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Abstract: Itis known that in a strictly convex normed space, e orthogonality (Birkhoff Close

orthogonality) has the propertyB—orthogonality is unique to the left*. Using
this property, we introduce the definition of the so-callgdangle between two

vectors, in a smooth and uniformly convex space. Also, we define the so-called Joumql of inequalities

g—angle between two vectors. Itis demonstrated thagthengle in a unilateral In pure dnf:i applied
triangle, in a quasi-inner product spacerj&. Theg—angle between a side and mathematics
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Let X be a real smooth normed space of dimension greater than 1. It is well
known that the functional

(1) 9(x,y) = |l«]|im

always exists (se]).
This functional is linear in the second argument and it has the following properties:

On the B-angle and g-angle in
@ glor.y)=agle.y) (@eR), gle,2) =zl lg(x.y) < 2]l ]l
Pavle M. Milicic
Definition 1 ([10]). A normed spac€ is a quasi-inner product space (q.i.p. space) vol. 8, iss. 4, art. 99, 2007
if the equality

3) lz +yll* =l —ylI* = 8 [Ilz)* 9(z, v) + yl* 9y, z)] Title Page

Contents

holds for allz, y € X.

: . <« >
The space of sequenckéss aq.i.p. space, but! is not aq.i.p. space.

It is proved in [LO] and [11] that ag¢.i.p. spaceX is very smooth, uniformly < 4
smooth, strictly convex and, in the case of Banach spaces, reflexive.

. - Page 2 of 18

The orthogonality of the vectar # 0 to the vectory # 0 in a normed spac&
may be defined in several ways. We mention some kinds of orthogonality and their Go Back
notations: Full Screen

e xlpy < (YA €R)|z|| < ||z + Ay| (Birkhoff orthogonality), Close

e 1y ||lv -yl = |z +y| (James orthogonality), journal of inequalities

. . ) ) in pure and applied
o rlgy & ‘ Tl — Tl ‘ = ‘ o T T ‘ (Singer orthogonality). mathematics
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In the papers§], [6] and [9], by using the functionad, the following orthogonal
relations were introduced:

rlyy < g(z,y) =0,

g
rlye g(afay) +9(y, v) =20,
x%y & |lzl|” g(z,y) + [lyl” g(y,x) = 0.

In [6, Theorem 2] the following assertion is proved:Xfis smooth, therr L,y <
1l py.
In [11] we have proved the following assertion: Xf is aq.:.p. space, then

9
rlyexzly and z|ly<erlgy.
9

If there exists an inner product -) in X, (i.p.), then it is easy to see thapy <
(x,y) = 0 holds for every

g
S {J—BaLJJJ—Suj—gaJ—) L} .
g

For more onB—orthogonality and;—orthogonality, see the paperd,[[2], [13]

and [L4]. Some additional properties of this orthogonality are quoted below. Denote

by P,y the set of the best approximationsyofvith vectors from[z].

Theorem 1. Let X be a smooth and uniformly convex normed space, and let

X — {0} be fixed linearly independent vectors. The following assertions are valid.

1. There exists a unique € R such that
Py = ax < g(y — az,x) = 0 & ||y — az|* = g(y — az,y),
sgn a = sgn g(y, ).

2. If z € span {z,y} andy L gz Az L gz, then there exists € R such that: = \y.
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3. fxlpy — ax ANxlpy — Bz thena = .

Proof.

1. The proof can be found irlL{].

2. SinceX is smooth, the equivalence

ylpr A zlpr & g(y, m) =0A g(z, x) =0 Onthe B-angle and g-angle in

h |d normed spaces

olds. Pavle M. Miligi¢

Hence vol. 8, iss. 4, art. 99, 2007

r=ay+ 0z = g(y,ar + 52) =0A g(z,ax + fz) = 0.

