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Abstract

We establish extremal values of a solution y of a second-order initial value prob-
lem as the coefficients vary in a nonconvex set. These results extend earlier
work by M. Essen in particular by allowing a coefficient in the second derivative
expression.
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Let L1 (0,7) denote the set of all nonnegative functions frdr{0,/). [ is a
positive number. Lef € L! (0,1) andy its distribution function

pr(t) ={zx €(0,0): f(x) >t} fort >0,

where, here and beloW/| is the measure of the sét Let f* denote the de-
creasing rearrangement 6f

% . Rearrangements of the
/ (l’) - sup{t >0: Mf(t) > ZE} Coefficients of Ordinary
. . ) . ] Differential Equations

It is known thatf* is nonnegative, right continuous and that |

Samir Karaa
t t
(1.2) / fdsg/ frds, tel0,l],
0 0 Title Page
l l Contents
(1.2) / fds :/ frds. <44 >
0 0
< >
The increasing rearrangementjofs simply f** defined byf**(t) = f*(l —t).
A crucial property of rearrangements is thatfifand g are nonnegative with Go Back
f € L'0,1) andg € L>(0,1) then Close
l l l .
(L.3) [ #rgas< [ oas< [ fgas ot
0 0 0 Page 3 of 26

We will say thatf andg are equimeasurable or equivalently tiias a rear-

rangement of; if they have the same distribution function. We will denote this > ea. Pure and Appl. Math. 5(4) Art. 50, 2004
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equivalence relation by ~ g. Let f, be a member of. (0,7) andC/(fp) its
equivalence class for the relatien i.e.,

A functiono : [0,{] — [0,] is measure-preserving if, for each measurable set
I C[0,1],c7'(I) is measurable ang~'(7)| = |I|. LetX be the class of such
functions. According to Ryff{], to eachf € L% (0,1) there corresponds € X
such thatf = f* o ¢. In particular, we have

Rearrangements of the

C(fo) _ {f c Li(07 l), f _ fJ 00, o€ E}. Coefficients of Ordinary

Differential Equations

Letp andg be inL! (0, ) and consider the second-order differential equation e
—1 / / _ o -1 7 _

(14) (@) (@) +al@)ylx) =0, y0)=1 (p~y)0)=0. Title Page

A solution of the equation is a functiom such thaty andy’ are absolutely Contents

continuous and the equation is satisfied almost everywhere. In the first part of
this paper we are interested in finding the supremum and the infimuyi of « dd
when the couplép, ¢) varies in the se€ = C(fy) x C(go), Whereg, is also a < 4
member ofL°(0, 7). Consider

Go Back
Problem 1. Determineinf y(1), (p,q) € C. -
Problem 2. Determinesup (1), (p,q) € C. Quit
To solve these problems, we shall use a kind of calculus of variations which Page 4 of 26
does not work inC'; this class is not convex. Following Essef} 4nd [/], and
1The choice op~! instead ofp is essential for the study of our problems. 3. Ineq. Pure and Appl. Math. 5(4) Art. 90, 2004
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recalling thatC'(f,) and C(go) are weakly relatively compact in'(0,1), we
introduce the sek’ = K (fy) x K(g) consisting of all weak limits of sequences
of C'in [L'(0,1)]%. To simplify notations, we use the symbelintroduced by
Hardy, Littlewood and Polyaj. We say thatf majoratesy, writteng < f, if

/Oxg*dtg/zf*dt, z € 0,1],
/g dt = /f dt.

We note that ify < f (f andg are inL°(0, 1)) then

ess sup < ess supy,
ess inff < essinfg.
The relationg; < f andf < gimply that f ~ ¢. In[7], itis shown that

K(fo) ={f € LL(0,1), f < fo},

and K ( fy) is the convex hull of(fy). K (fo) is closed and weakly compact in
L*(0,1). More generallyX ( fo) is weakly compact ir.?(0,1) if fo € L (0,1),

1 < p < o0. According to [], C(fp) in the set of bo-dimensional” extreme
points of K'(fy). Thatisif f € K(fy) — C(fo), then for anym > 1, one can
find f1, ..., f linearly independent itk ( f,) andé, ..., 0,, € (0, 1) such that

> bifi=f
=1

The following result is given in1].
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Proposition 1.1. Leth, g € L% (0,1). Then the following are equivalent

