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ABSTRACT. Itis known that in a strictly convex normed space, e orthogonality (Birkhoff
orthogonality) has the propertyB—orthogonality is unique to the left*. Using this property,
we introduce the definition of the so-calldél-angle between two vectors, in a smooth and
uniformly convex space. Also, we define the so-calledangle between two vectors. It is
demonstrated that thg—angle in a unilateral triangle, in a quasi-inner product space/3s
The g—angle between a side and a diagonal, in a so-cgheguandrangle, is /4.
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Let X be a real smooth normed space of dimension greater than 1. It is well known that the
functional

[l + tyll — ]
t

1) g(w,y) := |||l lim (z,y € X)

always exists (se€|[5]).
This functional is linear in the second argument and it has the following properties:
(2) glaz,y) = ag(z,y) (@ € R), gz, z) =z, |g(z, )| < =]l [lyll.
Definition 1 ([10]). A normed spaceX is a quasi-inner product space (g.i.p. space) if the
equality
(3) lz+yll* =l =l = 8 [ll=* 9(x, ) + 9lI* gy, )]
holds for allz,y € X.
The space of sequencksds ag.i.p. space, but' is not ag.i.p. space.
Itis proved in [10] and([11] that a.i.p. spaceX is very smooth, uniformly smooth, strictly
convex and, in the case of Banach spaces, reflexive.

The orthogonality of the vector # 0 to the vectory # 0 in a normed spac& may be
defined in several ways. We mention some kinds of orthogonality and their notations:

e v1lpy < (VA €R)|z| < ||z + Ay| (Birkhoff orthogonality),
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o 1,y < ||z —y| = |z + vyl (James orthogonality),
o rlgy & Hug—” — Hz_\IH = Hﬁ + Hz_\IH (Singer orthogonality).

In the papers 8], [6] and [9], by using the functionglthe following orthogonal relations
were introduced:
rlyy < g(z,y) =0,

g
RTR= g(x,zy) +g(y, x) :20,
rlye 2] g(z, y) + [lylI” 9(y, =) = 0.
In [6, Theorem 2] the following assertion is proved:Xfis smooth, therx L,y < xLgy.
In [11] we have proved the following assertion:Xfis aq.i.p. space, then
rlysrl;y and ng_y < xlgy.
g

If there exists an inner produ¢t -) in X, (i.p.), then it is easy to see thapy < (z,y) =0
holds for every

g
P € {LB7LJ7LS7LQJJ—7 J—} .
g9

For more onB—orthogonality and;—orthogonality, see the papets [1]) [2], [13] and![14].
Some additional properties of this orthogonality are quoted below. Denoig, faythe set of
the best approximations gfwith vectors from[z].

Theorem 1. Let X be a smooth and uniformly convex normed space, and, lete X — {0}
be fixed linearly independent vectors. The following assertions are valid.

(1) There exists a unique € R such that
Py = az ¢ g(y — ar,z) = 0 & ||y — az||” = g(y — az,y),
sgn a = sgn g(y, ).

(2) If z € span{z,y} andy L gz A z_L gz, then there existd € R such that: = \y.
3) fzLlpy — ax AN xlpy — fx thena = 3.

Proof.

(1) The proof can be found in [14].
(2) SinceX is smooth, the equivalence

ylpr Azlpr < g(y,z) =0ANg(z,2) =0

holds.
Hence

r=aoy+ 0z = g(y,ax + z) = 0N g(z,ax + Bz) = 0.
We get the system of equations
o lyl* + Bg(y, z) = 0
ag(z,x) + B z[* = 0.
This system has a non-trivial solution farand iff

2 2 2 2
9y, 2)9(z,y) = Yl 121" < gy, 2)[ g (z,9)| = llwlI™ 121"

The last equation is not correct|if(y, z)| < ||yl ||z]| - So,|g9(y, z)| = ||ly]| ||z]|-Then by
Lemma 5 of [3], there exists € R such that: = \y.
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(3) In accordance with 1) we have

g(x,y —ax) =0Ag(z,y — Br) =0
& g(z,y) —alz]*=0Aglx,y) - Bz]* =0=a=4.
0

From now on we assume that points:, y are the vertices of the trianglé, =, y) and points
0, x,y, x+y are the vertices of the parallelogrdf z, y, x+y). The number§z — ||, ||z + y||
are the lengths of diagonal of this parallelogram|jaf| = ||y||, we say that this parallelogram

isarhomb, and it_L,y, we say that this parallelogram igaectanglep € < Lp, 1, Lg, L}.
g
From the next theorem, we see the similaritygaofp. spaces to inner-product spaceisy(
spaces).

Theorem 2. Let X be aq.i.p. space. The following assertions are valid.