We get the system of equations Title Page
allyl® + Bly, z) =0 Contents
ag(z, x) + G ]z|]> = 0. <« >

This system has a non-trivial solution farand 3 iff < >

2 2 2 2
9y, 2)9(z,y) = lyl™ 21" < la(y, 2)l g Gz, 9)[ = lylI” =" - Page 4 of 18
The last equation is not correctif(y, z)| < ||ly|| ||z - So,|g(y, z)| = |ly|| ||z]|.- Then Go Back
by Lemma 5 of B], there exists\ € R such that: = \y. ol St
3. In accordance with 1) we have Close
g9(x,y —ax) = 0N g(x,y — Br) =0 journal of inequalities
& gla.y) — alle]’ =0 A ga,y) = Bllz|* =0 = a = 5. in pure and applied
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From now on we assume that poifits, y are the vertices of the triang(é, z, y)
and point), x, y, z + y are the vertices of the parallelograih z, y, x + y). The
numbers|z — y||, ||z + y| are the lengths of diagonal of this parallelogram. If
|z|| = |ly||, we say that this parallelogram is a rhomb, anelif,y, we say that this

parallelogram is a-rectanglep € < L, L, Lg, | ¢.

g
From the next theorem, we see the similaritygafp. spaces to inner-product
spaces (.p. spaces).

Theorem 2. Let X be agq.i.p. space. The following assertions are valid.

1. The lengths of the diagonals in parallelogrd =, y, = + y) are equal if and
only if the parallelogram is @—rectangle, i.e.x | y.
g

2. The diagonals of the rhomB, =, y, x+y) are g—orthogonal, i.e.(z—y) | (z+
g
y)-

3. The parallelogram0, x, y, x + y) is a g—quadrangle if and only if the lengths
of its diagonals are equal and the diagonals greorthogonal.

The proof of Theorem can be found in11].
The angle between two vectarsandy in a real normed space was introduced in
[7] as
9(@,y) + 9y, x)

Z(z,y) := arccos
2] {lyll

(x,y € X —{0}).

SO,ng_y & cos L(z,y) = 0.
In this paper we introduce several definitions of angles in a smooth normed space
X.
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Let us begin with the following observations. BY){( it is easily seen that we
have

(@) < NalP gy +llyl (v, @)
= el wl el + 1l

Hence we define new angle between the vectandy ,denoted as/(z, y).
g

<1 (z,ye X —{0}).

Definition 2. The number

2 2
)" gz, ) + llyll” 9(y, x)
2 2
[yl Clll” + lly[l”)
is called theg—angle between the vecterand the vectoy.

/(x,y) := arccos

<

It is very easy to see that :

L(x,y) =Ly, x), £z, \y) = L(x,y), x Ly coss(r,y)=0.
g g g g g g

Theorem 3. Let X be agq.i.p. space. Then the following assertions hold.
1. Theg—angle over the diameter of a circle is-right, i.e., if ¢ is the circle in
span {z, y}, centered att¥ of radius 24l thenz € ¢ = (z — 2) L(y — 2),
g
Figure 1.

2. The centre of the circumscribed circumference abougtheght triangle is the
centre of they—hypotenuse.
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Proof.

1. If z € ¢, then||z — 2H¢|| = @, i.e. |2z — (z +y)|| = |z — y||. Hence
(z—2)L;(y—2) e (r—2) Ly —=2)
g
becauseX is aq.i.p. space.
2. Let ¢ be the circle defined by the equatifia — 2 || = ||%5%
i.e. ||z —y|| = ||z + y||. Theno € c.

, Wherex | y
g

]

Figure 1:

In accordance wittB—orthogonality, now we define the orientétl-angle be-
tween vectors: andy.

Firstly, we have the following observation. Lél,;y = ax, (a = a(x,y)).If
|laz|| < ||ly|| for everyz,y € X —{0}, thenX is ani.p. space (see (18.1) id]). So,
in a normed (non trivial) space,/2—catheti may be greater than the hypotenuse.
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Lemma 4. Let X be a smooth and uniformly convex space and € X — {0}
linearly independent. Then there exists a unique= 7(x,y) such that||y| =
|ly — 7z||. If X is a g.i.p. space ang is not B—orthogonal tox, then there ex-
ist uniquep € R such thatly — pz) | px.
g
Proof. We consider the function
f&)=ly—tzll (z,ye X {0}, teR).

Since X is smooth and uniformly convex, there exists a unique a(z,y) € R
such that

(5) minf(t) = f(a) = [ly —az|, g(y —awr,2) =0, sgna=sgng(y.z).