) g=1r.
(iiy Forall h e L2(0,1),

T T l l
/ghdtg/ FR* dt, /gdt:/fdt.
0 0 0 0

(iii) Forall h e L2(0,1),

Rearrangements of the
Coefficients of Ordinary

@ z l l Differential Equations
/ g h” dtg/ frh*dt, / gdt—/ fdt.
0 0 0 0 Samir Karaa
(iv) We have
l l Title Page
/0 Flg)dt = /0 F(f)dt, Contents
for all convex, nonnegative functiodssuch that/'(0) = 0, F'is Lipschitz. P Y
As previously remarked we will consider the following problems < >
Problem 3. Determineinf y(1), (p, q) € K. Go Back
Problem 4. Determinesup y(1), (p, q¢) € K. Close
Similar problems may be considered for the differential equation Quit
- _ Page 6 of 26
1.5 (r '(2)y(2)) —q(x)y(z) =0, y(0)=1, (p~'y)(0)=0.
Let then J. Ineq. Pure and Appl. Math. 5(4) Art. 90, 2004
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Problem 5. Determineinf y(1), (p,q) € K.

Problem 6. Determinesup y(1), (p, q¢) € K.

Proposition 1.2. Lety be the solution of1.4) [resp.(1.5)]. Then
inf y(1) < cos(Al) < supy(l),

resp.
inf y(I) < cosh(Al) < supy(l),

whereA = (|| follr1]lgo||z1)*>.
These estimates hold since the functions
p=1"Yfollr and g=1"gol|r:

are respectively members &f( f,) and K (go).
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To simplify this section, we assume thatp~! andqg are inL (0, 1).

/Olp(x) dt/olq(x) dt <1,

then a solution of1.4) does not vanish if0, /].

Lemma 2.1. If

Proof. Lety, be a solution of{.4) vanishing in(0, /], and denote by its small-
est zero. We have
21) (@ (@)y(@) +a(@)y(x) =0, (p~'y)(0) =0,

Multiplying (2.1) by y,, we then integrate by parts to obtain

/ pl(y')de:/ qy2dx§yfnax/ qdz,
0 0 0

and then apply the inequality/(andp are linearly independent)

1 “ 1
!ymax\S/ Y| dz < (/ pdw) (/ p‘l(y’)zdm) -
0 0 0

By substitution of the bound fdy,,... | into the first inequality and cancelling the
term [' p~*(y/)? d, the conclusion follows (by contradiction) singe< . [

yo(a) = 0.

=
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Lemma 2.2. If

7"' 2
(2.2) Pl el < (57)

then a solution of1.4) does not vanish if0, /].

Proof. Let y, be as in the previous proof, so that = 1 is the first eigenvalue
of the problem

(r™ @)y (@) + Aa@)y(x) =0, (p~'y)(0) =0, yla)=0
According to a variational principle,
Jo (@)Y (x)* dx o Y (x)* da

Ao = inf 9~ <lpll=t lgllZt inf 222
R i e T A S N e

-1 —1 —
= lIpllx llallse 7*(2a)~%.

Hence, ,
™ _ —
o= (5) el
which contradictsZ.2). O

The proof shows that ifp||_ ||¢||., = 7*/(21)?, then a solution of.4) may
vanish only atc = /. It is not difficult to show that this case holds only when
andq are constants.

The following lemma gives sufficient conditions for oscillations.
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Lemma 2.3. Assume that is nondecreasing; ' € C'[0,{] andp(z) < h~' on
[0,1], whereh is a positive constant. There exists a numBer- 0 (depending
on k) such that iff > H a.e. on(0,!) then every solution dfl.4) changes its
sign on(0, 7).

Proof. Let z(z) = (I — z)*(I + z)?. Multiplying both sides in{.4) by z(z) and
integrating over0, /), we obtain

l
(2.3) / y(@)[(7"2) (@) + q(2)=(x)] dz = 0.
As p is nondecreasing we have for alke (0, ()

(p7'2) (@) = (p7 1) (2)2 () + p~ ()2 () = pH(2)2"(2).

Let € be a positive number such that is positive on[l — ¢,1]. Suppose that
y(x) > 00n][0,!]. Then @.3) implies that

(2.4) / @Y (@) + glo)=(@) dr <.

Let
H > h%%}x(—z”)(l —e) *(l+¢e) %
Then,
(p™'2")'(2) + q()2(x) = hz"(2) + Hz(x) > 0

forall z € (0,1 — <), which contradictsZ.4). O
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Lemma 2.4. Any solution of(1.5) is positive and nondecreasing. Moreover, if
[Pl z1llgl|r < 1then

y() < (1= lpllzellgllz) ™"

Proof. Lety be a solution of 1.5). We have

which implies thaty(x) > 1 andy is nondecreasing. Therefore,
y'(x) < y(l)p(x) / q(t) dt.
0
Integrating both sides of the last inequality over/), we get

l l
y(1) — 1 < y(0) / p(t) dt / o(t) d.

