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ABSTRACT. Let α ∈ [0, 1] be a fixed number andf = (fn) be a nonnegative submartingale
bounded from above by1. Assumeg = (gn) is a process satisfying, with probability1,

|dgn| ≤ |dfn|, |E(dgn+1|Fn)| ≤ αE(dfn+1|Fn), n = 0, 1, 2, . . . .

We provide a sharp bound for the first moment of the processg. A related estimate for stochastic
integrals is also established.
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1. I NTRODUCTION

Let (Ω,F , P) be a probability space and let(Fn)n≥0 be a filtration, a nondecreasing sequence
of sub-σ-algebras ofF . Throughout the paper,α is a fixed number belonging to the interval
[0, 1]. Let f = (fn)n≥0, g = (gn)n≥0 denote adapted real-valued integrable processes, such
thatf is a submartingale andg is α-subordinate tof : for anyn = 0, 1, 2, . . . we have, almost
surely,

(1.1) |dgn| ≤ |dfn|
and

(1.2) |E(dgn+1|Fn)| ≤ αE(dfn+1|Fn).

Heredf = (dfn)n≥0 anddg = (dgn) stand for the difference sequences off andg, given by

df0 = f0, dfn = fn − fn−1, dg0 = g0, dgn = gn − gn−1, n = 1, 2, . . . .

The main objective of this paper is to provide some bounds on the size of the processg under
some additional assumptions on the boundedness off . Let us provide some information about
related estimates which have appeared in the literature. LetΦ be an increasing convex function
on [0,∞) such thatΦ(0) = 0, the integral

∫ ∞
0

Φ(t)e−tdt is finite andΦ is twice differentiable

This result was obtained while the author was visiting Université de Franche-Comté in Besançon, France.

055-08

mailto:ados@mimuw.edu.pl
http://www.ams.org/msc/


2 ADAM OSȨKOWSKI

on (0,∞) with a strictly convex first derivative satisfyingΦ′(0+) = 0. For example, one can
takeΦ(t) = tp, p > 2, or Φ(t) = eat − 1− at for a ∈ (0, 1).

In [2] Burkholder proved a sharpΦ-inequality

sup
n

EΦ(|gn|) <
1

2

∫ ∞

0

Φ(t)e−tdt

under the assumption thatf is a martingale (and so isg, by (1.2)), which is bounded in absolute
value by1. This inequality was later extended in [5] to the submartingale case: iff is a non-
negative submartingale bounded from above by1 andg is 1-subordinate tof , then we have a
sharp estimate

sup
n

EΦ

(
|gn|
2

)
<

2

3

∫ ∞

0

Φ(t)e−tdt.

Finally, Kim and Kim proved in [8], that if the1-subordination is replaced byα-subordination,
then we have

(1.3) sup
n

EΦ

(
|gn|

1 + α

)
<

1 + α

2 + α

∫ ∞

0

Φ(t)e−tdt,

if f is a nonnegative submartingale bounded by1.
There are other related results, concerning tail estimates ofg. Let us state here Hammack’s

inequality, an estimate we will need later on. In [7] it is proved that iff is a submartingale
bounded in absolute value by1 andg is 1-subordinate tof , then, forλ ≥ 4,

(1.4) P
(

sup
n
|gn| ≥ λ

)
≤ (8 +

√
2)e

12
exp(−λ/4).

For other similar results, see the papers by Burkholder [3] and Hammack [7].
A natural question arises: what can be said about theΦ-inequalities for other functionsΦ?

The purpose of this paper is to give the answer forΦ(t) = t. The main result can be stated as
follows.

Theorem 1.1. Supposef is a nonnegative submartingale such thatsupn fn ≤ 1 almost surely
and letg beα-subordinate tof . Then

(1.5) ||g||1 ≤
(α + 1)(2α2 + 3α + 2)

(2α + 1)(α + 2)
.

The constant on the right is the best possible.

In the special caseα = 1, this leads to an interesting inequality for stochastic integrals.
Suppose(Ω,F , P) is a complete probability space, filtered by a nondecreasing family(Ft)t≥0

of sub-σ-algebras ofF and assume thatF0 contains all the eventsA with P(A) = 0. Let X =
(Xt)t≥0 be an adapted nonnegative right-continuous submartingale with left limits, satisfying
P(Xt ≤ 1) = 1 for all t and letH = (Ht) be a predictable process with values in[−1, 1]. Let
Y = (Yt) be an Itô stochastic integral ofH with respect toX, that is,

Yt = H0X0 +

∫
(0,t]

HsdXs.

