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ABSTRACT. We establish extremal values of a solutipof a second-order initial value problem
as the coefficients vary in a nonconvex set. These results extend earlier work by M. Essen in
particular by allowing a coefficient in the second derivative expression.
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1. INTRODUCTION

Let L1 (0,1) denote the set of all nonnegative functions frénf0, ). [ is a positive number.
Let f € L} (0,1) andyy its distribution function

pr(t) ={x € (0,0): f(z) >t} fort >0,

where, here and below]| is the measure of the sét Let f* denote the decreasing rearrange-
ment of f,

[*(x) = sup{t > 0: pug(t) > z}.
It is known thatf* is nonnegative, right continuous and that [2]

(1.1) /Otfdsg/otf*ds, telo,1],

(1.2) /OldeZ/Olf*ds.
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2 SAMIR KARAA

The increasing rearrangement pfis simply f** defined byf**(t) = f*(l — ¢). A crucial
property of rearrangements is thafifindg are nonnegative witli € L1(0,7) andg € L>(0, 1)
then

[ l l
(1.3) / gt ds < / fods < / g ds.
0 0 0

We will say thatf andg are equimeasurable or equivalently tlfais a rearrangement of
if they have the same distribution function. We will denote this equivalence relatign-by;.
Let f, be a member of’, (0,) andC/( f,) its equivalence class for the relatien i.e.,

Clfo) ={f € LL(0.0), f = f3}.

A functiono : [0,1] — [0,(] is measure-preserving if, for each measurabld sef0, ], o~ (1)
is measurable anid—!(7)| = |I]. LetX be the class of such functions. According to Ryff [6],
to eachf € L (0,1) there corresponds € ¥ such thatf = f* o o. In particular, we have

C(fo) ={f € LL(0,]), f=fyo0, 0 €2}
Let p andg be in L% (0, 1) and consider the second-order differential equation
(1.4) (P~ @)y (2)) + q(x)y(z) =0, y(0)=1, (p~'y)(0)=0.

A solution of the equation is a functiop such thaty andy’ are absolutely continuous and

the equation is satisfied almost everywhere. In the first part of this paper we are interested in
finding the supremum and the infimum g@f/) when the couplép, ¢) varies in the seC =

C(fo) x C(g0), whereg, is also a member af°(0, 7). Consider

Problem 1. Determineinf y(1), (p, q) € C.
Problem 2. Determinesup (1), (p,q) € C.

To solve these problems, we shall use a kind of calculus of variations which does not work
in C; this class is not convex. Following Essén [3] and [4], and recalling@hgs) andC'(go)
are weakly relatively compact ih' (0, ), we introduce the set’ = K (f,) x K(g) consisting
of all weak limits of sequences ¢f in [L!(0,1)]%. To simplify notations, we use the symbal
introduced by Hardy, Littlewood and Polya [5]. We say tliahajorateg;, writteng < f, if

/g*dtg/ frde, €0,
0 0

l l
/ g dt = / £ dt.
0 0
We note that ify < f (f andg are inL°(0, 1)) then

ess su < ess sug,
essinff < essinfy.

The relationg; < f andf < g imply that f ~ g. In [7], it is shown that

K(fo) ={f € Li(O, 1), f=fo},

and K (fy) is the convex hull of2( f). K(fy) is closed and weakly compact irt (0, 7). More
generally,K ( fy) is weakly compact ir.”(0,1) if fo € L%(0,1), 1 < p < co. According to [1],
C(fo) in the set of bo-dimensional" extreme points df (fy). Thatisif f € K(fy) — C(fo),

1The choice ofp~! instead ofp is essential for the study of our problems.
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then for anym > 1, one can findfy, ..., f,, linearly independent ik ( fy) andd, . ..
(0,1) such that

=1, > bfi=f
i=1 =1

The following result is given in [1].

Proposition 1.1. Leth, g € L} (0,1). Then the following are equivalent

() g=1r.
(iiy Forall h e L2(0,1),

T T ! !
/ghdtg/ FR*dt, /gdt_/fdt.
0 0 0 0

(i) Forall h € L(0,1),

T T l l
/g*h*dtg/ FR*dt, /gdt:/fdt.
0 0 0 0

/ Flg)dt - / U

for all convex, nonnegative functio#ssuch that/’'(0) = 0, F' is Lipschitz.

