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Abstract

Let A be the class of functions f : f(z) = z +
∑∞

n=2 anzn which are analytic in
the unit disk E. We introduce the class Bk(λ, α, ρ) ⊂ A and study some of their
interesting properties such as inclusion results and covering theorem. We also
consider an integral operator for these classes.
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1. Introduction
LetA denote the class of functions

f : f(z) = z +
∞∑

n=2

anz
n

which are analytic in the unit diskE = {z : |z| < 1} and letS ⊂ A be the class
of functions univalent inE.

Let Pk(ρ) be the class of functionsp(z) analytic inE satisfying the proper-
tiesp(0) = 1 and

(1.1)
∫ 2π

0

∣∣∣∣Re p(z)− ρ

1− ρ

∣∣∣∣ dθ ≤ kπ,

wherez = reiθ, k ≥ 2 and0 ≤ ρ < 1. This class has been introduced in [7].
We note that, forρ = 0, we obtain the classPk defined and studied in [8], and
for ρ = 0, k = 2, we have the well known classP of functions with positive
real part. The casek = 2 gives the classP (ρ) of functions with positive real
part greater thanρ.

From (1.1) we can easily deduce thatp ∈ Pk(ρ) if, and only if, there exist
p1, p2 ∈ P (ρ) such that, forE,

(1.2) p(z) =

(
k

4
+

1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z).

Let f andg be analytic inE with f(z) =
∑∞

m=0 amzm andg(z) =
∑∞

m=0 bmzm
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in E. Then the convolution? (or Hadamard Product) off andg is defined by

(f ? g)(z) =
∞∑

m=0

ambmzm, m ∈ N0 = {0, 1, 2, . . .}.

Definition 1.1. Letf ∈ A. Thenf ∈ Bk(λ, α, ρ) if and only if

(1.3)

[
(1− λ)

(
f(z)

z

)α

+ λ
zf ′(z)

f(z)

(
f(z)

z

)α]
∈ Pk(ρ), z ∈ E,

whereα > 0, λ > 0, k ≥ 2 and 0 ≤ ρ < 1. The powers are understood as
principal values.

For k = 2 and with different choices ofλ, α andρ, these classes have been
studied in [2, 3, 4, 10]. In particularB2(1, α, ρ) is the class of Bazilevic func-
tions studied in [1].

We shall need the following results.

Lemma 1.1 ([9]). If p(z) is analytic inE with p(0) = 1 and if λ is a complex
number satisfyingRe λ ≥ 0, (λ 6= 0), then

Re[p(z) + λzp′(z)] > β (0 ≤ β < 1)

implies
Re p(z) > β + (1− β)(2γ − 1),

whereγ is given by

γ = γ
Re λ

=

∫ 1

0

(1 + tRe λ)−1dt.
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Lemma 1.2 ([5]). Let c > 0, λ > 0, ρ < 1 andp(z) = 1 + b1z + b2z
2 + · · · be

analytic inE. LetRe[p(z) + cλzp′(z)] > ρ in E, then

Re[p(z) + czp′(z)] ≥ 2ρ− 1 + 2(1− ρ)

(
1− 1

λ

)
1

cλ

∫ 1

0

u
1

cλ
−1

1 + u
du.

This result is sharp.
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2. Main Results
Theorem 2.1.Letλ, α > 0, 0 ≤ ρ < 1 and letf ∈ bk(λ, α, ρ). Then

(
f(z)

z

)α

∈
Pk(ρ1), whereρ1 is given by

(2.1) ρ1 = ρ + (1− ρ)(2γ − 1),

and

γ =

∫ 1

0

(
1 + t

λ
α

)−1

dt.

Proof. Let(
f(z)

z

)α

= p(z) =

(
k

4
+

1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z).

Thenp(z) = 1 + αa2z + · · · is analytic inE, and

(2.2) (f(z))α = zαp(z).

Differentiation of (2.2) and some computation give us

(1− λ)

(
f(z)

z

)α

+ λ
zf ′(z)

f(z)

(
f(z)

z

)α

= p(z) +
λ

α
zp′(z).

Sincef ∈ Bk(λ, α, ρ), so{p(z) + λ
α
zp′(z)} ∈ Pk(ρ) for z ∈ E. This implies

that

Re

[
pi(z) +

λ

α
zp′i(z)

]
> ρ, i = 1, 2.

Using Lemma1.1, we see thatRe{pi(z)} > ρ1, whereρ1 is given by (2.1).
Consequentlyp ∈ Pk(ρ1) for z ∈ E, and the proof is complete.
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Corollary 2.2. Letf = zF ′
1 andf ∈ B2(λ, 1, ρ). ThenF1 is univalent inE.