(1) The lengths of the diagonals in parallelogrdt z, y,  +y) are equal if and only if the
parallelogram is ag—rectangle, i.e.x 1 y.

g
(2) The diagonals of the rhom(), =, y, = + y) are g—orthogonal, i.e.{z — y) 1 (z + y).

g
(3) The parallelogram(0, z, y, x + y) is a g—quadrangle if and only if the lengths of its
diagonals are equal and the diagonals areorthogonal.

The proof of Theorer|2 can be found in [11].
The angle between two vectarsandy in a real normed space was introduced_in [7] as

9(z,y) + g(y, x) N
el (Y EE O

Z(x,y) := arccos

SO,ng_y & cos Z(x,y) = 0.
In this paper we introduce several definitions of angles in a smooth normed.Xspace
Let us begin with the following observations. By (2), it is easily seen that we have

|z |” gz, y) + |lylI* 9(y, )
4 —-1< <1 (=, X —A{0}).
@ = el (2P + Py - v e X o)

Hence we define new angle between the vectaady ,denoted ag/(zx, y).
g

Definition 2. The number

2 2
(5, y) = arccos ]l g(w,y)+||2y|| g(yéw)
g [l Iyl Cll )™+ lly ™)
is called thegy—angle between the vectorand the vectoy.

Itis very easy to see that :
Llx,y) = L(y,x), LAz, \y) = ~L(z,y), xLy< cosllz,y)=0.
g g

g g9 g g
Theorem 3. Let X be agq.i.p. space. Then the following assertions hold.
(1) Theg—angle over the diameter of a circlegs-right, i.e., ifcis the circle inspan {z, y },
centered at1¥ of radius@, thenz € c = (x — 2) L(y — 2), FigureH.

g
(2) The centre of the circumscribed circumference aboutheght triangle is the centre

of theg—hypotenuse.
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Proof.
(1) If 2 € ¢, then||z — zt2|| = 224l lje 122 — (2 +y)| = ||z — y||. Hence
(—2)Ls(y—2) e (x—2) Ly —2),
g
becauseX is aq.i.p. space.
(2) Let ¢ be the circle defined by the equatidn — 22| = |||, Wherex%y ie.

|z — || = ||z + y||. Theno € c.
0

Figure 1:

In accordance withB—orthogonality, now we define the orientéd-angle between vectors
x andy.

Firstly, we have the following observation. L&,y = ax, (a = a(z,y)).If |laz| < |y
for everyz,y € X — {0}, thenX is ani.p. space (see (18.1) ial[4]). So, in a normed (non
trivial) space, aB—catheti may be greater than the hypotenuse.

Lemma 4. Let X be a smooth and uniformly convex space ang € X — {0} linearly

independent. Then there exists a unigue 7(z,y) such that|y|| = ||y — 7z||. If X isa q.i.p.

space and, is not B—orthogonal toz, then there exist unique € R such that'y — pz) | px.
g

Proof. We consider the function

f)=lly—tzl] (z,y e X -{0}, teR)
SinceX is smooth and uniformly convex, there exists a unigque a(z,y) € R such that
(5) min f(1) = f(a) = ly —azll,  g(y —az,2) =0, sgna=sgngly,z).

(The vectoraz is the best approximation of vectgrwith vectors of[z], i.e., P,y = ax (see
[14]).

On the other hand, the functighis continuous and convex dd and therefore there exists a
uniquer = 7(z, y) € R (see Figur¢[2) such that

fla) <yl =lly — | .
If X is aq.i.p. space, we get = . In this case, we havgy| = |ly — 2pz||, hence

|(y — px) + px|| = |[(y — px) — D2,
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(v = pr) Lypr < (y = pr) Lpz.
In this case we shall writ€’?y = px. Clearly ||y|| = ||y — 2pz|| = ||pz| < |ly]| -
In (B) we have:
O<a<7Teg(y,z)>0, 7<a<0<&g(y,z)<0 (Figure[2).
Hence, byl|y|| = [ly — || we get||z|| — [[y] <y

,l.e.

kgl

(6) o < lyll -

Figure 2:

Assume thay(y,z) > 0. If a < 7, then by) we hav@az| < ”72"”” < |yl . fa > %, then
7 —a < 7 and we have{(r — a)z|| < @ < |ly/|. Hence we getnin {a,7 — a} < 7.

