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ABSTRACT. In this paper, we define a symmetric function, show its properties, and establish
several analytic inequalities, some of which are "Ky Fan" type inequalities. The harmonic-
geometric mean inequality is refined.
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1. I NTRODUCTION

Let x = (x1, x2, . . . , xn) be ann-tuple of positive numbers. The un-weighted arithmetic,
geometric and harmonic means ofx, denoted byAn(x) , Gn(x), Hn(x), respectively, are defined
as follows

An(x) =
1

n

n∑
i=1

xi, Gn(x) =

(
n∏

i=1

xi

) 1
n

, Hn(x) =
n∑n

i=1
1
xi

.

Assume that0 ≤ xi < 1, 1 ≤ i ≤ n and define1 − x = (1 − x1, 1 − x2, . . . , 1 − xn).
Throughout the sequel the symbolsAn(1 − x), Gn(1 − x), Hn(1 − x) will stand for the un-
weighted arithmetic, geometric, harmonic means of1− x.

A remarkable new counterpart of the inequalityGn ≤ An has been published in [1].

Theorem 1.1. If 0 < xi ≤ 1
2
, for all i = 1, 2, . . . , n, then

(1.1)
Gn(x)

Gn(1− x)
≤ An(x)

An(1− x)

with equality if and only if all thexi are equal.
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This result, commonly referred to as the Ky Fan inequality, has stimulated the interest of
many researchers. New proofs, improvements and generalizations of the inequality (1.1) have
been found. For more details, interested readers can see [2], [3] and [4].

W.-L. Wang and P.-F. Wang [5] have established a counterpart of the classical inequality
Hn ≤ Gn ≤ An. Their result reads as follows.

Theorem 1.2. If 0 < xi ≤ 1
2
, for all i = 1, 2, . . . , n, then

(1.2)
Hn(x)

Hn(1− x)
≤ Gn(x)

Gn(1− x)
≤ An(x)

An(1− x)
.

All kinds of means about numbers and their inequalities have stimulated the interest of many
researchers. Here we define a new mean, that is:

Definition 1.1. Let x ∈ Rn
+ = {x|x = (x1, x2, . . . , xn)|xi > 0, i = 1, 2, . . . , n}, we define the

symmetric function as follows

Hr
n(x) = Hr

n(x1, x2, . . . , xn) =

[ ∏
1≤i1<···ir≤n

(
r∑r

i=1 x−1
ij

)] 1

(n
r )

.

ClearlyHn
n (x) = Hn(x) , H1

n(x) = Gn(x), where
(

n
r

)
= n!

r!(n−r)!
.

The Schur-convex function was introduced by I. Schur in 1923 [7]. Its definition is as follows:

Definition 1.2. f : In → R(n > 1) is called Schur-convex ifx ≺ y, then

(1.3) f(x) ≤ f(y)

for all x, y ∈ In = I×I×· · ·×I (n copies). It is called strictly Schur-convex if the inequality is
strict;f is called Schur-concave (resp. strictly Schur-concave) if the inequality (1.3) is reversed.
For more details, interested readers can see [6], [7] and [8].

The paper is organized as follows. A refinement of harmonic-geometric mean inequality
is obtained in Section 3. In Section 4, we investigate the Schur-convexity of the symmetric
function. Several “Ky Fan” type inequalities are obtained in Section 5.

2. L EMMAS

In this section, we give the following lemmas for the proofs of our main results.

Lemma 2.1. ([5]) If 0 < xi ≤ 1
2
, for all i = 1, 2, . . . , n, then

(2.1)

∑n
i=1

1
1−xi∑n

i=1
1
xi

≤

[∏n
i=

1
1−xi∏n

i=
1
xi

] 1
n

or
Hn(x)

Hn(1− x)
≤ Gn(x)

Gn(1− x)
.

