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ABSTRACT. We consider random numberg, of independent, identically distributed (i.i.d.)
random variablesY; and their sum$ " X;. Whereas Blum, Hanson and Rosenblait [3]
proved a central limit theorem for such sums and Landers and Rogge [8] derived the correspond-
ing approximation order, a Berry-Esseen type result seems to be missing. Using an inequality
for the asymmetry of distributions, which seems to be of its own interest, we prove, under the
assumption®| X;|?*% < oo for somes € (0,1] andN,,/n — 7 (in an appropriate sense), a

Berry-Esseen theorem for random summation.
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1. INTRODUCTION

One of the milestones of probability theory is the famous theoreBeofy-Esseemwhich
gives uniform upper bounds for the deviation from the normal distribution in the Central Limit
Theorem:

Let{X,,n > 1} be independent random variables such that
EX,=0, EX?=:0’

n’
n
R 2
= g o; >0,
=1

D20 =Y " BIX|*" < oo

=1

3N

ISSN (electronic): 1443-5756
(© 2006 Victoria University. All rights reserved.
056-04


http://jipam.vu.edu.au/
mailto:schmnor@math.uni-muenster.de
http://www.ams.org/msc/

2 HENDRIK KLAVER AND NORBERT SCHMITZ

for somey € (0,1] and S, = >, X;, n > 1. Then there exists a universal constéfjtsuch

that
246
p(ﬂgx) _ o) < ¢ <&) |
Sn Sn

where® denotes the cumulative distribution function afN&0, 1)-(normal) distribution(see
e.g. Chow and Teicher ][5, p. 299]).
For the special case of identical distributions this leads to:
Let{X,, n > 1} bei.i.d. random variables wit X,, = 0, EX? =: 02 > 0, E|X,|*" =
72+ < oo for somes € (0, 1]. Then there exists a universal constapnsuch that
sup

Sn Cs y 2+6
P < - ® < —= (—) :
el (=) -2 =3 G

Van Beek|[[2] showed that; < 0.7975; bounds for other valueS; are given by Tysiak [12],
e.g.OO.g < 0812, 00.6 < 0863, 00.4 < 0950, C().Q < 1.076.

On the other hand, there exist also central limit theorems for random summation, e.g. the
theorem oBlum, Hanson and Rosenbld8] which generalizes previous results by Anscombe
[1] and Renyi[[11]:

Let{X,, n > 1} bei.i.d. random variables with X,, = 0, Var X,, = 1, S,, := > , X; and
let {N,,,n > 1} beN-valued random variables such that,/n L. U whereU is a positive
random variable. Then

sup
z€R

PNV L (0, 1),

Therefore, the obvious question arises whether one can prove also Berry-Esseen type inequal-
ities for random sums. A first result concerning the approximation order is dieniders and
Rogge[8] for random variablesY,, with E|X,,|? < oo; this was generalized bgallaert and
Jansser] to the case thak| X, |**° < oo for somes € (0, 1]:

Let {X,, n > 1} be i.i.d. random variables witl’ X,, = p, Var X,, = 0% > 0, and
E|X,|**° < oo for somes > 0. Let{N,,, n > 1} beN-valued random variabledz,, n > 1}
positive real numbers with, — 0 where, forn large,n™° < ¢, if § € (0,1} andn~! < ¢, if

n—oo

6 > 1. If there exists a > 0 such that

p(N

_n_l‘ >sn) — O(V&),

then

wplp (BES < ) - o) -0
and

| (B <v) -0t -0

Moreover, there exist several further results on convergence rates for random sums (5ée e.g. [7]
and the papers cited there); as applications, sequential analysis, random walk problems, Monte
Carlo methods and Markov chains are mentioned.

However, rates of convergence without any knowledge about the factors are of very limited
importance for applications. Hence the aim of this paper is to prove a Berry-Esseen type result
for random sums i.e. a uniform approximation with explicit constants. Obviously, due to the
dependencies on the moments of figas well as on the asymptotic behaviour of the sequence
N,, such a result will necessarily be more complex than the original Berry-Esseen theorem.

