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1. Introduction

Let (2, 7, P) be a probability space and Ief,,),.>o be a filtration, a nondecreasing
sequence of sub-algebras ofF. Throughout the papet; is a fixed number belong-
ing to the interval0, 1]. Let f = (f.)n>0, ¢ = (gn)n>0 denote adapted real-valued
integrable processes, such tifas a submartingale angis a-subordinate tg': for
anyn =0, 1, 2, ... we have, almost surely,

(1.1) |dgn| < ‘dfn|
and
(1.2) [E(dgns1|Fn)| < aB(dfpi1] Fn)-

Heredf = (df,.).>0 anddg = (dg,) stand for the difference sequencesfadndyg,
given by

dfo = fo, dfp = fo— fu-1, dgo = go, dgn = Gn — Gn-1, n=12 ...

The main objective of this paper is to provide some bounds on the size of the pro-
cessg under some additional assumptions on the boundednegs bkt us pro-

vide some information about related estimates which have appeared in the literature.

Let ® be an increasing convex function @ co) such thatb(0) = 0, the integral
Jo° ®(t)e"dt is finite and® is twice differentiable orf0, co) with a strictly convex
first derivative satisfyingd’(0+) = 0. For example, one can takgt) = t*, p > 2,
ord(t) =e™ —1—atfora e (0,1).

In [2] Burkholder proved a sharp-inequality

1 oo
sup E®(|gn|) < 5/ O(t)e 'dt
n 0
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under the assumption thatis a martingale (and so ig by (1.2)), which is bounded
in absolute value by. This inequality was later extended #l fo the submartingale
case: if f is a nonnegative submartingale bounded from abové layd g is 1-
subordinate tgf, then we have a sharp estimate

n 2 [
supIE(I) (|g2 |) < 5/ O(t)e'dt.
0

Finally, Kim and Kim proved in §], that if the 1-subordination is replaced hy-
subordination, then we have
|gn| l+a [ —t

(1.3) suquD <1+ ) < 2+a/0 d(t)e"dt,
if fisa nonnegatlve submartingale bounded by

There are other related results, concerning tail estimates bét us state here
Hammack’s inequality, an estimate we will need later on.7Int[is proved that if f
is a submartingale bounded in absolute valud layndg is 1-subordinate tg’, then,
for A > 4,

(1.4) P (Sgp |9n| > A> < %exp(—k/@-

For other similar results, see the papers by Burkhol8eaid HammackT].

A natural question arises: what can be said aboutdtheequalities for other
functions®? The purpose of this paper is to give the answerf@) = ¢. The main
result can be stated as follows.

Theorem 1.1. Supposef is a nonnegative submartingale such tkap,, f, < 1
almost surely and lej be a-subordinate tof. Then
a+1)(2a% +3a+2
(L5) lgll, < L )
(2a+ 1)(a+ 2)
The constant on the right is the best possible.
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In the special case = 1, this leads to an interesting inequality for stochastic inte-
grals. Supposg?, F,P) is a complete probability space, filtered by a nondecreasing
family (F;):>o of subo-algebras ofF and assume tha#, contains all the eventd
with P(A) = 0. Let X = (X});>0 be an adapted nonnegative right-continuous sub-
martingale with left limits, satisfyin®(X; < 1) = 1 for all t and letH = (H,) be a
predictable process with values|inl, 1]. LetY = (Y;) be an It6 stochastic integral
of H with respect taX, that is,

Y, = HoXo + HqdX,.
(0,¢]

Let[[Y[[y = sup, [[Y]]:.
Theorem 1.2.For X, Y as above, we have

14
(1.6) [Y]]: < ry
and the constant is the best possible. It is already the best possiilesibssumed
to take values in the s¢t-1, 1}.

The proofs are based on Burkholder’s techniques which were develop&tl in [
and [3]. These enable us to reduce the proof of the submartingale inequabijytd
finding a special function, satisfying some convexity-type properties or, equivalently,
to solving a certain boundary value problem.