Lemma 2.2. If 0 < xi ≤ 1
2
, for all i = 1, 2, . . . , n + 1, and Sn+1 =

∑n+1
i=1

1
xi

, Sn+1 =∑n+1
i=1

1
1−xi

, then

(2.2)

∑n+1
i=1

(
Sn+1 − 1

1−xi

)
∑n+1

i=1

(
Sn+1 − 1

xi

)
n

≤

∏n+1
i=1

(
Sn+1 − 1

1−xi

)
∏n+1

i=1

(
Sn+1 − 1

xi

)


1
n+1

.
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Proof. Inequality (2.2) is equivalent to the following

n ln
Sn+1

Sn+1

≤ 1

n + 1
ln

∏n+1
i=1

(
Sn+1 − 1

1−xi

)
∏n+1

i=1 (Sn+1 − 1
xi

)


Since0 < xi ≤ 1

2
, and1− xi ≥ xi, it follows that

Sn+1 − 1
1−xj

Sn+1 − 1
xj

=

1
1−x1

+ · · ·+ 1
1−xj−1

+ 1
1−xj+1

+ · · ·+ 1
1−xn+1

1
x1

+ · · ·+ 1
xj−1

+ 1
xj+1

+ · · ·+ 1
xn+1

≥
1

1−x1
· · · 1

1−xj−1

1
1−xj+1

· · · 1
1−xn+1

1
x1
· · · 1

xj−1

1
xj+1

· · · 1
xn+1

.

By the above inequality and Lemma 2.1, we have

1

n + 1
ln

n+1∏
i=1

Sn+1 − 1
1−xi

Sn+1 − 1
xi

≥ 1

n + 1
ln

n+1∏
i=1

[(
1

1− xi

)/(
1

xi

)]n

= n ln
n+1∏
i=1

[(
1

1− xi

)/(
1

xi

)]n+1

≥ n ln

1
1−x1

+ · · ·+ 1
1−xn+1

1
x1

+ · · ·+ 1
xn+1

,

or

n ln
Sn+1

Sn+1

≤ 1

n + 1
ln

∏n+1
i=1

(
Sn+1 − 1

1−xi

)
∏n+1

i=1

(
Sn+1 − 1

xi

)
 .

�

Lemma 2.3. [6, p. 259]. Let f(x) = f(x1, x2, . . . , xn) be symmetric and have continuous
partial derivatives onIn, whereI is an open interval. Thenf : In → R is Schur-convex if and
only if

(2.3) (xi − xj)

(
∂f

∂xi

− ∂f

∂xj

)
≥ 0

on In. It is strictly Schur-convex if (2.3) is a strict inequality forxi 6= xj, 1 ≤ i, j ≤ n.

Sincef(x) is symmetric, Schur’s condition can be reduced as [7, p. 57]

(2.4) (x1 − x2)

(
∂f

∂x1

− ∂f

∂x2

)
≥ 0,

andf is strictly Schur-convex if (2.4) is a strict inequality forx1 6= x2. The Schur condition
that guarantees a symmetric function being Schur-concave is the same as (2.3) or (2.4) except
the direction of the inequality.

In Schur’s condition, the domain off(x) does not have to be a Cartesian productIn. Lemma
2.3 remains true if we replaceIn by a setA ⊆ Rn with the following properties ([7, p. 57]):

(i) A is convex and has a nonempty interior;
(ii) A is symmetric in the sense thatx ∈ A implies Px ∈ A for any n × n permutation

matrixP .
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3. REFINEMENT OF THE HARMONIC -GEOMETRIC M EAN I NEQUALITY

The goal of this section is to obtain the basic inequality ofHr
n(x), and give a refinement of

the Harmonic-Geometric mean inequality.

Theorem 3.1.Letx ∈ Rn
+ = {x|x = (x1, x2, . . . , xn)|xi > 0, i = 1, 2, . . . , n}, then

(3.1) Hr+1
n (x) ≤ Hr

n(x), r = 1, 2, . . . , n− 1.