J. Inequal. Pure and Appl. Math?(1) Art. 2, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

AN INEQUALITY FOR THE ASYMMETRY OF DISTRIBUTIONS AND A BERRY-ESSEENTHEOREM FORRANDOM SUMMATION 3

For the underlying random variables, we make the same assumption as in the special
version of the Berry-Esseen theorem:
) { X,, n>1, arei.i.d. random variables witB X,, =0, Var X,, =1 and
M .

7?10 = E|X,|**? < oo for somes € (0, 1].
Similarly as Landers and Roggde [8] or Callaert and Janssen [4] resp. we assume on the random
indices
N,, n > 1, are integer-valued random variables @ndn > 1,
(R) : real numbers withim,, .., (,, = 0 such that there exist
d, > 0with P(|X2 — 1| > ¢,) < dV/G,.

As they are essential for applications, e.g. in sequential analysis, arbitrary dependencies be-
tween the indices and the summands are allowed.

2. AN INEQUALITY FOR THE ASYMMETRY OF DISTRIBUTIONS

A main tool for deriving explicit constants for the rate of convergence is an inequality which
seems to be of its own interest. For a smooth formulation we use (for the different values of
the moment parametérc (0, 1]) some (technical) notation: For:= 2/(1 + ) andy > 1 let
gs(y) be defined by

( 2% — 1+ 2y\/y%2 — 1 ifo=1
min {Zﬂy‘w -1+ Q%yw, /20-Tyd0 _ 1

2 8ﬁ—1+2y4ﬁm} if 5 [1,1)
min {Q”y@”kw — 14+ Q%y(l"‘?k_l)ﬂ\/Qﬁfly(2+2k’)ﬁ 1,
2

y(4+2k+1)79 — 1 _|_ 2y(2+2k)19 y(4+2k+1)79 — 1} |f 5 c (2k+17 2k— 1+1i| k Z 2

\

Theorem 2.1.Let X be a random variable witl’ X = 0, Var X = 1 and+?*? := E|X [>T <
oo for somey € (0, 1]. Then

P(X <0) < gs(v¥*™)P(X > 0)and P(X > 0) < gs(v*"°)P(X < 0).
Proof. Let X be a random variable as described above X .et= max{X,0}, X_ = min{X, 0},
E(X,;)=EX_.)=«aandP(X >0)=p, P(X=0)=r, P(X <0)=1—-r—p. Since
E(X) =0, Var(X) = 1 itis obvious thap, 1 — r —p> > 0. Asa = pE(|X||X > 0), we have
E(|X[[X > 0) = 2; analogouslyE (| X||X < 0) = =—.
346

Applying Jensens inequality to the convex funct|¢n. [0,00) — [0,00), f(x) = a2
yields

3445 3448

E(X*1X > 0) > (Z) T andE(IX)F)X < 0) > (1_#)

r=p
Defining 3, := E|X|? for z > 0 we get

Bass = pE (|X|‘”‘s X > ) Y (1—r—pkE (|X|3” X < o)

146

>a3%6(1—7”— ) +€7
(p(1—r—p))'%
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and, therefore,
146
. 346 p(l—r—p)) =2
() 04 < oy LT DD E
S (1—r—p) T 1 p
Since?*® < oo, we can apply the Cauchy-Schwarz-inequality 4'/? and | X|'+%/2 and
obtain

2
(BIXI"F) < BIX| BIX[ = 20927,
hence
2
' (953)
(||) « Z W
Combining [[) and[(ji) we obtain

3446

()

<
2y _ﬁ¥p#+(1—r—p)%§’
hence
2 1 L1\ (1 o) 1 (L 5
T i - ay L o
>~ 4 1 —r 2 as 2 2
with 1 , y
xr = 1ﬁ7" o % = F’ a; = <ﬁ375> . Gy = (,72-1-5)19.5_1'
Obviouslyz € (—1,1), 9 € [1,2).
Since

and0 < 1 — r < 1 it follows altogether that

9—1
) 2] < g\/1 - (%) a

For large values dfr| this estimation is rather poor, so we notice, furthermore, that