The paper is organized as follows. In the next section we introduce the special
function corresponding to the moment inequality and study its properties. Sé&ction
contains the proofs of inequalitie$.f) and (L.6). The sharpness of these estimates
is postponed to the last section, Section
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2. The Special Function

Let S denote the strif0, 1] x R. Consider the following subsets 5f

Dlz{(x,y)GS:x§2a , T+ |y > a },

a+1 20+ 1
D2 — {(ZL’, y) e S x> « , —X + |y| > — @ } , A Submartingale Inequality
N 2@ + 1 20( + 1 Adam Osekowski
D S ) > 0% < 0% vol. 9, iss. 4, art. 93, 2008
3 — (If,y)e 'x—2a+17 x+|y|_ 2a+1 )
«Q «Q Title Page
D, = Sz < < .
_ ) ) Contents
Consider a functiorif : R? — R defined by
44 44
H(z,y) = (Jz] + [y)" "V ((a + Dz| = |y)- < >
Letu : S — R be given by
Page 6 of 19
(0,9) = ~az + |yl +atexp [~ (w ]yl - 5 P
ulx = —ox o+ exp | — x - x
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if (ac,y) € Dy, Full Screen
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if (z,y) € D3 and

Oé2

(2a+ 1)(a+ 2)

20/

1
2a—|—1+

_|_

U(J},y) == a

a+2
200+ 1| o1
1+( ) H(x,y)

if (x,y) € Da.
The key properties of the functianare described in the two lemmas below.
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Lemma 2.1. The following statements hold true. Adam Osekowski

(i) The function: has continuous partial derivatives in the interior §f vol 9. 1ss. 4, art. 85, 2008
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(2 1) o = a|uy| Contents
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< >
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Page 7 of 19
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. 0 Back
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a 2041 o
T+ 2 x,y) € DS,
2a+1)} (= a+l a+1) (z,9) 2 journal of inequalities

] 2a+1(] _ — 1 c Do in pure and applied
og [ ( T+ !y\)} - x+|y\ —(a+1), (,y) 3 mathematics

a _1 _ a o issn: 1443-575k
\_Oé (20¢_+1)a+1 (.Z'+‘y|) afl (l’+a—+1\y|), (xvy) ED47

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:ados@mimuw.edu.pl
http://jipam.vu.edu.au

while u,(x, y) is given by

p

/ 2a0+1 2041

Y - 25111 exp [— 25111 (== + lyl + 2a+1)] (1 —=)y,

Y
1—z+y|’

1
[ (B%5) ™ (2 + ly) ™o+ 355,

| exp[ atl (x+ lyl — 20511)} (x+ 2a1+1) v, (=,

y) € Dy,

z,y) € D3,
x,y) € D3,

(z,y) € D3.

Herey' = y/|y| is the sign ofy. Now we turn to the properties (i) - (iii).

(i) This follows immediately by the formulas far,, «, above.

(i) We have thatu,(z,y) + a|u,(x, y)| equals

(— exp (-2l (2 + Jyl — 525)] Qo+ 1)z,

a+1

I ERe))
1—z+(y|’

—a + log [22£(1

(L= + Jyl)]

— (2a+1)1/(a+1 ( + |y|) a/( a—&-l)gj’

(e}

\
and all the expressions are clearly nonpositive.

(xay) € D17

a (0] a2
~oxp [228 (<4 ol + 520)] (BEa(l - o) + 22, (@) € Dy

('Tay) € D37

(ar,y) € D4

(iif) There is a well-known procedure to establishd). Fix z, y, h andk sat-

isfying the conditions of (iii) and consider a functich = G, 5 :

t — u(zr+

th,y + tk), defined on{t : 0 < = + th < 1}. The inequality 2.2) readsG(1) <
G(0) + G'(0), so in order to prove it, it suffices to show th@itis concave. Since
is of classC', it is enough to check” (t) < 0 for thoset, for which (z + th, y + tk)
belongs to the interior ab,, D,, D3 or D,. Furthermore, by translation argument

(We havwxyhk( ) =

G inysikni(0)), we may assume= 0.
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If (z,y) € D¢, we have

200 + 1 20 + 1
G (0) = xp{ ( Tyl

a+1 a+1

%a
X(h+k){[25i11 (m 2a+1) }

which is nonpositive; this is due to

+1)]

