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ABSTRACT. We prove a certain type of inequalities concerning the integral of the Fourier trans-
form of a function integrable on the real line.
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1. INTRODUCTION

Hardy’s inequality states that a constant> 0 exists such that

(1.1) > )l ClIfllx

n

for all integrable functiong on the circleT = [0, 2x) with f(n) = 0 for n. < 0, where

~
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Questions of how inequalit.l) can be generalized forfadl L'(T) have been raised, and
some partial answers were given. Some references on the subject dre [3], [4], [5] and [7].
In [4] it was proved that a constaat > 0 exists such that

0o |7 n)|2 0o | 4 T
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forall f € L(T).
Now, let f € L'(R) and let|| f||; denote thd.! norm of f. We shall prove in the next section,
that
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for all f € X, whereX is an infinite dimensional subspace bf. Then we interpolate this
inequality to get the inequality
> fElr o
/ < 27 I

S

for all « > 2 whenf lies in a certain space.

We emphasize that the main purpose of this article is not only the concrete inequalities that it
contains. Rather, we would like to show that the methodology for proving Hardy-type inequal-
ities on the real line is very similar to that for proving such inequalities on the circle.

In other words, it is well known that proving Hardy-type inequalities on the circle depends
on the construction of a certain bounded function. This constructed function is, then, used in a
standard duality argument to produce the required inequality.

Although the first proof of Hardy’s inequality does not depend on such a construction, many
proofs were given later depending on the construction of bounded functions whose Fourier
coefficients have desired decay properties. We encourage the reader to have allooklat [3], [5],
[7] and [8] to see how such bounded functions are constructed.

It is a very tough task to construct these bounded functions and usually these functions are
constructed through an inductive procedure. We refer the reader to [1] for the most comprehen-
sive discussion of these inductive constructions.

In this article, we prove some Hardy-type inequalities on the real line depending on the
construction of a certain bounded function. This bounded function is constructed in a very
simple way and no inductive procedure is followed.

We remark that inequality (1].2) was proved firstlin [6] where the authors gave a quite com-
plicated proof; it uses BMO and the theory of Hankel and Teoplitz operators. Later Koosis [4]
gave a simpler proof. In fact, we can imitate the given proof of inequélity (1.3), in this article,
to prove inequality[(1]2) on the circle. This is the only known proof{of](1.2) which uses the
construction of bounded functioris.

2. MAIN RESULTS

We begin by introducing the set

X = {f € L'(R): /_;f(t)dt = Ll(R)}.

Itis clear thatX is a subspace df!(R). In fact, X is an infinite dimensional space. Indeed, for
a > 3, let
0, r <1

fa($) = { zal+2 _ a+2 > 1.

(a+1)zats>

Then(f.)a>3 is a linearly independent set iXi. This implies thatX is an infinite dimensional
subspace of.!(R).
We remark that iff € X thenf(0) = 0 and [2]:

(/_;f(t)dt)A(é) - %@ €40

IThis is for sure to the best of the author’'s knowledge. The proof which uses the construction of a bounded
function is in an unpublished work of the author. But, the reader of this article will be able to conclude how to
prove (1.2) using a duality argument without any difficulties.
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Theorem 2.1.Let f € X, then
P (=6
@.) | de <o+ [ e

Proof. Let f € X be such thaf is of compact support, so that the inversion formula holds for

f. Let
_ /_ F(#)dt

and observe thatF ||, < | f||; and for real # 0, F(¢) = %) Therefore,
AR = 1 lloo L £ 11y
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where, in the last line, we have used the inversion formulg f@€onsequently

117 = 5= | | fo) | P —wﬁdxdé'
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Thus the inequality holds for aji € X such thatf is compactly supported.

Now, let f € X be arbitrary. Leyy = f « K, whereK, is the Fejer kernel ofR of order\.
Then,j = f x K, is of compact support becausg () = 0 when|¢| > .

