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ABSTRACT. Let A be the class of function$ : f(z) = 2+ Y., a,2" which are analytic

in the unit diskE. We introduce the clasBy (), «, p) C A and study some of their interesting
properties such as inclusion results and covering theorem. We also consider an integral operator
for these classes.
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1. INTRODUCTION

Let A denote the class of functions
Fif(z) =2+ anz"
n=2

which are analytic in the unit disk = {z : |z| < 1} and letS C A be the class of functions
univalent inE.
Let P(p) be the class of functiong =) analytic in £ satisfying the properties(0) = 1 and

1.1) /2” Rep(z) — p

0 L=p
wherez = re'd, k > 2and0 < p < 1. This class has been introduced(in [7]. We note that,
for p = 0, we obtain the clas$) defined and studied in[[8], and fpor= 0, £ = 2, we have the
well known classP of functions with positive real part. The cake-= 2 gives the clas#(p) of
functions with positive real part greater than

'd@ < km,
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From [1.1) we can easily deduce that P (p) if, and only if, there exisp,, p» € P(p) such
that, forF,

12 po = (5+3)me - (5-3) e,

Let f andg be analytic inE with f(z) =Y~ a,z™ andg(z) =Y °_ b,z in E. Then the
convolutionx (or Hadamard Product) gf andg is defined by

(fx9)(z) = iambmzm, me Ny =1{0,1,2,...}.

Definition 1.1. Let f € A. Thenf € By (), a, p) if and only if
FENT | 21(=) ()N
(1—/\)< . ) + A B ( . ) } € P.(p), z€E,

wherea > 0, A > 0,k > 2 and0 < p < 1. The powers are understood as principal values.

(1.3)

For £ = 2 and with different choices of, « andp, these classes have been studiedin|2, 3,
4,[10]. In particularBs(1, «, p) is the class of Bazilevic functions studied lin [1].
We shall need the following results.

Lemma 1.1([9]). If p(2) is analytic inE with p(0) = 1 and if X is a complex number satisfying
ReA >0, (A #0), then

Rel[p(z) + \zp'(2)] > 8 (0<B<1)
implies
Rep(z) > B+ (1 - 0)(2y — 1),
wherev is given by

1
V= Vs = / (1+ 7).
0

Lemma 1.2([5]). Letc > 0,A > 0,p < L andp(z) = 1 + b1z + by2% + - - - be analytic inE.
LetRe[p(z) 4+ cAzp/(2)] > pin E, then
1

Re[p(2) +c2p'(2)] 2 2p =1+ 2(1 - p) (1 — l) - /o1 =

A e 1—|—uu

This result is sharp.

2. MAIN RESULTS

«

Theorem 2.1.LetA\,a >0, 0 < p < landletf € b(\, o, p). Then(f(j)> € Py(p1), where
p1 1S given by

(2.1) pr=p+(1—-p)(2y-1),

and 1
y= / (1 +t3)1 dt.
0
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Proof. Let

(1) - (o= (1)
Thenp(z) = 1+ aasz + - - - is analytic inE, and
(2.2) (f(2)" = 2°p(2).

Differentiation of [2.2) and some computation give us

(1— ) (@)a + AZ}C;S) (f(zz))”‘ = p(2) + gzp'(z).

Sincef € Bi(A, o, p), s0{p(z) + 22p/(2)} € Pi(p) for z € E. This implies that

A
Re {pz-(Z) + azpé(Z)] >p, =12
Using Lemmd 1]1, we see th&ie{p;(z)} > pi, wherep, is given by [2.1). Consequently
p € Pr(py) for z € E, and the proof is complete. O
Corollary 2.2. Let f = zF] and f € Ba(A, 1, p). ThenF) is univalent inE.
Proceeding as in Theordm P.1 and using Lerpmi 1.2, we have the following.

Theorem 2.3.Leta > 0, A > 0, 0 < p < 1 and letf € Biy(\ o, p). Then%(ﬂj))a S
Pi(p2), where

—1

1—0p 1\ « 1u%
=2p—1+—+2(1— 1—— = d
p2=2p =1+ ——+2( p)( A)A/OHuU

This result is sharp.

For k = 2, we note thatf is univalent, see [1].

Theorem 2.4.Let, fora > 0,A >0, 0 < p <1, f € Bg(\ a,p) and define/ (f) : A — A
as

Q=

2.3) I(f) = F(z) = Fz“i /Ozti“‘ (f(z))o‘dt} . -€eE.

ThenF € Bi(a), a,p) for z € E, wherep; is given by[(2.]1).
Proof. Differentiating [2.8), we have

o) (2 - (12

Now, using Theorern 2|1, we obtain the required result. O

Theorem 2.5. Let
f:flz) =2+ Zanz” € Br(\ a, p).

n=2
Then
k(1 —p)

la,| <
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The functionf, , ,(z) defined as

Frap(2)\* _ a k1 %711‘1‘(1—2,0)UZ
( z ) _X/O {<Z+§>u 1—wuz

E 1\ a —(1—
(R 1Y s 1—(1-2p)uz du
4 2 1+ wuz

shows that this inequality is sharp.
Proof. Sincef € Bi(\, a, p), SO

—-A) (1 + i anz"_1> + A (1 + i nanz"_1> (1 + i anz"_1>
n=2 n=2 =
(1 + Z Cn2 ) S Pk

It is known that|c,| < k(1 — p) for all » and using this inequality, we prove the required
result. O

Different choices of:, A\, « andp yield several known results.

Theorem 2.6(Covering Theorem)Let A > 0 and0 < p < 1. Let f = zF| € By(\, 1, p). If
D is the boundary of the image &f under F}, then every point oD has a distance of at least

A+1 ..
B from the origin.

Proof. Let F(z) # wy, wo # 0. Thenf,(z) = w“;(f—;fa) is univalent inE sinceF; is univalent.
Let

2) :z+2anz”, Fi(z) :z—l—anz”.
n=2 n=2
Thena, = 2b,. Also
1
=1 s )
Wo
and sojb, + | < 2. Since, by Theorerirzzl Bhy| <

we obtain|wy| > A O

1+)\7 3+2A—p

Theorem 2.7.For eacha > 0, Bi(\1, o, p) C Bi(A2, a, p) for 0 < Ay < Ap.

Proof. For A\, = 0, the proof is immediate. Lex, > 0 and letf € Bx(\,«, p). Then there
exist two functionshy, hy € Py(p) such that, from Definitioh 1}1 and Theorém|2.1,

(1= (M)a G <M)a = h(2),

z f(z) \ =z
and .
Hence
O @) (1) * _ Ny Ay
Since the clas#(p) is a convex set, seel[6], it follows that the right hand sid¢ of (2.4) belongs

to P.(p) and this proves the result. O
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