Let ||Y ||1 = supt ||Yt||1.
Theorem 1.2.For X, Y as above, we have

(1.6) ||Y ||1 ≤
14

9
and the constant is the best possible. It is already the best possible ifH is assumed to take
values in the set{−1, 1}.
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A SUBMARTINGALE INEQUALITY 3

The proofs are based on Burkholder’s techniques which were developed in [2] and [3]. These
enable us to reduce the proof of the submartingale inequality (1.5) to finding a special function,
satisfying some convexity-type properties or, equivalently, to solving a certain boundary value
problem.

The paper is organized as follows. In the next section we introduce the special function
corresponding to the moment inequality and study its properties. Section 3 contains the proofs
of inequalities (1.5) and (1.6). The sharpness of these estimates is postponed to the last section,
Section 4.

2. THE SPECIAL FUNCTION

Let S denote the strip[0, 1]× R. Consider the following subsets ofS.

D1 =

{
(x, y) ∈ S : x ≤ α

2α + 1
, x + |y| > α

2α + 1

}
,

D2 =

{
(x, y) ∈ S : x ≥ α

2α + 1
, −x + |y| > − α

2α + 1

}
,

D3 =

{
(x, y) ∈ S : x ≥ α

2α + 1
, −x + |y| ≤ − α

2α + 1

}
,

D4 =

{
(x, y) ∈ S : x ≤ α

2α + 1
, x + |y| ≤ α

2α + 1

}
.

Consider a functionH : R2 → R defined by

H(x, y) = (|x|+ |y|)1/(α+1)((α + 1)|x| − |y|).
Let u : S → R be given by

u(x, y) = −αx + |y|+ α + exp

[
−2α + 1

α + 1

(
x + |y| − α

2α + 1

)] (
x +

1

2α + 1

)
if (x, y) ∈ D1,

u(x, y) = −αx + |y|+ α + exp

[
−2α + 1

α + 1

(
−x + |y|+ α

2α + 1

)]
(1− x)

if (x, y) ∈ D2,

u(x, y) = −(1− x) log

[
2α + 1

α + 1
(1− x + |y|)

]
+ (α + 1)(1− x) + |y|

if (x, y) ∈ D3 and

u(x, y) = − α2

(2α + 1)(α + 2)

[
1 +

(
2α + 1

α

)α+2
α+1

H(x, y)

]
+

2α2

2α + 1
+ 1

if (x, y) ∈ D4.
The key properties of the functionu are described in the two lemmas below.

Lemma 2.1. The following statements hold true.

(i) The functionu has continuous partial derivatives in the interior ofS.
(ii) We have

(2.1) ux ≤ −α|uy|.
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(iii) For any real numbersx, h, y, k such thatx, x + h ∈ [0, 1] and|h| ≥ |k| we have

(2.2) u(x + h, y + k) ≤ u(x, y) + ux(x, y)h + uy(x, y)k.

Proof. Let us first compute the partial derivatives in the interiorsDo
i of the setsDi, i ∈ {1, 2, 3, 4}.

We have thatux(x, y) equals

−α + exp
[
−2α+1

α+1

(
x + |y| − α

2α+1

)] (
−2α+1

α+1
x + α

α+1

)
, (x, y) ∈ Do

1,

−α + exp
[
−2α+1

α+1

(
−x + |y|+ α

2α+1

)] (
−2α+1

α+1
x + α

α+1

)
, (x, y) ∈ Do

2,

log
[

2α+1
α+1

(1− x + |y|)
]
+ 1−x

1−x+|y| − (α + 1), (x, y) ∈ Do
3,

−α
(

2α+1
α

) 1
α+1 (x + |y|)−

α
α+1

(
x + α

α+1
|y|

)
, (x, y) ∈ Do

4,

while uy(x, y) is given by

y′ − 2α+1
α+1

exp
[
−2α+1

α+1

(
x + |y| − α

2α+1

)] (
x + 1

2α+1

)
y′, (x, y) ∈ Do

1,

y′ − 2α+1
α+1

exp
[
−2α+1

α+1

(
−x + |y|+ α

2α+1

)]
(1− x)y′, (x, y) ∈ Do

2,

y
1−x+|y| , (x, y) ∈ Do

3,(
2α+1

α

) 1
α+1 (x + |y|)−

α
α+1 α

α+1
y, (x, y) ∈ Do

4.