Proof. By the arithmetic-geometric mean inequality and the monotonicity of the functiony =
ln x, we have(

n

r + 1

)
ln Hr+1

n (x) =
∑

1≤i1<···<ir+1≤n

ln
r + 1∑r+1
j=1 x−1

ij

=
∑

1≤i1<···<ir+1≤n

ln

[
(r + 1)r

(r + 1)
∑r+1

k=1 x−1
ik
−
∑r+1

j=1 x−1
ij

]

=
∑

1≤i1<···<ir+1≤n

ln

 r[∑r+1
j=1

(∑r+1
k=1 x−1

ik
− x−1

ij

)]/
(r + 1)


≤

∑
1≤i1<···<ir+1≤n

ln

 r(∏r+1
j=1

(∑r+1
k=1 x−1

ik
− x−1

ij

)) 1
r+1


=

∑
1≤i1<···<ir+1≤n

ln

[
r+1∏
j=1

r∑r+1
k=1 x−1

ik
− x−1

ij

] 1
r+1

=
1

r + 1

∑
1≤i1<···<ir+1≤n

[
r+1∑
j=1

ln
r∑r+1

k=1 x−1
ik
− x−1

ij

]

=
1

r + 1

n∑
j=1

i1,...,ir 6=j∑
1≤i1<···<ir≤n

ln
r∑r

k=1 x−1
ik

.

Let

Sj =

i1,...,ir 6=j∑
1≤i1<···<ir≤n

ln
r∑r

k=1 x−1
ik

, j = 1, 2, . . . , n.

We can easily get
n∑

j=1

Sj = (n− r)
∑

1≤i1<···<ir≤n

ln
r∑r

k=1 x−1
ik

= (n− r)
(n

r

)
ln Hr

n(x).

Thus (
n

r + 1

)
ln Hr+1

n (x) ≤ n− r

r + 1

(n

r

)
ln Hr

n(x) =

(
n

r + 1

)
ln Hr

n(x),

or
Hr+1

n (x) ≤ Hr
n(x), r = 1, 2, . . . , n− 1.

�

Corollary 3.2. Letx ∈ Rn
+ = {x|x = (x1, x2, . . . , xn)|xi > 0, i = 1, 2, . . . , n}, then

(3.2) Hn(x) ≤ Hn−1
n (x) ≤ · · · ≤ H2

n(x) ≤ H1
n(x) = Gn(x).
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Remark 3.3. The corollary refines the harmonic-geometric mean inequality.

4. SCHUR-CONVEXITY OF THE FUNCTION Hr
n(x)

In this section, we investigate the Schur-convexity of the functionHr
n(x), and establish sev-

eral analytic inequalities by use of the theory of majorization.

Theorem 4.1. Let Rn
+ = {x|x = (x1, x2, . . . , xn)|xi > 0, i = 1, 2, . . . , n}, then the function

Hr
n(x) is Schur-concave inRn

+.

Proof. It is clear thatHr
n(x) is symmetric and has continuous partial derivatives onRn

+. By
Lemma 2.3, we only need to prove

(x1 − x2)

(
∂Hr

n(x)

∂x1

− ∂Hr
n(x)

∂x2

)
≤ 0.

As matter of fact, we can easily derive

ln Hr
n(x) =

1(
n
r

) ∑
2≤i1<···<ir≤n

ln
r∑r

j=1 x−1
ij

+
∑

2≤i1<···<ir−1≤n

ln
r

x−1
1 +

∑r−1
j=1 x−1

ij

.

Differentiatingln Hr
n(x) with respect tox1, we have

∂Hr
n(x)

∂x1

=
Hr

n(x)(
n
r

)
 ∑

2≤i1<···<ir−1≤n

1

x−1
1 +

∑r−1
j=1 x−1

ij

 · 1

x2
1

=
Hr

n(x)(
n
r

) · 1

x2
1

 ∑
3≤i1<···<ir−1≤n

1

x−1
1 +

∑r−1
j=1 x−1

ij


+

∑
3≤i1<···<ir−2≤n

1(
x−1

1 + x−1
2 +

∑r−2
j=1 x−1

ij

)
 .