(The vectorax is the best approximation of vectgwith vectors of(x], i.e., P,y =
ax (see [L4)).

On the other hand, the functiofiis continuous and convex dR and therefore
there exists a unique= 7(z,y) € R (see Figure) such that

fla) <yl = lly — 7|
If X isagq.i.p. space, we get = Z. In this case, we havigy|| = ||y — 2px||, hence

|(y — px) + pz|| = [[(y — px) — pz]|,

(y — px)Lpr < (y — px) %pm-

In this case we shall writ€9y = pz. Clearly ||y|| = ||y — 2pz|| = ||pz|| < ||yl .
In (5) we have:

O<a<tTegly,z)>0, 7T<a<0<g(y,x)<0 (Figure?2).
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Hence, bylly[| = [ly — (| we getl|rz|| — [yl < ly[l. i.e.

©) <l
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Assume thay(y,z) > 0. If a < 7, then by §) we have||az| < ”T;” < lyl| - oace 8 of 16
- - . age 9 0
If a > 7, thent —a < 7 and we have|(7 — a)z| < @ < |ly||. Hence we get
min {a,7 — a} < I. Go Back
Of course, ifg(y,z) < 0, we getmin {|a|, |7 — a|} < @ Thus, we conclude Full Screen
that
Close
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=l engly,T) = Y ’ journal of inequalities
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following definitions of the oriented®—angle between the vectaerand the vector
Y.
Definition 3. Let X be smooth and uniformly convex. The number

kx
®) cosa )=l sen ,2),
k=min{[a],[T —al}, (z,y € X —{0})
is called theB—cosine of the oriented angle betweeandy.
The number

Z/(z,y) = arccosp(z, 1)
is the orientedB—angle between the vecterand the vectoy.
Definition 4.

cosp(r,y) = \/cos s(T7) cosp (7:2) | sgm g . ) sgn gy, ).

The number/z(z,y) := arccosg(z, y) is called theB—angle between the vector
and the vectoy.

If X is ani.p. space With’p (- -y, we haven = H(‘”””y) = flz""‘” = ”y”x) (see [L4)).

So, in this caseosg(z, y) = ” T H (,%) is not symmetric in
andy, so, in the triangl€0, =, y) we have 6 oriented®—angles.

Since inequalities-1 < "f(ﬁ”hyy)d < 1 are valid for everyr,y € X — {0} and

yLlpr < g(y,z) = 0 in a smooth space, we may ask whethess(z,7) = —ng(l?\ﬁf)ll

for everyz,y € X. The answer is no. Namely, in this case we hage i) = 2%

Tl
and hence, for every,y € X — {0}, we get||azx| = ‘«"”1;" 1< |ly||. 1t follows from
18.1 of 4] that X is ani.p. space.
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Theorem 5. Let X be a smooth and strictly convex space. Then,

—_—

1. cosp(Ar,y) = cosp(z,y)segn A (A € R —{0}),
_ .
2. cosp(z, \y) = cosp(x,y)sgn A (A € R—{0}).
Proof.

1. Assume that,y = ax, k= {la[,[7 —al}, |yl = [ly =7z, Poay =
bAz. ThenbA = a andmin {|b\|, |7 — bA|} = min {|a|, |7 — a|} = k. Hence,
by Definition 3, we have

— min {|Ab|, |7 — Ab|} ||z
sy = P 70 e

sgng(y, Ax)

k
- HH l\f” sen Ag(y, ¥) = cosp(7.§) sgn 1
Yy

2. LetbeP,y = ar |y| = |y — o]l and] Ay = Ay — x| ThenPxy =

Aazx and by||\y|| = || \y — Atx|| we getry, = Ar andk, = min {|\a|, |A\T — Aa|} =

|A| . Thus
— kyx
cosg(z, \y) = HH/\AyHH sgng(Ay, )
| k]|
= S—sgnAg(y, )
Y]]

= cosp(T, ) sgn A.
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Theorem 6. Let X be smoothz,y € X —{0} linearly independent|y — z|| = ||y||-

Then (4;@) = /p(—z,y — x), (Figure 3).

y

Figure 3:

Proof. In a smooth spac& (see [L2)), for =,y € X, we have

9) Izl ([[z]] = llz = yll) < g(z,y) < =l (2 +yll = [=])

Since|ly — z|| = |ly| , we getg(y,z) > 0 andg(y — =, —x) > 0. Let P,jy = ax

andPy)(y —x) = b. Then:a > 0, b > 0 (see 14]), g(y — ax,z) = 0 and
gy—x—br,x)=0< gy — (1 +b)z,x) = 0.