Herey′ = y/|y| is the sign ofy. Now we turn to the properties (i) - (iii).
(i) This follows immediately by the formulas forux, uy above.
(ii) We have thatux(x, y) + α|uy(x, y)| equals

− exp
[
−2α+1

α+1

(
x + |y| − α

2α+1

)]
(2α + 1)x, (x, y) ∈ D1,

− exp
[
−2α+1

α+1

(
−x + |y|+ α

2α+1

)] (
2α+1
α+1

x(1− α) + 2α2

α+1

)
, (x, y) ∈ D2,

−α + log
[

2α+1
α+1

(1− x + |y|)
]
− |y|(1−α)

1−x+|y| , (x, y) ∈ D3,

−α
(

2α+1
α

)1/(α+1)
(x + |y|)−α/(α+1)x, (x, y) ∈ D4

and all the expressions are clearly nonpositive.
(iii) There is a well-known procedure to establish (2.2). Fixx, y, h andk satisfying the

conditions of (iii) and consider a functionG = Gx,y,h,k : t 7→ u(x + th, y + tk), defined on
{t : 0 ≤ x + th ≤ 1}. The inequality (2.2) readsG(1) ≤ G(0) + G′(0), so in order to prove it,
it suffices to show thatG is concave. Sinceu is of classC1, it is enough to checkG′′(t) ≤ 0 for
thoset, for which (x + th, y + tk) belongs to the interior ofD1, D2, D3 or D4. Furthermore,
by translation argument (we haveG′′

x,y,h,k(t) = G′′
x+th,y+tk,h,k(0)), we may assumet = 0.

If (x, y) ∈ Do
1, we have

G′′(0) =
2α + 1

α + 1
exp

[
−2α + 1

α + 1

(
x + |y| − α

2α + 1

)]
× (h + k)

{[
2α + 1

α + 1

(
x +

1

2α + 1

)
− 2

]
h +

2α + 1

α + 1

(
x +

1

2α + 1

)
k

}
,
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which is nonpositive; this is due to

|h| ≥ |k|, 2α + 1

α + 1

(
x +

1

2α + 1

)
− 2 ≤ −1 and

2α + 1

α + 1

(
x +

1

2α + 1

)
≤ 1.

If (x, y) ∈ Do
2, then

G′′(0) =
2α + 1

α + 1
exp

[
−2α + 1

α + 1

(
−x + |y|+ α

2α + 1

)]
× (h− k)

{[
2α + 1

α + 1
(1− x)− 2

]
h− 2α + 1

α + 1
(1− x)k

}
≤ 0,

since

|h| ≥ |k|, 2α + 1

α + 1
(1− x)− 2 ≤ −1 and

2α + 1

α + 1
(1− x) ≤ 1.

For (x, y) ∈ Do
3 we have

G′′(0) =
−h + k

1− x + |y|

[(
2− 1− x

1− x + |y|

)
h +

1− x

1− x + |y|
k

]
≤ 0,

because

|h| ≥ |k|, 2− 1− x

1− x + |y|
≥ 1 and

1− x

1− x + |y|
≤ 1.

Finally, for (x, y) ∈ Do
4, this follows by the result of Burkholder: the functiont 7→ −H(x +

th, y + tk) is concave, see page 17 of [3]. �

Lemma 2.2. Let (x, y) ∈ S.

(i) We have

(2.3) u(x, y) ≥ |y|.

(ii) If |y| ≤ x, then

(2.4) u(x, y) ≤ u(0, 0) =
(α + 1)(2α2 + 3α + 2)

(2α + 1)(α + 2)
.

Proof. (i) Since for any(x, y) ∈ S the functionG(t) = u(x + t, y + t) defined on{t : x + t ∈
[0, 1]} is concave, it suffices to prove (2.3) on the boundary of the stripS. Furthermore, by
symmetry, we may restrict ourselves to(x, y) ∈ ∂S satisfyingy ≥ 0. We have, fory ∈
[0, α/(2α + 1)],

u(0, y) ≥ − α2

(2α + 1)(α + 2)
+

2α2

2α + 1
+ 1 ≥ 1 ≥ y,

while for y > α/(2α + 1), the inequalityu(0, y) ≥ y is trivial. Finally, note that we have
u(1, y) = y for y ≥ 0. Thus (2.3) follows.