Similar to the above, we can also obtain

∂Hr
n(x)

∂x2

=
Hr

n(x)(
n
r

)
 ∑

2≤i1<···<ir−1≤n

1

x−1
2 +

∑r−1
j=1 x−1

ij

 · 1

x2
2

=
Hr

n(x)(
n
r

) · 1

x2
2

 ∑
3≤i1<···<ir−1≤n

1

x−1
2 +

∑r−1
j=1 x−1

ij


+

∑
3≤i1<···<ir−2≤n

1(
x−1

1 + x−1
2 +

∑r−2
j=1 x−1

ij

)
 .
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Thus

(x1 − x2)

(
∂Hr

n(x)

∂x1

− ∂Hr
n(x)

∂x2

)

= (x1 − x2)
Hr

n(x)(
n
r

)
 ∑

2≤i1<···<ir−1≤n

1

x−1
1 +

∑r−1
j=1 x−1

ij

 · 1

x2
1

−

 ∑
2≤i1<···<ir−1≤n

1

x−1
2 +

∑r−1
j=1 x−1

ij

 · 1

x2
2

+
∑

3≤i1<···<ir−2≤n

1(
x−1

1 + x−1
2 +

∑r−2
j=1 x−1

ij

) ( 1

x2
1

− 1

x2
2

)
= −(x1 − x2)

2

(x1 + x2)

x2
1x

2
2

∑
3≤i1<···<ir−2≤n

1

x−1
1 + x−1

2 +
∑r−2

j=1 x−1
ij

+
∑

2≤i1<···<ir−1≤n

1 + (x1 + x2)
∑r−1

j=1 x−1
ij

x2
1x

2
2

(
x−1

1 +
∑r−1

j=1 x−1
ij

)(
x−1

2 +
∑r−1

j=1 x−1
ij

)


≤ 0.

�

Corollary 4.2. Letxi > 0, i = 1, 2, . . . , n, n ≥ 2 ,and
∑n

i=1 xi = s, c > 0, then

(4.1)
Hr

n(c + x)

Hr
n(x)

≥
(nc

s
+ 1
) 1

(n
r )

, r = 1, 2, . . . , n,

wherec + x = (c + x1, c + x2, . . . , c + xn).

Proof. By [9], we have

c + x

nc + s
=

(
c + x1

nc + s
, . . . ,

c + xn

nc + s

)
≺
(x1

s
, . . . ,

xn

s

)
=

x

s
.

Using Theorem 4.1, we obtain

Hr
n

(
c + x

nc + s

)
≥ Hr

n

(x

s

)
.

Or
Hr

n(c + x)

Hr
n(x)

≥
(nc

s
+ 1
) 1

(n
r )

.

�

Corollary 4.3. Letxi > 0, i = 1, 2, . . . , n, n ≥ 2, and
∑n

i=1 xi = s, c ≥ s, then

(4.2)
Hr

n(c− x)

Hr
n(x)

≥
(nc

s
− 1
) 1

(n
r )

, r = 1, 2, . . . , n,

wherec− x = (c− x1, c− x2, . . . , c− xn).
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Proof. By [9], we have

c− x

nc− s
=

(
c− x1

nc− s
, . . . ,

c− xn

nc− s

)
≺
(x1

s
, . . . ,

xn

s

)
=

x

s
.

Using Theorem 4.1, we obtain

Hr
n

(
c− x

nc− s

)
≥ Hr

n

(x

s

)
,

or
Hr

n(c− x)

Hr
n(x)

≥
(nc

s
− 1
) 1

(n
r )

.

�

Remark 4.4. Let c = s = 1, we can obtain

Hr
n(1− x)

Hr
n(x)

≥ (n− 1)
1

(n
r ) , r = 1, 2, . . . , n.

In particular,
Hn(1− x)

Hn(x)
≥ (n− 1),

Gn(1− x)

Gn(x)
≥ n
√

n− 1.

5. SOME “K Y FAN” T YPE I NEQUALITIES

In this section, some “Ky Fan” type inequalities are established, the Ky Fan inequality is
generalized.

Theorem 5.1.Assume that0 < xi ≤ 1
2
, i = 1, 2, . . . , n, then

(5.1)
Hr+1

n (x)

Hr+1
n (1− x)

≤
[

Hr
n(x)

Hr
n(1− x)

] 1
r

, r = 1, 2, . . . , n− 1.