20+ 1 a—+1

2 1 1 2 1 1
R O‘jl <x—|— )—2§—1 and 24" (x+ )gL

If (x,y) € D3, then

200+ 1 200 + 1 «
G//O — _ _
() a+1eXp{ at1 ( x+|y|+2a+1)}

since

20+1 200+1
B2k, S -a)-2<
o+
For (x,y) € DS we have

—h+k 1—=x 1—x
G"0)= —-T" |(2- h+ k| <o,
0= = | (- =) M e €

because

1-— 1-—
h| > k|, 2— ————>1 and ———— < 1.
1—z+|yl 1—a+ |yl
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Finally, for (x,y) € D3, this follows by the result of Burkholder: the function—
—H(x + th,y + tk) is concave, see page 17 81 [ O

Lemma 2.2. Let(z,y) € S.
(i) We have
(2.3) u(z,y) > lyl.

(i) If |y| < z, then

(a+1)(2a% + 3a + 2)

2.4 < = :
Proof. (i) Since for any(z,y) € S the functionG(t) = u(x + ¢,y + t) defined on
{t: x4+t € [0,1]} is concave, it suffices to prové () on the boundary of the strip
S. Furthermore, by symmetry, we may restrict ourselvegrte) € 0S5 satisfying
y > 0. We have, fory € [0, /(20 + 1)],

o? 202

u0.y) T2t D@r2) T2ar1

+1>12>y,

while fory > «a/(2a + 1), the inequalityu (0, y) > y is trivial. Finally, note that we
haveu(1,y) = y for y > 0. Thus ¢.3) follows.

(if) As one easily checks, we havg(z,y) > 0 for y > 0 and hence, by symme-
try, it suffices to prove4.4) for z = y. The functionG(t) = u(t,t), t € [0,1], is
concave and satisfi€s (0+) = 0. ThusG < G(0) and the proof is complete. [
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3. Proofs of the Inequalities (L.5) and (1.6)

Proof of inequality (.5). Let f, g be as in the statement and fix a nonnegative integer
n. Furthermore, fig € (0, 1) and setf’ = 3f, ¢’ = Bg. Clearly,¢’ is a-subordinate
to f’, so the inequality4.2) implies that, with probability,

(3.1) U fr1s Gpar) < iy gn) + ua(fr 9n)dfpin 4wy (fr, 9,)dG0 -

A Submartingale Inequality
Both sides are integrable: indeed, sintés bounded byi, so is f/; furthermore, fiE Gl
we haveP(|df;,|] < 1) = 1 and henceP(|dgx| < 1) = 1 by (1.1). This gives vol. 9, iss. 4, art. 93, 2008

lg..| = Blgn| < Bn almost surely and now it suffices to note thas locally bounded
on [0, 5] x R and the partial derivatives,, u, are bounded on this set.

Therefore, taking the conditional expectation ®flf with respect taF, yields Title Page
E(u( fr41: Ghs1)| F) conents
< u(fns ) + ua(fo 90) B0 1 Fn) + uy(f, 90)E(dg), 1| Fn) “ dd
< (s 9n) + va(fr: 90)B(df 1 [ Fn) + [uy (fr 90)| - [E(dgpi [ Fn)|- < >
By a-subordination, this can be further bounded from above by Page 11 of 19
ulfr gn) + (ua(fo g0) + aluy (fr, gn)DE(AS, 11 F0) < ulfy, 90), S0 B
the latter inequality being a consequencefi), Thus, taking the expectation, we Full Screen
obtain Close
/ / / /
(32) B fnr1 Gner) < Bulfn: gn). journal of inequalities
Combining this with £.9), we get Ilelis Gl elololioe
mathematics
Elg,| < Bu(fy, 9n) < Eu(fg, 90)- fssni B443-5750
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But |gi| < f§ by (1.1); hence £.4) implies

(a+1)(2a% + 3a + 2)
(2a+1)(a+2)

Sincen and € (0, 1) were arbitrary, the proof is complete. O

OE|gn| = Elg,| <

Proof of the inequality(.6). This follows by an approximation argument. See Sec-
tion 16 of [2], where it is shown how similar inequalities for stochastic integrals
are implied by their discrete-time analogues combined with the result of Bichteler
[1]. O
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4. Sharpness

We start with the inequalityl(5). Fora = 0 simply take constant processgs=

g = (1,1,1,...) and note that both sides are equalirf]. Suppose then, thatis

a positive number. We will construct an appropriate example; this will be done in a
few steps. Denote = «/(2« + 1) and fixe > 0.