Proceeding as in Theorem2.1and using Lemma1.2, we have the following.

Theorem 2.3. Let α > 0, λ > 0, 0 ≤ ρ < 1 and letf ∈ Bk(λ, α, ρ). Then
zf ′(z)
f(z)

(f(z)
z

)α ∈ Pk(ρ2), where

ρ2 = 2ρ− 1 +
1− ρ

λ
+ 2(1− ρ)

(
1− 1

λ

)
α

λ

∫ 1

0

u
α
λ
−1

1 + u
du.

This result is sharp.

Fork = 2, we note thatf is univalent, see [1].

Theorem 2.4. Let, forα > 0, λ > 0, 0 ≤ ρ < 1, f ∈ Bk(λ, α, ρ) and define
I(f) : A −→ A as

(2.3) I(f) = F (z) =

[
1

λ
z

α− 1
λ

∫ z

0

t
1
λ
−1−α

(f(z))α dt

] 1
α

, z ∈ E.

ThenF ∈ Bk(αλ, α, ρ1) for z ∈ E, whereρ1 is given by (2.1).

Proof. Differentiating (2.3), we have

(1− αλ)

(
F (z)

z

)α

+ αλ
zF ′(z)

F (z)

(
F (z)

z

)α

=

(
f(z)

z

)α

.

Now, using Theorem2.1, we obtain the required result.
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Theorem 2.5.Let

f : f(z) = z +
∞∑

n=2

anz
n ∈ Bk(λ, α, ρ).

Then

|an| ≤
k(1− ρ)

λ + α
.

The functionfλ,α,ρ(z) defined as(
fλ,α,ρ(z)

z

)α

=
α

λ

∫ 1

0

[(
k

4
+

1

2

)
u

α
λ
−1 1 + (1− 2ρ)uz

1− uz

−
(

k

4
− 1

2

)
u

α
λ
−1 1− (1− 2ρ)uz

1 + uz

]
du

shows that this inequality is sharp.

Proof. Sincef ∈ Bk(λ, α, ρ), so

(1− λ)

(
1 +

∞∑
n=2

anz
n−1

)α

+ λ

(
1 +

∞∑
n=2

nanz
n−1

)(
1 +

∞∑
n=2

anz
n−1

)α

= H(z) =

(
1 +

∞∑
n=1

cnz
n

)
∈ Pk(ρ).

It is known that|cn| ≤ k(1− ρ) for all n and using this inequality, we prove the
required result.
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Different choices ofk, λ, α andρ yield several known results.

Theorem 2.6 (Covering Theorem).Letλ > 0 and0 < ρ < 1. Letf = zF ′
1 ∈

B2(λ, 1, ρ). If D is the boundary of the image ofE underF1, then every point
of D has a distance of at least λ+1

(3+2λ−ρ)
from the origin.

Proof. Let F1(z) 6= w0, w0 6= 0. Thenf1(z) = w0F1(z)
w0+F1(z)

is univalent inE since
F1 is univalent. Let

f(z) = z +
∞∑

n=2

anz
n, F1(z) = z +

∞∑
n=2

bnz
n.

Thena2 = 2b2. Also

f1(z) = z +

(
b2 +

1

w0

)
z2 + · · · ,

and so|b2 + 1
w0
| ≤ 2. Since, by Theorem2.5, |b2| ≤ 1−ρ

1+λ
, we obtain|w0| ≥

λ+1
3+2λ−ρ

.

Theorem 2.7.For eachα > 0, Bk(λ1, α, ρ) ⊂ Bk(λ2, α, ρ) for 0 ≤ λ2 < λ1.

Proof. Forλ2 = 0, the proof is immediate. Letλ2 > 0 and letf ∈ Bk(λ1, α, ρ).
Then there exist two functionsh1, h2 ∈ Pk(ρ) such that, from Definition1.1and
Theorem2.1,

(1− λ)

(
f(z)

z

)α

+ λ1
zf ′(z)

f(z)

(
f(z)

z

)α

= h1(z),
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and (
f(z)

z

)α

= h2(z).

Hence

(2.4) (1−λ2)

(
f(z)

z

)α

+λ2
zf ′(z)

f(z)

(
f(z)

z

)α

=
λ2

λ1

h1(z)+

(
1− λ2

λ1

)
h2(z).

Since the classPk(ρ) is a convex set, see [6], it follows that the right hand side
of (2.4) belongs toPk(ρ) and this proves the result.
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