡ 1 in (0, l) and

q0(x) =

{
0 if x ∈ (0, l0),

4 if x ∈ (l0, l),

wherel0 = 3π/2. Then it is easily verified that the solution in (1.4) with(p, q) = (p0, q0) is

y0(x) =

{
1 if x ∈ (0, l0),

cos 4(x− l0) if x ∈ (l0, l).

Let p̄(x) ≡ q̄(x) ≡ 1 in (0, 2π). The corresponding solution in (1.4) is̄y(x) = cos x. We see
that ȳ(l) > y0(l) in spite ofq̄ ≺ q0. The assumption in Theorem 3.1 is also necessary.
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COEFFICIENTS OFORDINARY DIFFERENTIAL EQUATIONS 7

Proofs of Theorems 3.1 and 3.2. Necessary conditions onp0. By the change of variableu =
−y′/(py), i.e.,

(3.1) y(x) = e−
∫ x
0 pu dt x ∈ [0, l],

equation (1.4) is changed into

(3.2) u′ − pu2 = q, u(0) = 0.

The solution of (3.2) is written

u(t) =

∫ t

0

q(s)

{
exp

∫ t

s

p(r)u(r) dr

}
ds.

In view of (3.1), Problem 3 is equivalent to

maximising
∫ l

0

pu dt subject to (p, q) ∈ K.

Let p0 be an extremal function for the infimum problem andp an arbitrary member inK(f0).
Define

pδ = (1− δ)p0 + δp, δ ∈ [0, 1].

We note that this type of variation is not possible inC(f0). Let uδ satisfy

(3.3) u′δ − pδu
2
δ = q0, uδ(0) = 0.

Forming the difference of (3.3) and (3.3) withδ = 0, we have

u′δ − u′0 = pδ(uδ − u0)(uδ + u0) + δ(p− p0)u
2
0.

Therefore,

(uδ − u0)(t) = δ

∫ t

0

(p− p0)u
2
0

{
exp

∫ t

s

pδ(r)(uδ + u0)(r) dr

}
ds.

Writing pδuδ − p0u0 = pδ(uδ − u0) + (pδ − p0)u0 and integrating over(0, l), we obtain∫ l

0

(pδu− p0u0)dt =

∫ l

0

pδ

(
δ

∫ t

0

(p− p0)u
2
0

{
exp

∫ t

s

pδ(uδ + u0) dr

}
ds

)
dt

+ δ

∫ l

0

(p− p0)u0 dt

= δ

∫ l

0

(p− p0)u
2
0

(∫ l

s

pδ

{
exp

∫ t

s

pδ(uδ + u0) dr

}
dt

)
ds

+ δ

∫ l

0

(p− p0)u0 dt.

For Problem 3 the left-hand side is nonpositive. Dividing byδ and lettingδ → 0+ brings

(3.4)
∫ l

0

(p− p0)(t)P (t) dt ≤ 0, for all p ∈ K(f0),

whereP is given in Theorem 3.1. Ifp0 is an extremal coefficient for Problem 4 then we find

(3.5)
∫ l

0

(p− p0)(t)P (t) dt ≥ 0, for all p ∈ K(f0).
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8 SAMIR KARAA

Let us first discuss (3.4). By Ryff’s characterization, there existsσ ∈ Σ such thatP = P ∗ ◦ σ.
Substitutingp = p∗0 ◦ σ into (3.4) we see that

(3.6)
∫ l

0

P ∗p∗0 dt =

∫ l

0

Pp dt ≤
∫ l

0

Pp0 dt ≤
∫ l

0

P ∗p∗0 dt.

In the last step we used (1.3) which requires thatP is nonnegative. This will be proved later.
As a result, equalities hold everywhere in (3.6) and we have

(3.7)
∫ ∞

0

{∫
{P (t)>s}

p0(t) dt

}
ds =

∫ ∞

0

{∫
{P ∗(t)>s}

p∗0(t) dt

}
ds

for all s. As
|{P (t) > s}| = |{P ∗(t) > s}|,

we know that ∫
{P (t)>s}

p0(t) dt ≤
∫
{P ∗(t)>s}

p∗0(t) dt

for all s. It follows from (3.7) that

(3.8)
∫
{P (t)>s}

p0(t) dt =

∫
{P ∗(t)>s}

p∗0(t) dt,

(3.9) ess inf
{P (t)>s}

p0(t) ≥ ess inf
{P (t)≤s}

p0(t).

for all s. From (3.9) one deduces that ifP is increasing on the intervalI, thenp0 must be
nondecreasing on this interval if we neglect a set of measure zero. Similarly, ifP is decreasing
on some interval,p0 will be nonincreasing. If these relations hold, we say thatP andp0 are
codependent.