Step 1. Using the ideas of Choig] (which go back to Burkholder's examples
from [4]), one can show that there exists a p@if, G) of processes starting from
(0,0) such thatF' is a nonnegative submartingalé,is a-subordinate ta* and, for
someN, (Fsn, Gsn), takes values in the s¢tv, 0), (0, &)} with

1
o+ 2

a+1
e [P Ga) = 0) - 2 <
andP((Fsn,Gsn) = (0,7)) = P((F3n,Gsn) = (0,—7)). Furthermore, il = 1,
then G can be taken to be &1 transform of F, that is,dF,, = +dG, for any
nonnegative integer.

Step 2. Consider the following two-dimensional Markov procégsg), with a
certain initial distribution concentrated on the $ét,0), (0,v), (0,—v)}. To de-
scribe the transity function, 16t/ be a (large) nonnegative integer and (0,~/3);
both numbers will be specified later. Assume foe 0, 1, 2, ..., M — 1 and any
¢ € {—1, 1} that the conditions below are satisfied.

P((F:;N,GZSN) = (770)) -

e The state(0,£(y + k(a + 1)d)) leads to(0,£(y + k(a + 1)d + «d)) with
probability 1.

e The statgo, £(y + k(a+ 1)d + «d)) leads to(0, £(y + (k + 1)(a + 1)d)) with
probabilityl — § /v and to(~y, (k + 1)(a + 1)6) with probabilityd /~.
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e The statgv,é(k + 1)(a + 1)d) leads to(1, £((k + 1)(a + 1)6 + 1 — ~)) with
probability
(a+1)d
2—-2y+ (a+1)0

and to(y — (a+1)6/2,é(k + 1/2)(a + 1)d) with probability

B (a+1)0
2—2y+ (a+1)

1

e The statdy — (a+1)d/2,é(k + 1/2)(a+ 1)9) leads to(0, £(y + k(a + 1)4))
with probability («w+1)d/(2) and to(y, £k(a + 1)0) with probability 1 — (« +
1)/(27).

e The statg,0) leads to(1, 1 — ) with probabilityy and to(0, —~) with prob-
ability 1 — .

e The statg0, £(y + M(a + 1)d)) is absorbing.

e The states lying on the line = 1 are absorbing.

It is easy to check thaf is a nonnegative submartingale boundedlbgnd g
satisfies

|dg.| < |df.| and |E(dg,|Fn.-1)| < oE(df,|Fn-1), n=1, 2, ...

almost surely. Furthermore,df = 1, theng is a+1 transform off: df,, = +dg,, for
n > 1 (note that this fails for, = 0).

Step 3.Let (G,,) be the natural filtration generated by the prodgsg) and set
K =~ 4+ M(1+ «)d. Introduce the stopping time = inf{k : fr, =1 or g =
+K'}. The purpose of this step is to establish a bound for the first moment of
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Let n be a nonnegative integer and set 4~3°M/(27)_We will prove that
4.1) P(r <n+2M +1|G,) > k.

We will need the following estimate
M
(4.2) (1 - 3—5) > K,
2y

which immediately follows from the facts that the functibn (0, 1/2] — R, given
by h(z) = (1 — z)'/* is decreasing andl < /3.

Let A # () be an atom ofj,,. We will consider three cases.

1°. If we havef,, = 0 or f,, = § on A, consider the event

A = A0 |gnirt] = lgnsnls k=0, 1, ..., 2M —1}.

Clearly, in view of the transity function described above, we h&ve {|g, on| =
K} C{r<n+2M}and

P(r<n+2M +1|G,) > P(r <n+2M|G,)
P(A)
P(A)

v

>(1—0/9) >k >ry onA,

in view of (4.2).
2°. If we havef,, = yor f, =~v — (a+1)d/2 on A, consider the event

A" = AN {|gnsrt1] < |gnkl OF (fashits Gnins1) = (1,1 =7), k=0,1,...}.

