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ABSTRACT. Leta € [0,1] be a fixed number andl = (f,,) be a nonnegative submartingale
bounded from above by. Assumey = (g,,) is a process satisfying, with probability

ldgn| < |dfnl, [E(dgnt1|Fn)| < aB(dfni1|Fn), n=0,1,2....

We provide a sharp bound for the first moment of the progessrelated estimate for stochastic
integrals is also established.
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1. INTRODUCTION

Let (2, F,P) be a probability space and IgF,,),.>, be a filtration, a nondecreasing sequence
of subw-algebras ofF. Throughout the papes is a fixed number belonging to the interval
0,1]. Let f = (fu)n>0, 9 = (9n)n>0 denote adapted real-valued integrable processes, such
that f is a submartingale anglis a-subordinate tg: foranyn = 0, 1, 2, ... we have, almost
surely,

(1.1) |d9n| < |dfn|
and
(1-2) |E(dgn+1|fn>| < aE(dfn+1|:Fn)'

Heredf = (df,.).>0 anddg = (dg,,) stand for the difference sequencesfaindg, given by

dfo = fo, dfn=fn— fn-1, dgo=go, dgn = gn — gn-1, n=12 ...
The main objective of this paper is to provide some bounds on the size of the pyosedsr
some additional assumptions on the boundednegs bét us provide some information about

related estimates which have appeared in the literatured lbet an increasing convex function
on [0, co) such thatb(0) = 0, the integral[;* ®(t)e~'dt is finite and® is twice differentiable
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on (0, o) with a strictly convex first derivative satisfyin®(0+) = 0. For example, one can
take®(t) =t?,p > 2,0r®(t) = e* — 1 —at fora € (0, 1).
In [2] Burkholder proved a sharp-inequality

1 [e.@]
sup E®(|g,]) < 5/ O(t)e "dt
n 0

under the assumption thatis a martingale (and so is by (1.2)), which is bounded in absolute
value byl. This inequality was later extended i [5] to the submartingale casgisifa non-
negative submartingale bounded from abovel landg is 1-subordinate tgf, then we have a

sharp estimate
n 2 [
sup E® 19n] < —/ d(t)e tdt.
n 2 3 0
Finally, Kim and Kim proved in([8], that if thé-subordination is replaced hy-subordination,
then we have

|9n| 1+O‘/OO —t
1.3 Ed d(t)e tdt
(1.3) sup (1+a <3%a i (t)e "dt,

if fis a nonnegative submartingale bounded by
There are other related results, concerning tail estimates bét us state here Hammack’s
inequality, an estimate we will need later on. [n [7] it is proved thaf i a submartingale
bounded in absolute value hyandg is 1-subordinate tqgf, then, for\ > 4,
(8+V2)e

2
(1.4) P (sup 19| > A) < g exp(=A/4).

For other similar results, see the papers by Burkholder [3] and Hammack [7].

A natural question arises: what can be said abouthtfieequalities for other function®?
The purpose of this paper is to give the answerd@r) = ¢. The main result can be stated as
follows.

Theorem 1.1. Supposeg is a nonnegative submartingale such tkap,, f,, < 1 almost surely
and letg be a-subordinate tof. Then

(a+1)(202 + 3 + 2)
15 <

(L5) lolh < s s D
The constant on the right is the best possible.

In the special case = 1, this leads to an interesting inequality for stochastic integrals.
Suppos€2, F,P) is a complete probability space, filtered by a nondecreasing fathily-
of subv-algebras ofF and assume thaf, contains all the eventd with P(A) = 0. Let X =
(X:):>0 be an adapted nonnegative right-continuous submartingale with left limits, satisfying
P(X; <1)=1foralltandletH = (H;) be a predictable process with valueg-l, 1]. Let
Y = (Y;) be an It6 stochastic integral &f with respect taX, that is,

Y, = Ho Xy + Hy,dX;.
(0,¢]

Let|[Y[[y = sup, |[Yi|]:.

Theorem 1.2.For X, Y as above, we have

14
(1.6) Y[ < 9
and the constant is the best possible. It is already the best possiblasfassumed to take

values in the sef—1, 1}.
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The proofs are based on Burkholder’s techniques which were developed in [2] and [3]. These
enable us to reduce the proof of the submartingale inequfality (1.5) to finding a special function,
satisfying some convexity-type properties or, equivalently, to solving a certain boundary value
problem.