Hence,
y(1) < (X =l llgl)) "
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The existence of extremal couples will be discussed at the end of this section.
We suppose thaf,, go € L(0,1) and fy > h whereh is a positive constant.

Theorem 3.1. Assume that all solutions ¢f.4) are positive wheip, ¢) varies
in K(fo) x K(go). Let(po, qo) be an extremal couple for Problegnand y, the
corresponding solution il.4). Theng, = ¢; and in the open set where

/0 pols) ds > / (s ds,

we haveP’(t) = 0 where

/12 l /
pr) = % 1) ( / po<t>yo<t>-2dt) - (?’i re 0.1,

Po(t) Povo)(t)’

If f, is bounded below by a positive constant then the above set is empty and
po = [, i.e., the infimum over the larger clags coincides with the infimum
over the smallest class.

Theorem 3.2. Assume that all solutions ¢f.4) are positive wheifp, ¢) varies

in K(fo) x K(go)- Let(po, qo) be an extremal couple for Probledrandy, the
corresponding solution ifl.4). Theng, = ¢g5* and in the open set where

[ miyas < [ gitoras

we haveP’(t) = 0 whereP is as above. Iff is far from zero then the above set
is empty anghy = f;, i.e. the supremum over the larger classcoincides with
the supremum over the smallest cléass
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Leta; andb;, (i = 1, 2), be positive numbers such that < a; andb; < b,.
Define the set#’ and F’ by

1
E:{pELOO(O,l), ay Spgag,/pdx:/l}
0
and z
F:{qELOO(O,l), blgpgbg,/qu:B},
0

whereA and B are such that;/ < A < ayl andb;l < B < byl. Then we have

Corollary 3.3. If AB < 1, theninf y(I) when(p, ¢) varies inE x F'is reached

by
a; ifz e (0,a),
poler) = { ay ifx € (a,l),
and
b2 if x S (0,6),
Qo(z) = { .
by ifzxe (ﬁ,l),

wherea and 5 are chosen so th@fg podr = A and fol qo dr = B. The supre-
mum ofy(l) over E x F'is reached by = pj andg = ¢;*.

A counterexample. We show that Theorerf.2 does not hold if the solutions
of (1.4) are allowed to vanish. Sét= 2, and letp, = 1 in (0,) and

{ 0 ifzxe (O, lo),

() =
Ll if = € (lo, 1),
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wherel, = 37/2. Thenitis easily verified that the solution ib.¢) with (p, ¢) =
(po, qo) 1S
1 if x € (0, lo),
yo(x) = .
cosd(x —ly) if z € (ly,1).

Letp(z) = g(xz) = 1in (0,27). The corresponding solution i @) is y(z) =
cosz. We see thay(l) > yo(l) in spite of§ < ¢o. The assumption in Theo-
rem3.1is also necessary.

Proofs of Theorem3.1and 3.2. Necessary conditions gr. By the change of
variableu = —y'/(py), i.e.,

(3.1) y(x) = el g eo,1],
equation {.4) is changed into
(3.2) u — pu? =g, u(0) = 0.

The solution of 8.2) is written

ult) = /th(s) {exp/:p(r)u(r) dr} ds.

In view of (3.1), Problem3 is equivalent to

l
maximising / pudt subjectto (p,q) € K.
0
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Let py be an extremal function for the infimum problem arah arbitrary mem-
berin K (f,). Define

ps=(1—=0)po+dp, €]0,1]

We note that this type of variation is not possibl&liff,). Letu, satisfy

(3.3) us — psus = qo,  us(0) = 0.

Forming the difference of3(3) and @.3) with § = 0, we have
us — upy = ps(us — uo)(us + uo) + 8(p — po)ug.

Therefore,
(ws—u)(0) =5 [ (o= pujid fesp [ pstr)us + utr) ar} as.

Writing psus — poto = ps(us — uo) + (ps — po)uo and integrating ovefo, l),
we obtain

! ! ¢ ¢
/ (psu — poug)dt = / Ps (5/ (p — po)ug {GXP/ ps(us + o) dT} dS) dt
0 0 0 s

l
+a/ (b — po)uo dt
0

za/ol(p—po)ug (/slpg{exp/stpg(U5+uo) dr} dt) ds

!
+ (5/ (p — po)ug dt.
0
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For Problenm the left-hand side is nonpositive. Dividing byand lettingd —
0" brings

(3.4) / p-p)OPHE <0, forallpe K(f).

whereP is given in Theorem3.1 If py is an extremal coefficient for Problefn
then we find

(3.5) /Ol(p —po)(t)P(t)dt > 0, forallp € K(fo).