By virtue of 2) in Theoreni, we getl + b = a such thatP,(y — ) = (a — 1)x.
From this and Definitiors, we have
_ lkal
ly — ||
_ min{a,1—a} [z]
[yl

cosp(—x,y — ) sgng(y — «,—x)

= cosp(, 7).
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We now assume that is as.i.p. space.

Analogous to Definitior8 and Definition4, in aq.i.p. space, we will introduce a
new definition of an orienteg—angle and the corresponding non orienjegangle.

Definition 5. Letz # 0,y € X andp = 7 (see Lemmad). Then

cos, (F7) = ”‘f H” sen(lzl? gz, ) + Iyl1? 9(y, 2).

The number/,(z,7) := arccos,(z, ) is the orientedj—angle between vectarand
vectory.

We observe that, for all # 0,
Yy —pxr L pr = Ay — Apx | Apx,
g g
i.e., Py = a = P] \y = ax. Hence we have

(10) cos,(Az, \y) = cos, (7, 7) sgn A (A £ 0).

Definition 6.

- N 2 2
cosy (2, ) =\ cosy (7,5 cos, (73) sen(lz|? gl v) + Il 9y, ).

The number/,(z, y) := arccos,(z,y) is the non-orienteg—angle between and
Y.

Clearly, in ag.i.p. space we haveos,(z, y) = cos,(y, z).
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If X isan:.p. space with.p. (-,-) we have

(y—px)%px & |y —p2|? g(y — pz,pr) + |]p2|® 9(pz, y — pr) =0

& (ly —p|? + llpz|*) (z,y — pz) = 0

o oo <:v,y2>
||$|| On the B-angle and g-angle in
= ||pl’|| — ‘<$,y>| normed spaces
||| Pavle M. Miligi¢
||pz|| (z,7) vol. 8, iss. 4, art. 99, 2007
= cosy(1,9) = 15 sen(([|=]* + llyl*) (z,v)) = ==
[yl [zl [yl
Thus, Definition5 and Definition6 are correct. Title Page
. . c
Theorem 7. Let X be aq.i.p. space and|z|| = ||y|| = ||z — y]|, i.e., let triangle ontents
(0, z,y) be equilateral. Then <« >
™ < >

49(@) = 49($7?J) = Zg(%m) =

3 Page 14 of 18
Proof. At first, from equations|z|| = ||y|| :.Hy — x| a2nd inequaliti%s&“() we get e
inequalities) < g(z,y) and0 < g(y, x). By thissgn(||z|" g(x, y) + lly[I” 9(y, x)) =
1. Full Screen
Let ¢ be the circle centred gtwith diameter|z||, (see Figurel). Then¥, £ ¢ e

c. According to 1), Theorerfi, we have(z — %) Jg_ Y and*¥ é 22 Thatis, we have

. - journal of inequalities
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and that
122 + yl| = [|=]| = [122]| — |ly[| — [lyl| = 0.

Now consider Figuré. SinceP?(x + y) = x, we have

— ]

cosy(z,x +y) = T

]

[E

Let s be the crossing point of the diagonél = + y| and the diagondlz, y|. Then,
by Theorens, P7, x = s. It follows, by Definition5, that

sgn(||2z +yl — llyll) =

— _ |ls]]
cosy(z +y, 1) = Tzl sgn([|s +z| — lls — =|))
|z + vl
= o sen(l 2z — =)
2 |||
e+l
2 |||
So, by Definition6, we have
cosy(z, 2 +y) = \/cosg(:r, z +y) cosg(x 4y, x)sgu(|[2z + yl| — [ly])
_ Lo v2
V2o 2
HenceZ,(z,z +y) = 7. O
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