The paper is organized as follows. In the next section we introduce the special function
corresponding to the moment inequality and study its properties. Sé¢tion 3 contains the proofs
of inequalities[(1.6) and (1.6). The sharpness of these estimates is postponed to the last section,
Sectior{ 4.

2. THE SPECIAL FUNCTION
Let S denote the strif0, 1] x R. Consider the following subsets 6f

(0] (6]
D, = Sz < >
1 {(a:,y)e x_2a+1a$+|y| }7

D,

(x7y)€sxz a ,—$+|y|>_ “ 3
20+ 1 200 + 1
=

1
< .
Tyl < 204—!—1}

o
D3 = y)e S x> , — < -
3 {(fcy) T2 5 r+y| < o+
[0

D4:{(x,y)€5':x§ 20;11
Consider a functiorif : R? — R defined by
H(z,y) = (|l + [y (@ + D] —|y]).

Letu : S — R be given by

( )= 4ot 200+ 1 +ll «Q n 1
gy = marmi e e T\ T o 1) | T 2a 11

if (z,y) € Dy,

20 + 1
a—+1

u(z,y) = —ax + |y| + a + exp [—

if (x,y) € Ds,
20+ 1
o+

u(z, ) = —(1 - 2)log {

if (z,y) € D3 and

O{2

20 + 1)(a + 2)

U(I,y) - _(

if (ZL’, y) S D4.
The key properties of the functianare described in the two lemmas below.

Lemma 2.1. The following statements hold true.

(i) The function: has continuous partial derivatives in the interior &f
(i) We have

(2.1) Uy < —aluyl.
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(iii)y For any real numbers, h, y, k such thate, x + h € [0, 1] and|h| > |k| we have
(2.2) wx + h,y + k) <u(z,y) + ug(x,y)h + uy(x, y)k.

Proof. Let us first compute the partial derivatives in the interibfsof the sets;, i € {1, 2, 3, 4}.
We have that.,(x, y) equals

(—Oz + exp [_2a+1 (:13 + |y|

a1 2a+1)] (_ at1 LA a_—H) (z,y) € DY,

—a—i—exp[ 2a+1 ( x+‘y’+2a+1):| (_ a+1$+a_—|—1) (z,y) € D3,

log [2a+1<1 —z+y|)] + ﬁ —(a+1), (z,y) € D3,
| —@ (255 (2 4 [y])"5 5 (2 + 2 lyl) (x,y) € D3,

while u,(x,y) is given by

( o ] [ o
y - 201:11 exp [~ H (2 + ]yl = 2a+1)} (z+ 2a+1> y', (z,y) € Dy,
y — 2tlexp [- 28 (—x + [yl + 329)] 1 —2)y,  (z,y) € D3,
#_Hyp (l’, y) S D§7
T - 0
[ (B5E) = (2 4 yl) "= 55w, (z,y) € D3.
Herey' = y/|y| is the sign ofy. Now we turn to the properties (i) - (iii).
(i) This follows immediately by the formulas far,, u, above.
(if) We have thatu,(x, y) + o|u,(z, y)| equals
(
—exp [~ 25 (2 + |yl - 5:37)] (20 + e, (,y) € D1,

—exp [~ 2§j11 (== + lyl + 2a+1)] <2o?fllx(1 a) + %1) (z,y) € Dy,

o 11—«
—o+ lOg [Q(X_:_ll(l —r+ ‘y’)] - |1yl(x+|y)‘7 (flf,y) € D3a
a 1/(a+1) al(a
o (222) Y (@ 4 Jy)) e/t 0g, (2, ) € Dy

and all the expressions are clearly nonpositive.

(iii) There is a well-known procedure to establish {2.2). FEixy, h and k satisfying the
conditions of (iii) and consider a functioi = G, : t — u(x + th,y + tk), defined on
{t:0 <z +th <1}. The inequality[(2.2) readS(1) < G(0) + G'(0), so in order to prove it,
it suffices to show tha is concave. Since is of classC", it is enough to check (t) < 0 for
thoset, for which (x + th,y + tk) belongs to the interior 0D;, D, D3 or D,. Furthermore,
by translation argument (we had®  , , (t) = G, .5.(0)), we may assume= 0.