1 i1 A
<§+x) + <§—x) > 20711 — 42V,

hence
1 aq 2
Vv < q/1—-1—.
W o< 51 (%)
From (i) and[(V) it follows that
(vi) B Y \/@ (219—1@—1)
1—r—p ai a ai
and
a 2 a a 2
(vii) P < (—2) 1422 (—2) 1.
l—r—p aq a1 aq
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[i
Now we estlmate33+a Due to Jensen’s inequality we haéﬁ 2 <52 =1, Letd = 1.
Thenfas = o0 =1 and so%2 = (y*)%. Letd € [§,1). Then®32 <2+, sofss exists. Due

to the Cauchy -Schwarz- mequallty we have

2 2
hence . .
Bass > >
T B ()R
altogether
a2
a1

Letk € N, k > 2. Ford > 51 it follows that2 + 13 2 <244 hences,  1-s exists. Due to
2
the Cauchy-Schwarz-inequality we have

L= (0")" < foy1=0 1

@%Hﬂy:(@%mﬂjwq§0%5ﬁ9%1

forj € {1,...,k — 1}. Thisyields
2k71 1 1
6% = (52*12%6> =z ok—1 > ors 2k+1+§75'
2(2
CE R

Altogether we getz < (42+0)Z+27 for § ¢ [Qk—lﬂ, ﬁ)

Combining this with[(Vi) and (vji) we obtain the assertion. O

Remark 2.2. For eachs € (0, 1] equality holds in Theorefn 2.1 ifP* =
¢, denotes the Dirac measureain

Proof. (i) Let X be a real random variable with* = (¢, +¢_;). ThenE(X) = 0, Var(X) =
1, 4*™ =1 and sogs(y*™) = 1 forall § € (0,1]. SinceP(X < 0) = P(X > 0) = 1 we get
equality.

(i) In Theorem 2.1L we have

<3£J <ot < PUZTOPNE

272+5 - (1—7"—]))1%6 +p% 2

In the first “<” there is equality iff| X|'/? and| X |'*+%/2 are linearly dependert-almost surely,
i.e. P(|X| € {0,c}) = 1 for somec > 0. As E(X) = 0, we obtainP* = p(e, +e_.) + (1 —
2p)eo. So the inequality is sharp iffs(72+°) = 1. With 1 = F(X?) = 2¢%p we obtain

and

(g1 +e-1) (Where

1
90 _ o 246 _
T
The functionsh; : (0,3] — R, 6 € (0,1], defined byhs(p) = <( §5/2> are strictly de-
creasing. Due tp € (0,1] andhs (3) = 1 we getp = 1, » = 0 andc = 1, therefore

PX—2<81+€_1). O
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Since the Central Limit Theorem is concerned with sums of random variables (instead of
single variables) we need a corresponding generalization of Th¢orem 2.1.

Corollary 2.3. Under assumptiorj (M),
246
FE

1 n
—_ X;
Vi
holds, and therefore,

. V=1 s -

Proof.

246
n n

< [P +3) XX+ > XXX

i=1 k,i=1 ik, l=1
ki iAkAIA

n n n

<SP Y IR D XXX
=1 k,i=1 ik, l=1
k#i i£kFAlIFAT

Since theX; are independent and, due By.X;|?> = 1 and Jensen’s inequality;| X;|* < 1 for
a < 2, we obtain
2+6

E L n X; < 249 3 _& 2-6/2
\/ﬁz | S (T (7)) = e e
=1
2
FromE (\/Lﬁ S XZ-> =0, E (\/Lﬁ S Xi> = 1and Theorel the assertion follows.

O

We need a bound which does not depend on the number of summands. For this aim we
use forn < w := (4c;7*+%)?/? the asymmetry inequality of Corollafy 2.3 and for> « the
Berry-Esseen bound (the choicerofs boundary between “small” and “large’is somewhat
arbitrary).