(ii) As one easily checks, we haveuy(x, y) ≥ 0 for y ≥ 0 and hence, by symmetry, it suffices
to prove (2.4) forx = y. The functionG(t) = u(t, t), t ∈ [0, 1], is concave and satisfies
G′(0+) = 0. ThusG ≤ G(0) and the proof is complete. �
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3. PROOFS OF THE I NEQUALITIES (1.5) AND (1.6)

Proof of inequality (1.5).Let f , g be as in the statement and fix a nonnegative integern. Fur-
thermore, fixβ ∈ (0, 1) and setf ′ = βf , g′ = βg. Clearly,g′ is α-subordinate tof ′, so the
inequality (2.2) implies that, with probability1,

(3.1) u(f ′n+1, g
′
n+1) ≤ u(f ′n, g

′
n) + ux(f

′
n, g

′
n)df ′n+1 + uy(f

′
n, g

′
n)dg′n+1.

Both sides are integrable: indeed, sincef is bounded by1, so isf ′; furthermore, we have
P(|dfk| ≤ 1) = 1 and henceP(|dgk| ≤ 1) = 1 by (1.1). This gives|g′n| = β|gn| ≤ βn
almost surely and now it suffices to note thatu is locally bounded on[0, β]× R and the partial
derivativesux, uy are bounded on this set.

Therefore, taking the conditional expectation of (3.1) with respect toFn yields

E(u(f ′n+1, g
′
n+1)|Fn)

≤ u(f ′n, g
′
n) + ux(f

′
n, g

′
n)E(df ′n+1|Fn) + uy(f

′
n, g

′
n)E(dg′n+1|Fn)

≤ u(f ′n, g
′
n) + ux(f

′
n, g

′
n)E(df ′n+1|Fn) + |uy(f

′
n, g

′
n)| · |E(dg′n+1|Fn)|.

By α-subordination, this can be further bounded from above by

u(f ′n, g
′
n) + (ux(f

′
n, g

′
n) + α|uy(f

′
n, g

′
n)|)E(df ′n+1|Fn) ≤ u(f ′n, g

′
n),

the latter inequality being a consequence of (2.1). Thus, taking the expectation, we obtain

(3.2) Eu(f ′n+1, g
′
n+1) ≤ Eu(f ′n, g

′
n).

Combining this with (2.3), we get

E|g′n| ≤ Eu(f ′n, g
′
n) ≤ Eu(f ′0, g

′
0).

But |g′0| ≤ f ′0 by (1.1); hence (2.4) implies

βE|gn| = E|g′n| ≤
(α + 1)(2α2 + 3α + 2)

(2α + 1)(α + 2)
.

Sincen andβ ∈ (0, 1) were arbitrary, the proof is complete. �

Proof of the inequality (1.6).This follows by an approximation argument. See Section 16 of
[2], where it is shown how similar inequalities for stochastic integrals are implied by their
discrete-time analogues combined with the result of Bichteler [1]. �

4. SHARPNESS

We start with the inequality (1.5). Forα = 0 simply take constant processesf = g =
(1, 1, 1, . . .) and note that both sides are equal in (1.5). Suppose then, thatα is a positive
number. We will construct an appropriate example; this will be done in a few steps. Denote
γ = α/(2α + 1) and fixε > 0.

Step 1. Using the ideas of Choi [6] (which go back to Burkholder’s examples from [4]),
one can show that there exists a pair(F, G) of processes starting from(0, 0) such thatF is a
nonnegative submartingale,G is α-subordinate toF and, for someN , (F3N , G3N), takes values
in the set{(γ, 0), (0,±γ)} with∣∣∣∣P((F3N , G3N) = (γ, 0))− 1

α + 2

∣∣∣∣ ≤ ε,

∣∣∣∣P((F3N , G3N) = (0, γ))− α + 1

2(α + 2)

∣∣∣∣ ≤ ε

andP((F3N , G3N) = (0, γ)) = P((F3N , G3N) = (0,−γ)). Furthermore, ifα = 1, thenG can
be taken to be a±1 transform ofF , that is,dFn = ±dGn for any nonnegative integern.