If (z,y) € DY, we have

G”(O):2a+1exp {—2&+1(x+|yl— aa ﬂ

a—+1 a+1
20 +1 1 20 + 1 1
htk —2|h k
x (b ){laﬂ <x+2a+1) } T (x+20¢+1) }
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which is nonpositive; this is due to

20 + 1 1 20+ 1 1
h| > |k —2< -1 and <1
2l = 1k, a+1($+2a+1) = a+1($+20¢+1>_

If (z,y) € D3, then

20+ 1 20 + 1 o
1 . . .
G(O)—OH_leXp[ +1(x+|y\+2&+1)}
20+ 1 20+ 1
h— 1—a)—2|h— 1— <
x ( k){{a—i—l( x) }h a—i—l( x)k} 0,
since
2 1 2 1
Bk, 2l —s —2<—1 and 21— p) <1
+1 a+1

For(x,y) € D§ we have

—h+k 1-— 1-—
G,,(O):——I—[<2_—x>h+—xk <0,
1—z 4yl 1—z+ly| L—a+y|
because
1-— 1—
|h| > |k, 2_—;1321 and —mgl.
1—z+ [yl 1—z+y|

Finally, for (z,y) € Dj, this follows by the result of Burkholder: the function— —H (z +
th,y + tk) is concave, see page 17 df [3]. O

Lemma 2.2. Let(x,y) € S.
(i) We have

(2.3) u(z,y) > |yl
(i) If |y| < z, then

(a+1)(2a% + 3a + 2)
2o+ 1)(a+2)

(2.4) u(z,y) < u(0,0) =

Proof. (i) Since for any(z, y) € S the functionG(t) = u(x + ¢,y + t) defined on{t : x + t €
0,1]} is concave, it suffices to prove (2.3) on the boundary of the strig-urthermore, by
symmetry, we may restrict ourselves (o,y) € 0S satisfyingy > 0. We have, fory €
0,/ (2a + 1)],

o? 202

0,y) > — 1>1>9,
u(0.y) 2 (2a+1)(a+2)+2a+1+ ==Y

while for y > a/(2a + 1), the inequalityu(0,y) > y is trivial. Finally, note that we have
u(1,y) =y fory > 0. Thus [2.B) follows.

(i) As one easily checks, we hawg(z,y) > 0 for y > 0 and hence, by symmetry, it suffices
to prove [2.4) forr = y. The functionG(t) = u(t,t), t € [0,1], is concave and satisfies
G'(0+) = 0. ThusG < G(0) and the proof is complete. O
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3. PROOFs OF THE INEQUALITIES (1.5)AnD (1.6)

Proof of inequality[(I.b) Let f, g be as in the statement and fix a nonnegative integdtur-
thermore, fixG € (0,1) and setf’ = §f, ¢ = (g. Clearly, ¢ is a-subordinate tgf’, so the
inequality [2.2) implies that, with probability,
(3.1) u(fT/L+17g1/1+1) < u(fp, gn) + ua(fy, g;)dfr/wl + uy(fr/ug;)dgiwl-
Both sides are integrable: indeed, sintés bounded byl, so is f’; furthermore, we have
P(|dfu] < 1) = 1 and hence?(|dg;| < 1) = 1 by (@3). This givesg,| = flga| < fn
almost surely and now it suffices to note thais locally bounded orf0, 5] x R and the partial
derivativesu,, u, are bounded on this set.

Therefore, taking the conditional expectation[of|3.1) with respeéi tyields

E(“(ﬂﬁla Q;L+1)|~7:n)

< (s 9n) + va(frr 90)E(df 1 [ Fn) + vy (fr, 97)E(dgp 41| Fn)

<u(fh, 9,) + ua(fy, g;)E(df{Hﬂfn) + |uy (£, 90 - |]E(d9;z+1|‘7:n)|-
By a-subordination, this can be further bounded from above by

u(fs 9n) + (Ua(frs 9n) + eluy (fr, 90) DE(df | Fn) < ulfy, gn);
the latter inequality being a consequence of|(2.1). Thus, taking the expectation, we obtain
(3.2) Eu(frt1s Gnir) < Bulfy, g7)-
Combining this with[(2.8), we get
Elgy| < Eu(fy, 9,) < Eulfo, go)-

But|gy| < f; by (1.1); hence{ (2]4) implies

BElgn| = Elgy| <

(a+1)(2a% + 3a + 2)
2o+ 1)(a+2)
Sincen andg € (0, 1) were arbitrary, the proof is complete. O

Proof of the inequality[ (116)This follows by an approximation argument. See Section 16 of
[2], where it is shown how similar inequalities for stochastic integrals are implied by their
discrete-time analogues combined with the result of Bichteler [1]. O

4, SHARPNESS

We start with the inequality] (115). Far = 0 simply take constant processgs= g =
(1,1,1,...) and note that both sides are equal[in(1.5). Suppose thenqtigat positive
number. We will construct an appropriate example; this will be done in a few steps. Denote
v = a/(2a + 1) and fixe > 0.