Let us first discuss3(4). By Ryff's characterization, there existss€ X such
that P = P* o 0. Substitutingp = p{ o o into (3.4) we see that

! ! 1 1
(3.6) / P*pidt = / Ppdt < / Ppydt < / P*pg dt.
0 0 0 0

In the last step we used.() which requires thaP is nonnegative. This will be
proved later. As a result, equalities hold everywheresig)(and we have

3.7) /0 b { /{ oy o0 dt} ds — /0 h { /{ o P8 dt} ds

for all s. As
{P(t) > s} = {P*(t) > s},
we know that

po(t) dt < /

{P*()>s}

po(t) dt
(P(t)>s}

Rearrangements of the
Coefficients of Ordinary
Differential Equations

Samir Karaa

Title Page
Contents
44 44
| >
Go Back
Close
Quit
Page 16 of 26

J. Ineq. Pure and Appl. Math. 5(4) Art. 90, 2004
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:skaraa@squ.edu.om
http://jipam.vu.edu.au/

for all s. It follows from (3.7) that

(3.8) [ wwd= [ g
{P(t)>s} {P*(t)>s}

3.9 ess inf t) > ess inf t).

(3:9) P>y olt) 2 Pz’ olt)

for all s. From (3.9) one deduces that P is increasing on the intervdl then

po Must be nondecreasing on this interval if we neglect a set of measure zero.

Similarly, if P is decreasing on some interva,will be nonincreasing. If these
relations hold, we say thdt andp, arecodependent.
We now return to the functio®. We haveP(0) = 0 and a straightforward

calculation yields
l
[ mieoras)
t

that is nonnegative for al € (0,/). Choosingp =
equation 8.4) and integrating by parts gives

0= | g — o) P di = / | (/ i ~ s ) d=P(e) 2.

We used the inequality

t t
/ podSZ/ fo" ds, t €10,1].
0 0

/ q !
P'(t) = qo (1 - 2—0?/0%
Po

0* in the variational
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Consequently,

P | e —p)ds=0,  telo,l]

and the second part of Theoréi is proved.
For the supremum problem we use the same argumentB. & P* o ¢,
whereo € ¥, we choose = p{* o o in (3.5) to obtain

! ! l 1
(3.10) / Prpitdt = / Ppdt > / Ppodt > / Prpirdt.
0 0 0 0

Thus, there is equality everywhere i 10 and

(3.11) /Ooo {/{P(t)>s}p0(t) dt} ds = /OOO {/{P*(t)>s}p3*(t) dt} ds.

Since
/ Pty dt < / polt) dt,
{P**(t)>s} {P(t)>s}

for all s, (3.11) implies that

/ po(t) dt = / Py (t) dt,
{P(t)>s} {P*(t)>s}

ess inf t) > ess inf t
P>sy! olt) 2 Pz’ olt)

for all s. In this caseP andp, arecontra-dependent.e. if P is increasing (resp.
decreasing) on an interva) p, will be nonincreasing (resp. nondecreasing) on
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I. Choosingp = f; in the variational equatior8(5) and arguing as above, we
prove the second part of Theoréh?.

Necessary conditions af3. Let ¢y be an extremal function for Proble& For
q € K(g0), we define

g = (1—16)qo + dq, 5 e [0,1].
Let us be the solution of
(3.12) v — pou’ = g5, u(0) = 0.

Forming the difference of3(12 and 3.12 with § = 0, calculations similar
to those of the preceding case allow us to derive the necessary conditions of
optimality

/l(q —qo)()Q(t)dt <0 forall ¢ € K(go),

where l
Q(t) = w2(t) / po(s)u2(s) ds.

We remark that)(!) = 0 and
l

Q'(t) = 2yoy, /t po(s)yo () ds — po

is nonpositive o0, /). For Problemy, ¢, satisfies

/l(q —qo)(t)Q(t)dt >0 forall ¢ € K(go).
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Reasoning as above, we deduce thand( are codependent for the infimum
problem. The argument for characterizingyieldsq, = ¢;. For the supremum
problemg, and(@ are contra-dependent and we gget= g;* which completes
the proofs. O

Existence.