Of course, ifg(y, x) < 0, we getmin {|al, |7 — a|} < % Thus, we conclude that

) -1< %sgng(yw) <1 (z,yeX—{0}),
wherek = min {|a|, |T — a|} (k= k(x,y)). O

Keeping in mind[(JV) and the characteristics/df orthogonality, we introduce the following
definitions of the oriented —angle between the vectarand the vectoy.
Definition 3. Let X be smooth and uniformly convex. The number
. kx
(8) cosp(z,y) = % sgng(y, ),
k =min{la|,|r —a|}, (r,y e X —{0})

is called theB—cosine of the oriented angle betweeandy.
The number
Zp(7,7) := arccosp(T, 7))
is the oriented3—angle between the vecterand the vectoy.

Definition 4.

cos(w,y) := /|coss(T7) coss (777)| sgn g y) sen gy, ).

The numberZz(x,y) := arccosg(z,y) is called theB—angle between the vectarand the
vectory.
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If X is ani.p. space withi.p. (-,-), we haveq = gH(J""'%) = Tﬁﬁ’ﬁ = ” g ) (see[[14]). So, in
this casecosp(z,y) = II;HIIyH Observe thatoss(, y) is not symmetric in: andy, so, in the

triangle (0, =, y) we have 6 oriented—angles.

Since inequalities-1 < {f”ffﬁ)d < 1 are valid for everyz,y € X — {0} andy Lz <

g(y,z) = 0in a smooth space, we may ask whethes (7, 7)) =

IIwIIHyH for everyzx,y € X.

The answer is no. Namely, in this case we haye, y) = g”(y”’”) and hence, for every,y €

X — {0}, we getl|az|| = 222l < ||y||. It follows from 18.1 of [4] thatX is ani.p. space.

el

Theorem 5. Let X be a smooth and strictly convex space. Then,
(1) cosp(\z,y) = cosp(z,7)sgn A (A € R —{0}),
R
(2) cosp(z, \y) = cosp(z,y)sen A (A € R —{0}).

Proof.
(1) Assume thatp[:v]y = ax, k = {’CL| ) |T - CL|} ) HyH = Hy - Tl’H ) P[)\(L‘]y = bAw.
ThenbA = a andmin {|b\|, |7 — bA|} = min {|a|, |7 — a|} = k. Hence, by Definition
[3, we have

— min {|Ab|, |7 — Ab|} ||z
sy () = P DL 70 e

_ lka

T sen Ag(y, z) = cosp(T, ) sgn \.
Y

sgn g(y, Az)

(2) Letbe Py = ax  |ly|| = ||y — 7z| and||\y|| = [|\y — maz||. ThenPy\y = Aax
and by||\y|| = ||\y — A\rz|| we getr, = Ar andky, = min {|Aa|, | AT — Aa|} = |\ k.

Thus
oy = Izl \
cosp(z, Ay) = Tl sgn g(Ay, )
”H HH sgnAg(y, x)
= cosp(T, 1) sgn .
O
Theorem 6. Let X be smoothgz,y € X — {0} linearly independent)y — z|| = ||y||. Then

(48w.9)) = 25(=2.y— @), (Figure3).

Figure 3:
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Proof. In a smooth spac& (seel[12]), forz,y € X, we have

9) lzll (=l = lle = yll) < gl,y) < llzll (lz +yll = ll=]).

Since|ly — z|| = ||ly|| , we getg(y,z) > 0 andg(y — =, —z) > 0. Let Pjy = az and P,(y —
x) =b. Then:a > 0, b > 0 (see[14]))g(y — ax,z) = 0 and

gly—x—br,x) =0 gy — (1 +b)z,z) =0.

By virtue of 2) in Theorem |1, we gét+ b = a such thatP,)(y — =) = (a — 1)z. From this and
Definition[3, we have

—— k] o
cosg(—z,y — ) = Ty —al sgng(y — x, —x)
_ min{a, 1 —a} |z
Iyl
—
= cosp(Z, 7).

O

We now assume tha¥ is as.i.p. space.
Analogous to Definition|3 and Definitidr 4, ingai.p. space, we will introduce a new defini-
tion of an orientedj—angle and the corresponding non oriengeeangle.

Definition 5. Letz # 0,y € X andp = 7 (see Lemm@l4). Then

HPI’H 2 2
cosy (T, 9) :stgn(lh"ll g(z,y) + Iyl 9y, x)).

The number/,(z,7) := arccos,(z, ) is the orientedj—angle between vectarand vector.
We observe that, for all # 0,
y—pr L pr= Ay — Apx | \pzx,
g g
i.e., Py = a = P] Ay = ax. Hence we have

(10) cos,( Az, \y) = cos, (7, 7) sgn A (X #£ 0).
Definition 6.

L \/ — — 2 2
cosy(x,y) 1= \/cosy(z,y) cosy(y, ) sgn(l|z(|” g(z,y) + [ly[” gy, z)).
The number/,(z,y) := arccos,(z, y) is the non-orienteg—angle between andy.