We now return to the functionP . We haveP (0) = 0 and a straightforward calculation yields

P ′(t) = q0

(
1− 2

q0

p0

y0y
′
0

∫ l

t

p0(s)y
−2
0 (s) ds

)
that is nonnegative for allt ∈ (0, l). Choosingp = f ∗∗0 in the variational equation (3.4) and
integrating by parts gives

0 ≥
∫ l

0

(f ∗∗0 − p0)P (t) dt =

∫ l

0

(∫ t

0

(f ∗∗0 − p0) ds

)
d(−P (t)) ≥ 0.

We used the inequality ∫ t

0

p0 ds ≥
∫ t

0

f ∗∗0 ds, t ∈ [0, l].

Consequently,

P ′(t)

∫ t

0

(f ∗∗0 − p0) ds = 0, t ∈ [0, l],

and the second part of Theorem 3.1 is proved.
For the supremum problem we use the same arguments. IfP = P ∗ ◦ σ, whereσ ∈ Σ, we

choosep = p∗∗0 ◦ σ in (3.5) to obtain

(3.10)
∫ l

0

P ∗p∗∗0 dt =

∫ l

0

Pp dt ≥
∫ l

0

Pp0 dt ≥
∫ l

0

P ∗p∗∗0 dt.
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COEFFICIENTS OFORDINARY DIFFERENTIAL EQUATIONS 9

Thus, there is equality everywhere in (3.10) and

(3.11)
∫ ∞

0

{∫
{P (t)>s}

p0(t) dt

}
ds =

∫ ∞

0

{∫
{P ∗(t)>s}

p∗∗0 (t) dt

}
ds.

Since ∫
{P ∗∗(t)>s}

p∗∗(t) dt ≤
∫
{P (t)>s}

p0(t) dt,

for all s, (3.11) implies that∫
{P (t)>s}

p0(t) dt =

∫
{P ∗(t)>s}

p∗∗0 (t) dt,

ess inf
{P (t)>s}

p0(t) ≥ ess inf
{P (t)≤s}

p0(t),

for all s. In this caseP andp0 arecontra-dependent, i.e. if P is increasing (resp. decreasing)
on an intervalI, p0 will be nonincreasing (resp. nondecreasing) onI. Choosingp = f ∗0 in the
variational equation (3.5) and arguing as above, we prove the second part of Theorem 3.2.

Necessary conditions onq0. Let q0 be an extremal function for Problem 3. Forq ∈ K(g0), we
define

qδ = (1− δ)q0 + δq, δ ∈ [0, 1].

Let uδ be the solution of

(3.12) u′ − p0u
2 = qδ, u(0) = 0.

Forming the difference of (3.12) and (3.12) withδ = 0, calculations similar to those of the
preceding case allow us to derive the necessary conditions of optimality∫ l

0

(q − q0)(t)Q(t) dt ≤ 0 for all q ∈ K(g0),

where

Q(t) = y2
0(t)

∫ l

t

p0(s)y
−2
0 (s) ds.

We remark thatQ(l) = 0 and

Q′(t) = 2y0y
′
0

∫ l

t

p0(s)y
−2
0 (s) ds− p0

is nonpositive on(0, l). For Problem 4,q0 satisfies∫ l

0

(q − q0)(t)Q(t) dt ≥ 0 for all q ∈ K(g0).

Reasoning as above, we deduce thatq0 andQ are codependent for the infimum problem. The
argument for characterizingp0 yieldsq0 = g∗0. For the supremum problemq0 andQ are contra-
dependent and we getq0 = g∗∗0 which completes the proofs. �

Existence.
Let m0 denote the infimum ofy(l) when(p, q) varies inK and(pn, qn) a minimizing sequence
in K. Let {un} be an associated sequence of solutions in the differential equation (3.2) so
that limn→∞

∫ l

0
pnun dt = m0. Using weak∗ compactness, we find that(p0, q0) ∈ K such that

pn → p andqn → q weakly inL∞(0, l). From the expression ofun, we see that

un(t) ≤
∫ l

0

qn(t)e−
∫ l
0 pnun ds dt ≤ ||g0||L1 e−m0 .
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It follows from (3.2) that the sequence{u′n} is uniformly bounded inL∞(0, l). By Ascoli’s
theorem, there exists a subsequence (we may assume that it is the original sequence) such that
un → u0 uniformly in [0, l]. It is easy to check thatu0 is the solution of (3.2) for(p, q) =
(p0, q0). The proof of the supremum problem is quite the same.

4. PROBLEM 6

Suppose thatf0, g0 ∈ L∞+ (0, l) andf0 ≥ 1 over(0, l). The existence of extremal couples for
Problems 5 and 6 may be proved as above. Let

P (t) =
y′0

2(t)

p2
0(t)

(∫ l

t

p0(s)y0(s)
−2 ds

)
− y′0(t)

(p0y0)(t)
,

Q(t) = y2
0(t)

∫ l

t

p0(s)y0(s)
−2 ds, t ∈ [0, l].