(iv) We have

As previously remarked we will consider the following problems
Problem 3. Determineinf y (1), (p, q) € K.
Problem 4. Determinesup y(1), (p,q) € K.

Similar problems may be considered for the differential equation
(1.5) (P () (2)) — qlx)y(z) =0, y(0)=1, (p~'y)(0)=0.
Let then
Problem 5. Determineinf y(/), (p,q) € K.
Problem 6. Determinesup y(1), (p,q) € K.
Proposition 1.2. Lety be the solution of1.4)) [resp. (1.5)]. Then

inf y(1) < cos(Al) < supy(l),

resp.
inf y(1) < cosh(Al) < supy(l),

whereA = (|| fol|1]lgo|[£2)"/>.
These estimates hold since the functions

p=1"foll and q=1"[goll

are respectively members &f( f,) and K (go).
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2. OSCILLATION AND NONOSCILLATION CRITERIA

To simplify this section, we assume thatp~! andg are inL(0,1).

/Olp(x) dt/olq(x) dt <1,

then a solution of|1.4)) does not vanish if0, [].

Lemma 2.1. If

Proof. Let y, be a solution of[(1]4) vanishing ifV, /], and denote by: its smallest zero. We
have

(2.1) (P~ (@)yp(2))" + q(@)yo(z) = 0, (p7'9)(0) =0, yo(a) = 0.
Multiplying (2.1)) by yo, we then integrate by parts to obtain

/ p‘l(y’)dez/ qudeyme/ qdz,
0 0 0

and then apply the inequality/(andp are linearly independent)

1 a é
] < / | de < ( / pd:c) ( / p1<y'>2dx> |
0

By substitution of the bound fdy.,... | into the first inequality and cancelling the te!f@p )2 dx,
the conclusion follows (by contradiction) sinee< [. D

Lemma 2.2. If

2.2 ™)’

(2:2) Pl gl < (3)

then a solution of|1.4)) does not vanish ifp, [].

Proof. Lety, be as in the previous proof, so that = 1 is the first eigenvalue of the problem

(P~ (@)Y ()" + Mg(@)y(z) =0, (p7'y)(0) =0, yla)=0.
According to a variational principle

2d _ '(x)? dx
h= jnt B < Il ol nt, e
)=0 fo fo x)?dx
=l ||61||oo1 2(260)
Hence,
2 T\ 2 -1 —1
> (=
a2 (5) bl all
which contradictg (2]2). O

The proof shows that ifip|| . [l¢].. = 7/(20)?, then a solution of (1]4) may vanish only at
x = [. Itis not difficult to show that this case holds only wheandq are constants.
The following lemma gives sufficient conditions for oscillations.

Lemma 2.3. Assume thap is nondecreasingy™! € C'[0,1] andp(x) < h~' on|[0, 1], whereh
is a positive constant. There exists a number- 0 (depending ork) such that iff > H a.e.
on (0,1) then every solution dfl.4)) changes its sign ofD, /).
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Proof. Let z(z) = (I — x)*(I+ ). Multiplying both sides in[(1}4) by (x) and integrating over
(0,1), we obtain

l
23) [ @l @) + @) de = o
As p is nondecreasing we have for ale (0, ()

(p™'2) (@) = (7)) (@) () +pH(2)2" () = p™ ' (2)2" ().
Let e be a positive number such thétis positive onl — ¢, ]. Suppose thaj(z) > 0 on |0, ].
Then [2.8) implies that

(2.4) / Y@ 2) (@) + g(e)=()] do < 0,

Let
H > hmax(—2")(l —e)*(l +¢) 2

[0,7]
Then,
(7' (2) + q(w)=(x) = h(x) + Hz(x) > 0
for all z € (0,1 — ), which contradicts (2]4). O

Lemma 2.4. Any solution of[1.5)) is positive and nondecreasing. Moreovet|if| ;1 ||q|| ;1 < 1
then

y() < (1= |lpllz:allz) ™
Proof. Lety be a solution of[(1]5). We have

Integrating both sides of the last inequality oyeyl), we get

MU—lémwélﬁﬁﬁAQth

Hence,
y(D) < (L= 1pllellallz) ™"

3. CHARACTERIZATION OF THE EXTREMAL COUPLES

The existence of extremal couples will be discussed at the end of this section. We suppose
that fy, go € L(0,1) and f, > h whereh is a positive constant.