Clearly, in ag.i.p. space we haveos,(x,y) = cos,(y, ).
If X isani.p. space with.p. (-,-) we have

(y—px) Lpr < |y —pz|® gy — pz,pz) + ||pz|| g(pz,y — pr) = 0
g
< (ly —pz|? + llpz|*) (x,y — px) =0

= p=

e 2 i) = Y
7 con®y) = sl ) (e vh = g

Thus, Definitiorl b and Definition| 6 are correct.
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Theorem 7. Let X be ag.i.p. space and|z| = ||y|| = ||z —y|, i.e., let triangle(0, z,y) be

equilateral. Then
m
2o(@9) = Zy(w,y) = L4y, 2) = 3.

Proof. At first, from equationd|z|| = ||y|| = |ly — z|| and inequalities (9) we get inequalities

0 < g(z,y) and0 < g(y,z). By thissgn([lz|* g(z,y) + [|ly[” 9(y, x)) = 1.
Let c be the circle centred &} with diameter]|z||, (see Figure 4). The#, =¥ € c. Ac-

cording to 1), Theorer%& we have — %) %g and =¥ % =¥ That is, we havePfy = £ and
= cosg(

2
,z) = 1. Hence, by DefinitioﬂB, we have

P9z = %. By Definition|3 we getos,(z,7)
([l

ég(xa y) = %

Theorem 8. Let (0, z,y, z+y) be ag—quadrangle, i.e. leflz|| = ||y|| Az Ly. ThenZ,(z,z +
g

y) = 7, i.e., the non-orienteg—angle between a diagonal and a sid€jis

y x+y

Figure 5:

Proof. We observe that in a.i.p. space
2 2
sgn([lzl|” g(z,y) + lyllI” 9y, x)) = sgn((lz + yl| = ll= — yl)
and that
122 +yl| — [zl = 22 = llyll = llyll = 0.
Now consider Figurg|5. Since¢(z + y) = z, we have

—— =l
cosy (T, T + Y)

= sgn(l2z +yll = llvl) = ———
Iz +yll
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Let s be the crossing point of the diagon@l x + y] and the diagondl, y]. Then, by Theorem
B, PL,,x = s. It follows, by Definition|$, that

S —
cosg(x +y, 1) = Sgn(l|8+$ll— ls = I[)

H +yll
= sgn([[ 2z — [l=)
2 |||
ezt
2]
So, by Definitior] , we have
—> —_
cosy(z, z +y) = COSg x, 2 +y) cosg(x +y, ) sgn([|22 + yl| — [[yll)
-4
HenceZ,(z,z +y) = . O
REFERENCES

[1] J. ALONSOAND C. BENITEZ, Orthogonality in normed linear spaces, Pdixracta Mathemat-
icae,3(1) (1988), 1-15.

[2] J. ALONSOAND C. BENITEZ, Orthogonality in normed linear spaces, ParEWiracta Mathe-
maticae 4(3) (1989), 121-131.

[3] J.R. GILES, Classes of semi-inner product spdcans. Amer. Math. Socl29(1967), 436—446.
[4] D. AMIR, Characterizations of Inner Product Spac&irkhauser, 1986.

[5] P.M. MILICIC, Sur le produit scalaire generaliddat.Vesnik(25)10 (1973), 325-329

[6] P.M. MILICIC, Sur lag—orthogonalte dans un espace noriiat. Vesnik 39 (1987), 325-334.
[7] P.M. MILICIC, Sur lag—angle dans un espace normsat. Vesnik45 (1993), 43-48.

[8] P.M. MILI CIC, On orthogonalities in normed spackigthematica Montisnigrilll (1994), 69-77.

[9] P.M. MILICIC, Resolvability ofg—orthogonality in normed spacellat. Balkanica, New Series,
12(1998).

[10] P.M. MILI CIC, A generalization of the parallelogram equality in normed spaoes, Math. Kyoto
Univ. (JMKYAZ), 38(1) (1998), 71-75.

[11] P.M. MILICIC, On the quasi-inner product spackegtematicki Bilten22(XLVIII ) (1998), 19-30.

[12] P.M. MILICIC, The angle modulus of the of the deformation of the normed sjRizeMat. Univ.
Parma 3(6) (2000), 101-111.

[13] P.M. MILICIC, On they—orthogonal projection and the best approximation of vector in quasi-inner

product spaceScientiae Mathematicae Japonic@é3) (2000).

[14] P.M. MILICIC, On the best approximation in smooth and uniformly convex Banach spacia,
Universitatis (Ni8), Ser.Math. Infor20 (2005), 57-64.

J. Inequal. Pure and Appl. Mat}8(3) (2007), Art. 99, 9 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	References