Theorem 4.1.Let (p0, q0) be the extremal couple for Problem 6, andy0 an associated solution
in (1.5). In the open set where ∫ t

0

p0 ds >

∫ t

0

f ∗∗0 ds

resp. ∫ t

0

q0 ds <

∫ t

0

g∗0 ds,

we haveP ′(t) = 0, resp.Q′(t) = 0.

Proof. By the change of variableu = y′/(py) equation (1.5) is changed into

u′ + pu2 = q, u(0) = 0, t ∈ [0, l].

We shall then study the equivalent problem

max

∫ l

0

p u dt, (p, q) ∈ K.

Let (p0, q0) be the extremal couple for Problem 6. Arguing as above, we find thatp0 andq0

satisfy the conditions

(4.1)
∫ l

0

(p− p0)(t)P (t) dt ≥ 0 for all p ∈ K(f0),

(4.2)
∫ l

0

(q − q0)(t)Q(t) dt ≤ 0 for all q ∈ K(g0)n

whereP andQ are given above. Unlike the preceding case, it is difficult here to know the sign
of P andQ. We shall then proceed as above: Lety1 be the function defined by

y1(t) = y0(t)

∫ l

t

p0(s)y
−2
0 (s) ds, t ∈ [0, l].

y1 is a solution of the differential equation

(p−1
0 (x)y′(x))′ − q0(x)y(x) = 0, x ∈ (0, l),

but y1(l) = 0 andy′1(l) = −(y0/p0)
−1(l). Besides, it is easy to see thaty′1(t) < 0 for all

t ∈ (0, l). Let

ξ =

(
y′0

y0p0

− y′1
y1p0

)/
2, η = −

(
y′0

y0p0

+
y′1

y1p0

)/
2.
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Then, we have

ξ′ = 2ξ η p0,

η′ = p0(ξ
2 + η2)− q0,(4.3)

ξ(0) =

(∫ l

0

p0(s)y
−2
0 (s) ds

)−1
/

2 = η(0).

The key of deciding the sign ofP andQ are the following relations

(4.4) Q(t) =
1

2
ξ(t)−1,

and

(4.5) P ′(t) =
1

2

q0

p0

(
1

ξ

)−1

.

In fact, we have

(4.6) ξQ = ξy0y1 =
1

2p0(t)
(y′0y1 − y0y

′
1) =

1

2
,

and

P (t) = 2
q0

p0

y0y
′
0

∫ l

t

p0(s)y
−2
0 (s) ds− q0

=
q0

p0

(
2y0y

′
0

∫ l

t

p0(s)y
−2
0 (s) ds− p0

)
=

q0

p0

Q′(t).

Relation (4.6) implies thatξ is positive andlim ξ(t) = ∞, t → l−. From (4.3) it follows that
lim sup η(t) ≥ 0, t → l−. Assume now thatη changes its sign on(0, l). Sinceη(0) > 0, there
exists an interval[a, b] ⊂ [0, l) such that for somec > 0, we have

η(t) ≤ η(a) < 0, t ∈ [a, a + c],

η(t) < 0, t ∈ [a, b), η(b) = 0.

Sinceη is assumed negative on(a, b), ξ will be decreasing on this interval. (4.4) and (4.5) imply
thatP andQ are both increasing on[a, b]. From (4.1) and (4.2) we see thatp0 is nonincreasing
andq0 is nondecreasing on this interval. As a result, we have

0 ≥ η(t)− η(a)

=

∫ t

a

(p0ξ
2 − q0) +

∫ t

a

p0η
2

≥ (t− a)
(
p0(t)ξ

2(t)− q0(t) + η(a)2
)
,

t ∈ (a, a + c),

sinceess inf(0,l) p0(t) ≥ 1. Arguing as in [4], we arrive at the following contradiction:η(b) ≤
η(a) < 0. Hence,η is nonnegative andξ is nondecreasing. Takingp = f ∗∗0 in the variational
equation (4.1), we obtain

0 ≤
∫ l

0

(f ∗∗0 − p0)P (t) dt =

∫ l

0

(∫ t

0

(f ∗∗0 − p0) ds

)
d(−P (t)) ≤ 0,
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and therefore

P ′(t)

∫ t

0

(f ∗∗0 − p0) ds = 0, t ∈ [0, l]

which proves the first part of Theorem 4.1. To complete the proof, we chooseq = g∗0 in
(4.2). �

Remark 4.2. For Problem 5, the arguments for deciding the sign ofη on (0, l) break down and
the problem requires the development of other arguments.
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