Corollary 2.4. Under Assumptiorj (M)

P (Z X; < 0) < (fs(12%) = 1)P (i X; > 0) ,

where

fs(y) == max {3795(y), s (%) + (405y)§_1} +1.

Proof. (i) Let n < . Then Corollary 2.3 yields
. V=1 s -
P> X;<0 Sg(;(W%—n )P ZXZ->O .

i=1
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72+5 -1

For the functiom : [1, 00) — [1, 00) defined byh(y) := g T y>~%/2 we obtain

1) ) ) )
h//(y) — 5 <1 + 5) (72+5 . 1)y7275/2 + (2 o 5) (1 o 5) y75/2 > 07

i.e., his convex. Hence the maximum of

h:{l,.... K]} —[1,00)

is attained either fon = 1 or forn = | k. Sinceg;s is strictly increasing this yields

g P —1 4+ 0292 ) < max g (72+5) g P -1 + (4¢ 72+z$>4/5—1
s\ e < 5 95\ geprs 5

foralln < k.
(i) Let n > &, i.e. n%? > 4cs7*H0. Then the (special case of the) theorem of Berry-Esseen
yields

n ,y2+6 1
P lei<o Y
and, therefore,
P X; P X; < - =3
(Seo) /r(Bpm0) <2
Combining (i) and (ii) we obtain the assertion. O

3. SOME FUTHER INEQUALITIES

The next inequality represents a quantification of Lemma 7 by Landers and Rogge [8].
Lemma 3.1. Under Assumptiory (M)

n n
P(min XZ'ST)—P<H1&X XiST>
p<n<q < T p<n<q <

= =1
< f5(+*70) <P <iXi < T;iXi > 7‘> +P (iXi > T,iXi < 7"))
i=1 i=1 i=1 i=1

forall p,q eNs.t.p < gandforallr € R.

Proof. Using the same notatiof4, «, 3, Ax) as Landers and Roggel [8, p. 280], we have to
prove that

P(A) < fs(")(a+ 3).

(i) First we show that”? (AN {37 | X; <r}) < fs(4*™) - o; for this it is sufficient to prove
that

P (Aﬂ {zp:Xi Sr} N {zq:Xi §r}> < (fs(v*) =1) - o

=1
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But due to the independence of tHg and) 7 , ., X

foffneofiee

k=p+1 i=k+1
q—1 q
< (fs(?*) = 1) Y P(A)P ( S x> o>
k=p+1 i=k+1

according to Corollary 2]4
< (f5(*) ~ 1) - a.
(i) Similarly, it follows that
k
P (Aﬂ {in > r}) < f:(4*70) - .
i=1

(i) and (ii) yield the assertion. O

A thorough examination of the proof of Lemma 8 of Landers and Rdgge [8] allows a gener-
alization and quantification of their result:

Lemma 3.2. Under Assumptiori (M),
. n n+k csy2to
(i) P (Zi:l X; <t, 22:1 X 2 t) < 223/2 - \/L?r\/%

() P (S X 20 <o) < ity L e

Proof. (ii) follows from (i) by replacingX; by —X;. Analogously to the proof of [8], Lemma 8,
we obtain

(ZX <t %X >t>

2 t t 1
st

2c5y2H0
— n6/2 o

2c57> "0 \/>
< =~
— n5/2 + /271' 7’L7

since
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4. A BERRY-ESSEENTHEOREM FOR RANDOM SUMS
As an important application of these inequalities we state our main result:

Theorem 4.1(Berry-Esseen type result for random sumsgt {X,,,n > 1} be i.i.d. random
variables withEX,, = 0, Var X,, = 1 and~**° := E|X,|*** < oo for somes € (0, 1];
let {N,, n € N} be integer-valued random variables afd,, n € N} real numbers with
lim,, .., ¢, = 0 such that there exist, 7 > 0 with

Ny
P(’E—l‘ >gn> < d\/C.