We now prove thatz(z) = ffoo g(y)dy € L'(R), in order to apply the statement of the
theorem ory. Observe that

(2.2) /Z| |dx— ‘/ / Fly — ) Kx(t)dtdy

Now,
/ / y— 1) Ky\( )|dtdy</ / |y — 6| () dydt
:/_OOKA(t) /_Oolf(y—t)ldydt

= [/l Ay < o0

< f(=¢)?
£

whence

dx.
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becausef and K, are both integrable oR. Therefore, the Tonelli theorem applies and}(2.2)

becomes
/:| 2)|dz = ’/ / Fly — 1) (1) dydt
< / ) s omsa s
- ol -
23 [ mo [ | o

Recall the definition of* in the statement of the theorem and note that

[\ e [ "y

= /_00 |F(z —t)|dx
~ [ 1F@ds =17 < o0

—00

dx

dzdt.

dx

where in the last line we used the assumption fhat L' (R).
Whence,[(2 ) boils down to saying

/ G(a)lde < ||| Kl < oo.

oo

Therefore, the result of the theorem appliesdoirhat is

oo |~ 2 00 | A )2

3
Recalling that

=)
and that| f « K lv < || f[l1[[Kxllx = || f]1, (2.4) reduces to

* | FOPIEAE)P s [FEOPA—€/N)?
/0 O i < 2 11 +/O 6 ¢

XAl &)[2
§27r||f||?+/ 1 9
§27T|!f\|?+/0 ’f<£)‘ .

Also, it is clear thal /X, 1 (€)| > |K,(€)| for all A € R and¢ € [0, 00). Hence, the monotone
convergence theorem implies

00 | £(__¢)]2

0 3

/0°° W?F

where we have used the fact thia, .. |K,(¢)| = 1 forall ¢ € [0, ). O

fﬁ(i):{ (1-5). wk=a
0,

On replacing the functiorf by f * f the above theorem gives:
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Corollary 2.2. Let f € X, then

> for [T
2. dg.
(2.5) /0 ¢ +/0 : £

Proof. Observe first that ifl*__ f(y)dy € L*(R) then [*_(f « f)(y)dy € L*(R) and the proof
of this conclusion is exactly the same as proving that L'(R), whereG is as in the above
theorem, ifK, is replaced withf. O

Thus, replacing the power 2 by any even po&er makes no difference op (2.1).
Now, let X’ = {f € X : f(€) = 0 when¢ < 0} , then

1

(2.6) (/0 |f(§|md§> < X2r||fll, ¥meN.

Let M be the sigma algebra of Lebesgue measurable subsfts-of and letu be the mea-
sure given bydy = % where d¢ is the Lebesgue measure. Define a linear mapfihg

X"?m([0, 00), M, ) by

T'(f) = [.
This is a well defined mapping because inequ(2.6) guaranteeg thdf™ (|0, 0o), M, 1)
when f € X’. Moreover,T" is a continuous linear mapping of norh *{/27. By the Hahn-

Banach theorent” extends to a bounded linear mappifig L' — L?™([0, 00), M, i) with
norm< */2r.

Now, by the Riesz-Thorin theorem for interpolating a linear operatorf[2Zgmains contin-
uous as a mapping fromh! into L([0, 00), M, u) for all a > 2. Thus, we have proved the
following result.

Theorem 2.3.Let f € X/, then fora > 2, we have

[T < omp1y
0

Remark 1.
(1) If f € L*(T)is such thatf(n) = 0, Vn < 0 (thatis,f € H'(T)) then

~

> JO < oy,

This follows from Hardy’s inequality] (1}1) wheyiis replaced by the convolution gf
with itself m € N times.
A similar interpolation idea as above yields the inequality

I _ oy gy

n

NE

n=1

forall f € H'(T) whena > 1.
(2) The above interpolated inequalities can be proved at once using the obsejfyatiorc
|| /|l and no interpolation is needed. But we believe that the interpolation idea can be
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used to obtain the inequalities

) o = f )l |
;T < C|If1I3 +;T (on the circlg and

< £ o If (=9 :
/0 e < 21 +/0 e (on the lng

for o > 2. The truth of these two inequalities is still an open problem.

These ideas suggest the following question: Far H'(T), is there a constardt > 0 such

that .
Zf < Clfls
)2

Also, what is the smallest value af > 0 such that the

whena > 0? How about ford' (R
above inequality holds?
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