Theorem 3.1. Assume that all solutions @i.4)) are positive wherip, q) varies in K(fy) x
K(go). Let(po, q0) be an extremal couple for Probldm 3 apglthe corresponding solution in
(1.4). Theng, = g5 and in the open set where

/0 pols) ds > / (s ds,
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we haveP’(t) = 0 where
NSONEs B\ vl
P(1) = U ( / Po(Ho(t) dt) MO e

If fo is bounded below by a positive constant then the above set is empty angl*, i.e., the
infimum over the larger clas&” coincides with the infimum over the smallest class

Theorem 3.2. Assume that all solutions @f.4)) are positive wherip, q) varies in K(fy) x
K(go). Let(po, q0) be an extremal couple for Probldm 4 apglthe corresponding solution in
(1.4). Thengy = g¢* and in the open set where

[ miyas < [ gt

we haveP’(t) = 0 whereP is as above. Iff; is far from zero then the above set is empty
andp, = f;, i.e. the supremum over the larger cla&scoincides with the supremum over the
smallest clasg’.

Let a; andb;, (¢ = 1, 2), be positive numbers such that < a; andb; < b,. Define the sets
E andF by

E = {p € L>=(0,1), a; <p < ay, /lpdx = A}
and 0
F= {q € L>=(0,1), by <p < b, /lqu: B},
whereA and B are such that;l < A < asl andb,l < B <O bsl. Then we have
Corollary 3.3. If AB < 1, theninf y(I) when(p, ¢) varies inE x F'is reached by
a; ifz € (0,a),
po(x) = {

az ifx € (a,l),

bg |f T &€ (O,ﬁ),
wle) = b ifae (8,0),

wherea and 3 are chosen so thanOl podr = A and fol go dx = B. The supremum af(/) over
E x Fisreached by = p§ andg = ¢j*.

and

A counterexample. We show that Theorefn 3.2 does not hold if the solutiond of| (1.4) are
allowed to vanish. Sét= 2x, and letp, = 1in (0,7) and

0 if z c (0, lo),
Go(x) = .
4 ifx e (o),
wherel, = 37/2. Then itis easily verified that the solution [n (IL.4) with ¢) = (po, ¢) is
1 if x € (0, lo),
Yo() = :
cosd(x —ly) if z € (lp,1).

Let p(z) = g(z) = 1in (0,2m). The corresponding solution in (1.4)§$z) = cosz. We see
thaty (1) > yo() in spite ofg < go. The assumption in Theorgm B.1 is also necessary.
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Proofs of Theoren]s 3.1 and B.2. Necessary conditiong,orBy the change of variable =
=y /(py). i.e.,

(3.1) y(x) = e Jo pudt z € [0,1],
equation|[(1.4) is changed into

(3.2) u — pu? =g, u(0) = 0.
The solution of[(3.R) is written

ult) = /0 tq(s){exp / t p(r)u(r) dr} ds.

In view of (3.1), Problem|3 is equivalent to
l
maximising / pudt subjectto (p,q) € K.
0

Let po be an extremal function for the infimum problem gndn arbitrary member i ( fy).
Define

ps = (1 =0)po+dp,  0€0,1].
We note that this type of variation is not possibl&liff,). Let us satisfy

(3.3) us — psug = qo,  us(0) = 0.
Forming the difference of (3,3) and (B.3) with= 0, we have
wy — upy = ps(us — up)(us + ug) + 6(p — po)ug.

Therefore,

(s — up)(t) = 6 /0t<p — po)ii2 {exp /Stp(g(r)(u(; + uo)(r) dr} ds.