Ther|
. 1
0) Stlelﬂg P (ﬁ ;Xi < t> — d(t)
< 5y 2O (1 4 224072 fy(42H0)) Lmlj 57+ \/2;%
+ 2f5(72+5)\/¥ max {% gn} + 2d+/Co.
1 O
(ii) sup P (m;X < t) —d(1)

1 1

[nT o/ " \/2me|nT|
+ 2f5(72+5)\/w max {%, Cn} + (3d+1)\Ca

< 0672+6<1+22+6/2f5(72+6))

™

foralln € Ns.t. %F —n7(, > 1.

Since’ — n7(, — oo there exists ang s.t. %- — n7¢, > 1 for all n > ny.

n—o0

Proof. (i) Let n € N fulfill %F — n7(, > 1 and define as Landers and Rogge [8, p. 271]
bo(t) :=ty/nrtandl, :={k € N: [nT7 —n7r(,] <k < |nT+n7(. ]}
Due to the assumption aN,, we have

P(N, ¢ I,) < d\/C.

For

kel, <

=1

An(t) = {max k X; < bn(t)} , B,(t) :== {min k X; < bn(t)}

follows (see Landers and Rogge [8, p. 272]) for eachR
Nn
P(A,(t)N{N, e I,}) <P (Z X; < bu(t), N, € In> < P(B,(t))

mﬂ{nel\l:ngx}_
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and

7]
P(An(t) < P | ) Xi <bu(t) | < P(Balt)).

=1
Using the Berry-Esseen theorem and the result (3.3) of Petrov [10, p. 114], we obtain

7]
sup [P | D X; < ba(t) | — 0(1)

teR i—1

|nT]
nrt
< sup |P X; < —o(t + su
teﬂg \/ nT Z UZTJ < U”'J> te]llg

05’72+6 1

= dRE - \2me|nt|

Forp(n) := |[nT — n7¢,], q(n) := |nT + n7¢,| we obtain from Lemmp 3|1

P(B,(t)) = P(An(t))

< f5(42H0) ZX < by Z P> Xizba(t) =) X

=
2
=2
2

According to Lemma 3]2 it follows that

p(n) q(n) 244
2c57°F 1 [q(n) —p(n)
sup P X; <b, Xl <
L PIRELICEDS e T Vam\ T )

21+0/2 52 H0 2+ 1/7 1
= (nT)%/2 + P {E’ Cn},

sincep(n) > nt — n1(, — 1 > n7/2 and, therefore,

q(n) —p(n) 2n7C, +1 2
\/ p(n) = \/ nt/2 AGn + nr’

analogously

p(n) q(n) 146/2,. 246
2 csY 24+ 1/7 1
sup P ZX > b, ()>2Xi < CoE +\/ - max{ﬁ,(n}.

teT i=1 i=1
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Altogether we obtain

2 <§: X; < bn(t)) — B(t)

P (Z X; < bu(t), N, € ]n) —d(t)

sup
teR

< sup
teR

+ P(N, ¢ 1,,)

< P(B,(t)) — P(A, (1)) + ™

1
|nT|9/2 * \/2me|nT| VG
5 5
< 2fs () (21(;:;2/2; N \/2 —|—7T1/7' . {%’Cn}>

246 1
i +2d4:/C,
e

[nT]9/2 " \/2me|nT |

1 1
240 24+6/2 2+46
S SO N e+ o]

+ 2%(7“““/# max {% gn} + 2d+/Co.

(i) Applying Lemma 1 of Michel and Pfanzagl![9] for

_|_

N,
1 = N
— G fm =Y X, g=yfon
rEe JEgm LA 9Ty

and using the fact thafxt [Ro 1‘ > \/C, implies |22 — 1| > ¢,, hence

P(‘,/&—1> <n>§p(&_1
nTtT nT

we obtain from part (i)

1
P(m;Xigt) — d(1)

< 6672+6<1+22+6/2f6(72+6))

> Cn) < dv/Ca,

sup
teT

1 1

[nT o/ " \/ 2me|nT |
+ 2f5(72+6)\/¥ max{%,gn} + (3d + 1)\/(+

O
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