Step 1. Using the ideas of Chol [6] (which go back to Burkholder’'s examples from [4]),
one can show that there exists a pdit ) of processes starting frofi, 0) such thatF' is a
nonnegative submartingal@,is a-subordinate t&” and, for someV, (F;y, Gsy ), takes values
in the set{(v,0), (0, &)} with

P((Fyy, Gsn) = (7,0)) — aiQ <e, ‘P((FgN,GgN) = (0,7) = 2(0;112) <e

andP((Fsn, Gsy) = (0,7)) = P((F3n, Gsn) = (0, —7)). Furthermore, ifc = 1, thenG can
be taken to be &1 transform ofF’, that is,dF,, = +dG,, for any nonnegative integer.

Step 2.Consider the following two-dimensional Markov procégsg), with a certain initial
distribution concentrated on the géty, 0), (0,v), (0, —v)}. To describe the transity function,
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let M be a (large) nonnegative integer ah@ (0,~/3); both numbers will be specified later.
Assumefork =0, 1, 2, ..., M—1andany¥ € {—1, 1} that the conditions below are satisfied.
e The statg0, (v + k(a+ 1)d)) leads to(o, £(y + k(o + 1)d + «d)) with probability 1.
e The stated, é(y+k(a+1)d+d)) leads ta(0, (v + (k+1)(a+1)0)) with probability
1 —9/vyandto(v,é(k + 1)(a + 1)d) with probability 5 /.
e The statgv,£(k+1)(a+1)0) leads to(1,£((k+1)(a+1)d 4+ 1 —~)) with probability
(a+1)6
2—27v+ (a+1)0
and to(y — (a+1)6/2,é(k + 1/2) (o + 1)d) with probability
B (a+1)d
2—2v+ (a+1)5
e The state(y — (v + 1)0/2,é(k + 1/2)(a + 1)0) leads to(0, £(y + k(a + 1)d)) with
probability (o« + 1)6/(2) and to(~y, ék(a + 1)0) with probability 1 — (o + 1)d/(27).
e The state(,0) leads to(1,1 — ) with probability v and to(0, —v) with probability
1—n.
e The statg0, £(y + M(« + 1)4)) is absorbing.
e The states lying on the line = 1 are absorbing.
It is easy to check that is a nonnegative submartingale bounded landg satisfies

|dg,| < |df.| and |E(dg,|Fn-1)| < oE(df|Fn-1), n=1, 2, ...

almost surely. Furthermore, if = 1, theng is a+1 transform off: df,, = +dg, forn > 1
(note that this fails fon = 0).

Step 3.Let (G,,) be the natural filtration generated by the procesg) and setk’ = v +
M (1 + «)é. Introduce the stopping time= inf{k : f, =1 or g = £K}. The purpose of
this step is to establish a bound for the first moment.of

Letn be a nonnegative integer and set 4-39M/(27) \We will prove that

(4.1) P(r <n+2M +1|G,) > k7.
We will need the following estimate
M
(4.2) (1 — 3—5) > K,
27

which immediately follows from the facts that the functibn (0, 1/2] — R, given byh(z) =
(1 — x)"/* is decreasing andl < /3.

Let A # () be an atom ofj,,. We will consider three cases.

1°. If we havef, = 0 or f,, = § on A, consider the event

A= A0 {lgnsri1] > |gnikls k=0, 1,...,2M —1}.
Clearly, in view of the transity function described above, we haveC {|g,.2n| = K} C
{r<n+2M}and
P(r <n+2M +1|G,) > P(r <n+2M|G,)
P(A")

P(A)

>(1—6/ >k>Ky onA,

in view of (4.2).