Writing psus — pouo = ps(us — uo) + (ps — po)uo and integrating ovefo, /), we obtain

l l t t
/(pau—pouo)dtz/pa (5/ (p—po)U3{exp/ pa(u5+uo)dr} d«S) dt
0 0 0 s

I
+ 5/ (p — po)uo dt
0

= 5/Ol(p—p0)u(2) </Slp5 {exp /Stp(s(u(s +u0)dr} dt> ds

l
0

For Probleni B the left-hand side is nonpositive. DividingStgnd lettings — 0 brings

3.4) / o) Pt <0, forallpe K(fo)

whereP is given in Theorer 3]1. I, is an extremal coefficient for Problém 4 then we find

(3.5) /Ol(p —po)(t)P(t)dt > 0, forall p € K(fo).
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Let us first discusg (3/4). By Ryff's characterization, there exists® such thatP = P* o 0.
Substitutingy = pg o o into (3.4) we see that

l l l l
(3.6) /P*p;;dtZ/ detg/ Ppodts/ Prpydt.
0 0 0 0

In the last step we usef (1.3) which requires tRas nonnegative. This will be proved later.
As a result, equalities hold everywhere[in (3.6) and we have

(3.7) /OOO {/{P(t)>s}p0(t) dt} ds = /OOO {/{P*(tbs}pg(t) dt} ds

for all s. As

{P(t) > s} = [{P"(t) > s},

/ po(t) dt < / pi(t) dt
{P(t)>s} {P*(t)>s}

for all s. It follows from (3.7) that

we know that

(3.8) / po(t) dt:/ py(t) dt,
{P(t)>s} {P*(t)>s}

3.9 ess inf t) > ess inf t).

(3.9) {P(t)>s}po( ) = {P(t)SS}Po( )

for all s. From [3.9) one deduces thatif is increasing on the intervdl, thenp, must be
nondecreasing on this interval if we neglect a set of measure zero. Simild?lysiflecreasing
on some intervalp, will be nonincreasing. If these relations hold, we say tRandp, are
codependent.

We now return to the functiof?. We haveP(0) = 0 and a straightforward calculation yields

P'(t) = qo (1 - 22—23;0% /l Po(8)yy (s) dS)

t

that is nonnegative for all € (0,7). Choosingp = f;* in the variational equatior (3.4) and
integrating by parts gives

0= | i~ po) P di = / | (/ et — o) is) d(-P(0) > 0

We used the inequality
t t
/ podsz/ fo" ds, t€[0,1].
0 0

P'(t) /Ot( 0 —po)ds =0, t €[0,1],

and the second part of Theorém|3.1 is proved.
For the supremum problem we use the same argumenf3.=f P* o o, whereos € X, we
choosep = p* o o in (3.5) to obtain

Consequently,

l l ! l
(3.10) R T O
0 0 0 0
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Thus, there is equality everywhere in (3.10) and

(3.11) /OOO {/{P(t)>s}po(t) dt} ds = /OOO {/{P*(t)>s}p8*(t) dt} ds.

Since
[ s ww,
{P**(t)>s} {P(t)>s}

for all s, (3.11) implies that

/ po(t) dt = / py(t) dt,
{P(t)>s} {P*(t)>s}

ess inf t) > ess inf t
{P(t)>s}p0( ) = {P(t)gs}po( )7

for all s. In this case” andp, arecontra-dependenti.e. if P is increasing (resp. decreasing)
on an intervall, p, will be nonincreasing (resp. nondecreasing)/orChoosingy = f; in the
variational equatiorj (3}5) and arguing as above, we prove the second part of Thegrem 3.2.

Necessary conditions ap. Let g, be an extremal function for Probldm 3. kpe K (go), we
define
g5 = (1=0)q+dq,  6€][0,1]
Let us be the solution of
(3.12) u' — pou® = g, u(0) = 0.

Forming the difference of (3.12) and (3]12) with= 0, calculations similar to those of the
preceding case allow us to derive the necessary conditions of optimality

/l(q —qo)(t)Q(t)dt <0 forall ¢ € K(go),

where

We remark that) (/) = 0 and

l
Q'(t) = 2yt / Po(s)y () ds — po

is nonpositive or{0, ). For Problenj ¢, satisfies

[a-wwendazo  foraise k)

Reasoning as above, we deduce thatnd() are codependent for the infimum problem. The
argument for characterizing yieldsg, = g;. For the supremum problegg and() are contra-
dependent and we gef = g;* which completes the proofs. O