Proof. Set

ϕr =
Hr

n(x)

Hr
n(1− x)

=
∏

1≤i1<···<ir≤n

∑r
j=1

1
1−xij∑r

j=1
1

xij

 1

(n
r )

.

By Lemma 2.2 and the monotonicity of the functiony = ln x , we have(
n

r + 1

)
ln φr+1 =

∑
1≤i1<···<ir+1≤n

ln

∑r+1
j=1

1
1−xij∑r+1

j=1
1

xij

=
∑

1≤i1<···<ir+1≤n

ln

∑r+1
j=1

(∑r+1
k=1

1
1−xik

− 1
1−xij

)
∑r+1

j=1

(∑r+1
k=1

1
xik

− 1
xij

)
≤

∑
1≤i1<···<ir+1≤n

ln

r+1∏
j=1

∑r+1
k=1

1
1−xik

− 1
1−xij∑r+1

k=1
1

xik
− 1

xij

 1
r(r+1)

=
1

r(r + 1)

n∑
j=1

i1,...,ir 6=j∑
1≤i1<···<ir≤n

ln

∑r
k=1

1
1−xik∑r

k=1
1

xik

.
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Similar to Theorem 3.1, we can derive(
n

r + 1

)
ln φr+1 ≤

1

r(r + 1)
(n− r)

(n

r

)
ln φr =

1

r

(
n

r + 1

)
ln φr.

Thus

(φr)
1
r ≥ φr+1,

or

Hr+1
n (x)

Hr+1
n (1− x)

≤
[

Hr
n(x)

Hr
n(1− x)

] 1
r

, r = 1, 2, . . . , n− 1.

�

Remark 5.2. By Theorem 5.1, we can obtain

(5.2)
H2

n(x)

H2
n(1− x)

≤ H1
n(x)

H1
n(1− x)

=
Gn(x)

Gn(1− x)
≤ An(x)

An(1− x)
.

This is a generalization of the “Ky Fan” inequality.

By Lemma 2.1 and the proof of Theorem 3.1, we have the following

Theorem 5.3. If 0 < xi ≤ 1
2
, i = 1, 2, . . . , n, then

(5.3)

∏n
i=1(xi)∏n

i=1(1− xi)
≤ Hn(x)

Hn(1− x)
≤ Gn(x)

Gn(1− x)
≤ An(x)

An(1− x)
.

The inequality (5.3) generalizes the inequality (1.2).

Theorem 5.4. If 0 < xi ≤ 1
2
, i = 1, 2, . . . , n, then

(5.4)
Hr

n(x)

Hr
n(1− x)

≤ H1
n(x)

H1
n(1− x)

=
Gn(x)

Gn(1− x)
≤ An(x)

An(1− x)
, r = 2, . . . , n.

Proof. Set

ϕr =
Hr

n(x)

Hr
n(1− x)

=
∏

1≤i1<···<ir≤n

∑r
j=1

1
1−xij∑r

j=1
1

xij

 1

(n
r )

.

By Lemma 2.1 and the monotonicity of the functiony = ln x , we have

(n

r

)
ln φr =

∑
1≤i1<···<ir+1≤n

ln

∑r
j=1

1
1−xij∑r

j=1
1

xij

≤
∑

1≤i1<···<ir+1≤n

ln

∏r
j=1

1
1−xij∏r

j=1
1

xij

 1
r

=
1

r

∑
1≤i1<···<ir≤n

r∑
j=1

ln

1
1−xij

1
xij

.
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By knowledge of combination, we can easily find(n

r

)
ln φr ≤

1

r
ln

[
n∏

i=1

1
1−xi

1
xi

](n−1
r−1 )

=
1

r

(
n− 1

r − 1

)
ln

[
n∏

i=1

1
1−xi

1
xi

]

=
1

r

(
n− 1

r − 1

)
ln φ1 =

(n

r

)
ln φ1.

Thus
φr ≤ φ1, r = 2, . . . , n,

or

(5.5)
Hr

n(x)

Hr
n(1− x)

≤ Gn(x)

Gn(1− x)
, r = 2, . . . , n.

�

The inequality (5.5) generalizes the “Ky Fan” inequality.
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