Step 2.Consider the following two-dimensional Markov process(f, g), with a certain initial
distribution concentrated on the set{(γ, 0), (0, γ), (0,−γ)}. To describe the transity function,

J. Inequal. Pure and Appl. Math., 9(4) (2008), Art. 93, 9 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


A SUBMARTINGALE INEQUALITY 7

let M be a (large) nonnegative integer andδ ∈ (0, γ/3); both numbers will be specified later.
Assume fork = 0, 1, 2, . . . , M−1 and anŷε ∈ {−1, 1} that the conditions below are satisfied.

• The state(0, ε̂(γ + k(α + 1)δ)) leads to(δ, ε̂(γ + k(α + 1)δ + αδ)) with probability1.
• The state(δ, ε̂(γ +k(α+1)δ+αδ)) leads to(0, ε̂(γ +(k+1)(α+1)δ)) with probability

1− δ/γ and to(γ, ε̂(k + 1)(α + 1)δ) with probabilityδ/γ.
• The state(γ, ε̂(k +1)(α+1)δ) leads to(1, ε̂((k +1)(α+1)δ +1−γ)) with probability

(α + 1)δ

2− 2γ + (α + 1)δ

and to(γ − (α + 1)δ/2, ε̂(k + 1/2)(α + 1)δ) with probability

1− (α + 1)δ

2− 2γ + (α + 1)δ
.

• The state(γ − (α + 1)δ/2, ε̂(k + 1/2)(α + 1)δ) leads to(0, ε̂(γ + k(α + 1)δ)) with
probability(α + 1)δ/(2γ) and to(γ, ε̂k(α + 1)δ) with probability1− (α + 1)δ/(2γ).

• The state(γ, 0) leads to(1, 1 − γ) with probabilityγ and to(0,−γ) with probability
1− γ.

• The state(0, ε̂(γ + M(α + 1)δ)) is absorbing.
• The states lying on the linex = 1 are absorbing.

It is easy to check thatf is a nonnegative submartingale bounded by1 andg satisfies

|dgn| ≤ |dfn| and |E(dgn|Fn−1)| ≤ αE(dfn|Fn−1), n = 1, 2, . . .

almost surely. Furthermore, ifα = 1, theng is a±1 transform off : dfn = ±dgn for n ≥ 1
(note that this fails forn = 0).

Step 3.Let (Gn) be the natural filtration generated by the process(f, g) and setK = γ +
M(1 + α)δ. Introduce the stopping timeτ = inf{k : fk = 1 or gk = ±K}. The purpose of
this step is to establish a bound for the first moment ofτ .

Let n be a nonnegative integer and setκ = 4−3δM/(2γ). We will prove that

(4.1) P(τ ≤ n + 2M + 1|Gn) ≥ κγ.

We will need the following estimate

(4.2)

(
1− 3δ

2γ

)M

≥ κ,

which immediately follows from the facts that the functionh : (0, 1/2] → R+ given byh(x) =
(1− x)1/x is decreasing andδ < γ/3.

Let A 6= ∅ be an atom ofGn. We will consider three cases.
1◦. If we havefn = 0 or fn = δ onA, consider the event

A′ = A ∩ {|gn+k+1| ≥ |gn+k|, k = 0, 1, . . . , 2M − 1}.
Clearly, in view of the transity function described above, we haveA′ ⊆ {|gn+2M | = K} ⊆
{τ ≤ n + 2M} and

P (τ ≤ n + 2M + 1|Gn) ≥ P(τ ≤ n + 2M |Gn)

≥ P(A′)

P(A)
≥ (1− δ/γ)M > κ > κγ onA,

in view of (4.2).
2◦. If we havefn = γ or fn = γ − (α + 1)δ/2 onA, consider the event

A′ = A ∩ {|gn+k+1| < |gn+k| or (fn+k+1, gn+k+1) = (1, 1− γ), k = 0, 1, . . .}.
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In other words,A′ contains those paths of(fn+k, gn+k)k≥0, for which |g| decreases to0 and
then, in the next step,(f, g) moves to(1, 1 − γ). It follows from the definition of the transity
function, that, onA, it is impossible for|g| to be decreasing2M + 1 times in a row; that is to
say, we havefn+2M+1 = 1 onA′ and hence

P(τ ≤ n + 2M + 1|Gn) ≥ P(A′)

P(A)

≥
[(

1− (α + 1)δ

2γ

) (
1− (α + 1)δ

2− 2γ + (α + 1)δ

)]M

γ

=

(
1− (2α + 1)δ

(2 + (2α + 1)δ)γ

)M

γ ≥
(

1− 3δ

2γ

)M

γ ≥ κγ,

by (4.2).
3◦. Finally, if fn = 1 onA, we have

P(τ ≤ n + 2M + 1|Gn) = 1 ≥ κγ.