2°. If we havef,, =y or f, =~v — (a+1)d/2 on A, consider the event
A" = A0 {lgnws1]l <gnsrl OF (frsksts Gniwr) = (1,1 —=7), k=0,1,...}.
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In other words,A’ contains those paths 6., «, gn+)r>0, for which |¢g| decreases t6 and
then, in the next stefd,f, g) moves to(1,1 — ). It follows from the definition of the transity
function, that, on4, it is impossible forg| to be decreasing)M + 1 times in a row; that is to
say, we have,,,-y.1 = 1 on A" and hence

P(r <n+2M +1|G,) >

=157 (- 7~ 2(3i<1a§+1>5ﬂ)4
- (- mmemam) 2 (%) 2e
by (4.2).

3°. Finally, if f, =1 on A, we have
P(r <n+2M +1|G,) =1 > k.
Therefore the inequality (4.1) is established. It implies that
P(r >n+2M +1) < (1 — ky)P(7 > n),

which leads to

oM +1 2K 2K
(4.3) Er < 22 % _

3(K—v)/2v(14a)
- Ky < kYO O 1 '

This implies thatr < oo with probability 1 and the pointwise limity,,, g, exist almost
surely.

Step 4.Let us establish an exponential bound ®gif. = 0). We have{f., = 0} C {g >
K} andy is clearly 1-subordinate tof (as it isa-subordinate tof). Therefore, we may use
Hammack’s resul{ (1}4): we have
@4 Pl = 0) < B2 i),
providedK > 4.

Step 5.Consider a process:( f,., g.)). and observe the following.

e Fory > , the functionG(t) = u(t,y — t), t € [0, 1], is continuously differentiable and
linear onl0, 7].

e Fory > —~, the functionG(t) = u(t,y +t), t € [0, 1], is continuously differentiable
and linear orjy, 1].

e Fory > v, the functionG(t) = u(t,y + at), t € [0, 1], satisfies7’ (0+) = 0.

e The functionu is locally bounded oD, U D, and its partial derivatives are bounded on
this set.

These four facts, together with the symmetryuofmply that there exists a constay(i, K')
such that)(d, K)/6 — 0 asé — 0 and, for anyn,
u(fn+1> gn+1) Z u(.fm gn) + u:c(fm gn)dfn-H + uy(fm gn)dgn-H - 77(57 K)X{T>n}

Both sides of this inequality are integrable: indeed, it suffices to use the fourth property above
and the fact that f,,, g,) is bounded and belongs ©; U D,. Therefore, we may take the
expectation to obtain

Eu(fn+17 gn—H) > Eu(fna gn) - 77(5’ K)P<T > n)

This implies
Eu(fom gOO) Z Eu(fﬂ? gO) - 77(57 K)ET7
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or

20+ 1 o 1
Elgeo] + {O‘+6Xp {_ a+1 (K_ 2a+1)} '2a+1}P<f°°_O)
> Eu(fo, go) — n(d, K)Er.

By (4.4), we may fixK' > 4 such that

20+ 1 « 1
- K : P(f =0) < c.
{O”LeXp{ a—i—l( +2a+1>] 2@+1} (Joo =0) =€

Now we specify the numbers and M, as promised at the beginning of Step 2. By |(4.3),
we may choosé > 0 such that)(§, K)Er < ¢ and, clearly, we may also ensure thidt =
(K —7v)/(1+ «)d is an integer. Thus we obtain

(4.5) E|goo| = Eu(fo, go) — 2e.

Step 6.Now we put all the things together. Léf,g) = ((fn, gn))n>0 be @ process which
coincides with(F, G) from Step 1 fom < 3N and which, forn > 3N, conditionally onF;y,
moves according to the transities described in Step 2. We have, by (4.5),

Elgo| > Eu(F3n, Gan) — 2e.
However, since: is nonnegative (due tp (2.3)),

Eu(Fyy, Gan) > u(y,0) (QL - 5) +u(0,7) (O‘ 1 5)

a+2
~ (a+1)(20° +3a+2)
2+ 1) (o + 2)

= (u(7,0) +u(0,7))e.

Sincee was arbitrary, this implies that the constant[in [1.5) is the best possible. This also

establishes the sharpness of the estinjat¢ (1.6), even in the speciél eage 1,1}: if o = 1,
then the processgs g constructed above satisfyf,.| = |dgx| for all k. The proofs of Theorems

[1.7 and 1.p are complete.
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