In other words A’ contains those paths Of,. 1 «, gn+x) x>0, fOr which|g| decreases to

0 and then, in the next steff, g) moves to(1, 1 — ). It follows from the definition
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of the transity function, that, oA, it is impossible forlg| to be decreasing)M + 1
times in a row; that is to say, we hayg 2,11 = 1 on A’ and hence

P(A)
}Mv

P(A)
2[(1_(a+1)5> (1_ (a+1)6 )
2y 2—-2y+ (a+1)8
B 2a+1)5 Y 36\ M
(- gramr) 2(08) e
by (4.2).
3°. Finally, if f, =1 on A, we have

P(r <n+2M+1|G,) =1> k.

P(r <n+2M +1|G,) >

Therefore the inequality!(1) is established. It implies that
P(r>n+2M+1) < (1 — rky)P(7 > n),
which leads to

L2MAL 2K 2K sk jniva)

4. E
(4.3) ’ Ky L C N )

This implies that- < oo with probability 1 and the pointwise limitg.., g.. exist
almost surely.

Step 4.Let us establish an exponential bound Rjif., = 0). We have{f.,, =
0} € {9 > K} andy is clearly1-subordinate tof (as it isa-subordinate tof).
Therefore, we may use Hammack’s result)j: we have

(8+V2)e
12

(4.4) P(fo =0) < exp(—K/4),
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provided K > 4.
Step 5.Consider a process:( f,., g,))» and observe the following.

e Fory > ~, the functionG(t) = u(t,y — t), t € [0, 1], is continuously differen-
tiable and linear o0, ~].

e Fory > —~, the functionG(t) = wu(t,y + t), t € [0,1], is continuously
differentiable and linear opy, 1].

e Fory > ~, the functionG(t) = u(t,y + at), t € [0, 1], satisfiess’ (0+) = 0.

e The functionu is locally bounded orD; U D, and its partial derivatives are
bounded on this set.

These four facts, together with the symmetryupfmply that there exists a con-
stantn(é, K') such that)(d, K)/5 — 0 asé — 0 and, for anyn,

u(fnJrla gn+1) 2 u(fm gn) + ua:(fm gn)dfnJrl + uy(fna gn)dgnJrl - 77<5> K)X{T>n}

Both sides of this inequality are integrable: indeed, it suffices to use the fourth prop-

erty above and the fact théf,,, g,,) is bounded and belongs 10, U D,. Therefore,
we may take the expectation to obtain

Eu(fn+17gn+1) Z Eu(fmgn) - 77(57 K)]P)(T > n)
This implies
Eu(foo7 gOO) Z ]Eu(f07 gO) - 77<57 K)]ET7
or

200 + 1 a 1
]g |+{a+exp{ a+1 ( 2a+1)} 2a+1} (f )

> Eu(fo, g0) — n(9, K)ET.
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By (4.4), we may fixK > 4 such that

200+ 1 o 1
{O‘JFQXP{ a+1( +2a+1)} 2a+1} (Joo=0) =€

Now we specify the numbesand M, as promised at the beginning of Step 2. By
(4.39), we may choosé > 0 such thaty(d, K)Er < e and, clearly, we may also
ensure thafl/ = (K — v)/(1 + «)d is an integer. Thus we obtain

(4.5) E|goo| > Eu(fo, go) — 2¢.

Step 6.Now we put all the things together. Lef, g) = ((fn, gn))n>0 be a process
which coincides with(F, G) from Step 1 forn < 3N and which, forn > 3N,
conditionally onF35, moves according to the transities described in Step 2. We
have, by {.5),

E|goo| Z EU(F3N,G3N) — 2e.

However, since: is nonnegative (due t@(3)),

Eu(Fyy, Gan) > u(y,0) (r - g) 4+ u(0,7) ((” = 5)

a+2
_ (a+1)(2a% + 3a + 2) — (u(7y,0) +u(0,7))e.

(2a+ 1)(a +2)
Sincee was arbitrary, this implies that the constantingj is the best possible. This
also establishes the sharpness of the estimat, Even in the special cadé €
{—1,1}: if & = 1, then the processe§ g constructed above satispyfi| = |dgx|
for all k. The proofs of Theorems.1and1.2are complete.
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