Therefore the inequality (4.1) is established. It implies that

P(τ > n + 2M + 1) ≤ (1− κγ)P(τ > n),

which leads to

(4.3) Eτ ≤ 2M + 1

κγ
<

2K

κγδ
=

2K

γδ
· 43(K−γ)/2γ(1+α).

This implies thatτ < ∞ with probability 1 and the pointwise limitsf∞, g∞ exist almost
surely.

Step 4.Let us establish an exponential bound forP(f∞ = 0). We have{f∞ = 0} ⊆ {g∞ ≥
K} andg is clearly1-subordinate tof (as it isα-subordinate tof ). Therefore, we may use
Hammack’s result (1.4): we have

(4.4) P(f∞ = 0) ≤ (8 +
√

2)e

12
exp(−K/4),

providedK ≥ 4.
Step 5.Consider a process(u(fn, gn))n and observe the following.
• Fory ≥ γ, the functionG(t) = u(t, y − t), t ∈ [0, 1], is continuously differentiable and

linear on[0, γ].
• For y ≥ −γ, the functionG(t) = u(t, y + t), t ∈ [0, 1], is continuously differentiable

and linear on[γ, 1].
• Fory ≥ γ, the functionG(t) = u(t, y + αt), t ∈ [0, 1], satisfiesG′(0+) = 0.
• The functionu is locally bounded onD1 ∪D2 and its partial derivatives are bounded on

this set.
These four facts, together with the symmetry ofu, imply that there exists a constantη(δ,K)

such thatη(δ,K)/δ → 0 asδ → 0 and, for anyn,

u(fn+1, gn+1) ≥ u(fn, gn) + ux(fn, gn)dfn+1 + uy(fn, gn)dgn+1 − η(δ,K)χ{τ>n}.

Both sides of this inequality are integrable: indeed, it suffices to use the fourth property above
and the fact that(fn, gn) is bounded and belongs toD1 ∪D2. Therefore, we may take the
expectation to obtain

Eu(fn+1, gn+1) ≥ Eu(fn, gn)− η(δ,K)P(τ > n).

This implies
Eu(f∞, g∞) ≥ Eu(f0, g0)− η(δ,K)Eτ,
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or

E|g∞|+
{

α + exp

[
−2α + 1

α + 1

(
K − α

2α + 1

)]
· 1

2α + 1

}
P(f∞ = 0)

≥ Eu(f0, g0)− η(δ,K)Eτ.

By (4.4), we may fixK ≥ 4 such that{
α + exp

[
−2α + 1

α + 1

(
K +

α

2α + 1

)]
· 1

2α + 1

}
P(f∞ = 0) ≤ ε.

Now we specify the numbersδ and M , as promised at the beginning of Step 2. By (4.3),
we may chooseδ > 0 such thatη(δ,K)Eτ ≤ ε and, clearly, we may also ensure thatM =
(K − γ)/(1 + α)δ is an integer. Thus we obtain

(4.5) E|g∞| ≥ Eu(f0, g0)− 2ε.

Step 6.Now we put all the things together. Let(f, g) = ((fn, gn))n≥0 be a process which
coincides with(F, G) from Step 1 forn ≤ 3N and which, forn > 3N , conditionally onF3N ,
moves according to the transities described in Step 2. We have, by (4.5),

E|g∞| ≥ Eu(F3N , G3N)− 2ε.

However, sinceu is nonnegative (due to (2.3)),

Eu(F3N , G3N) ≥ u(γ, 0)

(
1

α + 2
− ε

)
+ u(0, γ)

(
α + 1

α + 2
− ε

)
=

(α + 1)(2α2 + 3α + 2)

(2α + 1)(α + 2)
− (u(γ, 0) + u(0, γ))ε.

Sinceε was arbitrary, this implies that the constant in (1.5) is the best possible. This also
establishes the sharpness of the estimate (1.6), even in the special caseH ∈ {−1, 1}: if α = 1,
then the processesf , g constructed above satisfy|dfk| = |dgk| for all k. The proofs of Theorems
1.1 and 1.2 are complete.
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