Let m, denote the infimum of(/) when(p, ¢) varies inK and(p,, ¢,) @ min-
imizing sequence ik . Let {u,} be an associated sequence of solutions in the
differential equ_ation3.2) so thatlim,,_,~ fol Pnly, dt = mg. Using weak com- Rearrangements of the
pactness, we find thapy, ¢o) € K such thatp, — p andg, — ¢ weakly in Coefficients of Ordinary
L>(0,1). From the expression af,, we see that Differential Equations

. Samir Karaa
un(t) < / Gu(B)e 0Pt dt < | gol[ 2 €.
0 Title Page
It follows from (3.2) that the sequencf/, } is uniformly bounded in.>°(0, 7). Contents
By Ascoli’s theorem, there exists a subsequence (we may assume that it is the % -

original sequence) such that, — wug uniformly in [0,7]. It is easy to check
thatu, is the solution of 8.2) for (p, ¢) = (po, qo). The proof of the supremum < >
problem is quite the same. ——
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Quit
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6

Suppose thaty, go € L(0,1) andf, > 1 over(0, ). The existence of extremal
couples for Problems and6 may be proved as above. Let

p() = Y 1) ( /t ' po()90(s) ds) - (yﬂ

PoYo)(t)’

Q) = 12(1) / Po)o(s) 2 ds,  te 0.1

Rearrangements of the
Coefficients of Ordinary

Theorem 4.1. Let (po, o) be the extremal couple for Problefi and y, an Differential Equations
associated solution ifil.5). In the open set where e (i
t t
/0 pods > /0 fo"ds Title Page
resp. Contents
t t
/ o ds < / 9o ds, <4 >
0 0
we haveP’(t) = 0, resp.Q'(t) = 0. S £
Proof. By the change of variable = 3/ /(py) equation {.5) is changed into Go Back
Close
u +put=¢q, w0)=0, telo,l. _
Quit
We shall then study the equivalent problem Page 21 of 26
l
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Let (po, o) be the extremal couple for Problefn Arguing as above, we find
thatp, andq, satisfy the conditions

@“.1) l[@—nﬂﬂﬂﬂﬁzo for all p € K(),

(4.2) /Ol(q —q)(®)Q(t)dt <0 forallg € K(go)n

where P and( are given above. Unlike the preceding case, it is difficult here
to know the sign ofP? and(@. We shall then proceed as above: ketbe the
function defined by

l
nlt) = w(® [ (s ds, e 0.1,
t
1 IS a solution of the differential equation

(po ' (2)y' () — @o(x)y(z) =0, =€ (0,1),

buty; (1) = 0 andy) (1) = —(yo/po) (). Besides, it is easy to see thatt) <
Oforallt € (0,1). Let

5:<£L_£i)/2 n:_<£i+;i>/2
YoPo Y1Po ’ YoPo  YiPo

Rearrangements of the
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Then, we have

5/ = 2& 1 po,
(4.3) n' = po(&* +n°) — qo,

£(0) = ( / ol (s) d) / 2 = 1(0).

The key of deciding the sign af and( are the following relations

(4.4 Q) = €)™
and
/ 1QO 1 -
(4.5) P'(t) = 2p0 (f) .
In fact, we have
(4.6) €Q = €yt = oo bl — woth) = 5.
and

P<>—2§°yoyo/tpo<> 2(s)ds — g0

- (2yoyg/t pols)y (s >ds—po)

_ D,y
—pOQ(t)-
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Relation @.6) implies that is positive andim £(t) = oo, t — [—. From @.3)
it follows thatlimsupn(t) > 0, ¢t — [—. Assume now thai changes its sign
on (0,1). Sincen(0) > 0, there exists an intervad, b] C [0,[) such that for
somec > 0, we have

n(t) <nla) <0, t€la,a+d,

n(t) <0, tela,b), nb)=D0.

Sincen is assumed negative @a, b), £ will be decreasing on this intervald @)
and @.5) imply that P and@ are both increasing dia, b]. From @.1) and @.2)
we see thap, is nonincreasing ang is nondecreasing on this interval. As a
result, we have

0 =n(t) —nla)

=/:(poé“z—q<))+/:pon2

> (t—a) (po(t)€*(t) — ao(t) +n(a)?) ,

t € (a,a+c),

sinceessinf (o)) po(t) > 1. Arguing as in {], we arrive at the following con-
tradiction: n(b) < n(a) < 0. Hence,n is nonnegative and is nondecreasing.
Takingp = f§* in the variational equation}(1), we obtain

o< | i~ po)Plt)dt = / | ( / s ) ds) a(=P(t)) <0,
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and therefore ,
P’(t)/( = _p)ds=0, tel0,l]
0

which proves the first part of Theorefnl. To complete the proof, we choose
qg=g;in(4.2). O]

Remark 1. For Problem5, the arguments for deciding the signmpbn (0, 1)
break down and the problem requires the development of other arguments.
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