Existence.
Let m, denote the infimum of(!) when(p, ¢) varies inK and(p,, ¢,) @ minimizing sequence
in K. Let{u,} be an associated sequence of solutions in the differential equptidn (3.2) so

thatlim,,_, fol P, dt = mg. Using weak compactness, we find thgty, ¢o) € K such that
pn — p andg, — g weakly inL>(0, ). From the expression af,, we see that

l
un(t) S/ Gu(t)e™ o dt < || gy |2 e,
0
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It follows from (3.2) that the sequende,,} is uniformly bounded in>(0,7). By Ascoli’'s
theorem, there exists a subsequence (we may assume that it is the original sequence) such that
u, — up uniformly in [0,]. It is easy to check that, is the solution of[(3]2) fo(p, ¢) =
(po, qo)- The proof of the supremum problem is quite the same.
4. PROBLEM

Suppose thaf,, go € L°(0,1) and f, > 1 over(0,1). The existence of extremal couples for
Problem$ b and|6 may be proved as above. Let

P = B0 ([ syt as) - 2

i) PoYo)(t)’
Q) = 12(1) / po(s)n(s)2ds, e 0]

Theorem 4.1. Let (py, qo) be the extremal couple for Probl@ 6, amdan associated solution
in (1.5)). In the open set where
t t
/ pods > / fotds
0 0

¢ ¢
/ Qo ds < / 9o ds,
0 0

we haveP'(t) = 0, resp.Q’(t) = 0.

Proof. By the change of variable = y'/(py) equation[(1.p) is changed into
u +put=gq, u(0)=0, telo,l.

We shall then study the equivalent problem

resp.

I
max/pudt, (p,q) € K.
0

Let (po, o) be the extremal couple for Problem 6. Arguing as above, we findpthand ¢,
satisfy the conditions

@“.1) / o p)OP@E=0  forallpe K(f),

(4.2) /Ol(q —qo)()Q(t)dt <0 forall ¢ € K(go)n

whereP and( are given above. Unlike the preceding case, it is difficult here to know the sign
of P and(@. We shall then proceed as above: ebe the function defined by

l
() =w(® [ mls?)ds, e bl
t
1y IS a solution of the differential equation

(po ' (@)y' () = qo(2)y(z) =0, € (0,1),
buty,(1) = 0 andy;(l) = —(yo/po) *(I). Besides, it is easy to see thgtt) < 0 for all

t € (0,1). Let
/ / / /
52(90_91)/27 U:—(y0+y1)/2-
YoPo Y1Po YoPo Y1Po
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Then, we have

£ = 261 po,
(4.3) n' =po(&+1°) — qo,

£(0) = (/Olpo(S)yo‘Q(S) dS) _1/2 = 1(0).

The key of deciding the sign af and( are the following relations

(4. Q) = 560,
and
gy Lo (1Y
(4.5) P'(t) = T (g) .
In fact, we have
(4.6) §Q = Eyorr = 2]%;(25)(2/63/1 - 3/03/1) = %;
and

[
q. _
P() = 22y / po(s)ys(s) ds — qo

t

l
=2 <2yoy6/ po(s)yy>(s) ds —po>
Po t

_ G,y
=290,

Relation [(4.6) implies thag is positive andim £(¢) = oo, t — [—. From [4.3) it follows that
limsupn(t) > 0,t — [—. Assume now thag changes its sign of0, [). Sincen(0) > 0, there
exists an intervala, b] C [0, 1) such that for some > 0, we have

n(t) <nla) <0, t €la,a+ ],

n(t) <0, telab), nb)=0.

Sincen is assumed negative @, b), £ will be decreasing on this interval. (4.4) apd (4.5) imply
that P and@ are both increasing ofa, b]. From [4.1) and (4]2) we see thatis nonincreasing
andgqo is nondecreasing on this interval. As a result, we have

0> n(t) —n(a)

= / (p0§2 —qo) + / pon”
> (t —a) (po(H)E*(t) — qo(t) +n(a)?),

t € (a,a+c),

sinceess inf 1) po(t) > 1. Arguing as in[[4], we arrive at the following contradiction(b) <
n(a) < 0. Hence,n is nonnegative and is nondecreasing. Taking= f;* in the variational
equation|(4.l1), we obtain

o< [ —mrwa= [ ([ -mas) a-rin <o
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and therefore .
P’(t)/( = _pds—0,  tel0l]

0
which proves the first part of Theorgm |4.1. To complete the proof, we chposeg; in
@.3). O
Remark 4.2. For Problenj b, the arguments for deciding the sign of (0, /) break down and
the problem requires the development of other arguments.
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