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ABSTRACT. Let f(z) := Y./'_, a,2" be a polynomial of degree having no zeros in the open
unit disc, and suppose thatax|.—; | f(z)| = 1. How small canmax/.—, |f(z)| be for any

p € [0,1)? This problem was considered and solved by Rivlin [4]. There are reasons to
consider the same problem under the additional assumptiorftttgt= 0. This was initiated

by Govil [2] and followed up by the present authdt [3]. The exact answer is known when the
degreen is even. Here, we make some observations about the case wiseoeld.
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1. INTRODUCTION
For any entire functiorf let

M(f;p) ==max|f(z)]  (0<p<o0),

|z|=p

and denote byP, the class of all polynomials of degree at mastif f € P,, then, applying
the maximum modulus principle to the polynomial

fP(2)=2"f(1/7),
we see that
(1.1)  M(fir)=r"M(fTrTh) 2" M) =" M(f1) 0 (0<r < 1),
where equality holds if and only if(z) := cz™, ¢ € C, ¢ # 0. For the same reason
(12)  M(f;R)=R'M(f~;R™") < R"M(f~;1) = R"M(f;1)  (R>1).
Rivlin [B] proved that if f € P,, andf(z) # 0 for |z| < 1, then

L3 i z ey (F57) 0=r<,
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where equality holds if and only if(z) := >_"_, ¢,2” has a zero of multiplicity. on the unit
circle, that is, if and only ity # 0 and|c;| = |p'(0)| = n]co|.
The preceding inequality was generalized by Gavil [2] as follows.

Theorem A. Let f € P,. Furthermore letf(z) # 0 for |z| < 1. Then,

(1.4) M(fir) = M(f;r) G -

Here again equality holds for polynomials of the fofity) := ¢ (1 + ¢72)", wherec € C, ¢ #
0,veR.

The next result which is also due to GoVil [2] gives a refinemerfiLaf) under the additional
assumption that’(0) = 0.

Theorem B. Let f(z) := > _,c,2” # 0for |z| < 1, and lete; = f/(0) = 0. Then for
0<7r <ry<1,we have

(L5)  M(f;r) = M(f;rs) (1 ; h)n {1 - el (Hrl)n_l }_1

) (0§7’1<7’2§1).

1+ ) 4 1+7”‘2
Improving upon Theorem|B, we proved (see [3]lar [5, Theorem 12.4.10]) the following result.
Theorem C. Let f(z) :=>""_,c,2” # 0for |z| < 1, and letA := ¢;/(ncy). Then

1+ 2|\|ry + 72
14 2|A|rg + 172

(1.6) M(f;m)zM(f;rz)( ) O<r<rm<l).

Note. It may be noted that < || < 1.
If nis even, then for any, € (0, 1], and anyr, € [0, rs), equality holds in(1.6)) for
f(2) = c(1+ 2Nz + 222 ccC,c#0, |\ <1, yER.

By an argument different from the one used to prove Thedrém C, we obtained in [4] the
following refinement of(1.6)).

Theorem D. Let f(z) := Y I'_ ¢, 2" # 0for |z| < 1, and letA := ¢;/(ncy). Then, for any
~v € R, we have

, , 1+ 2|\|ry + 73
1.7 N> %
@D sl = e (T

Again, (1.7) is not sharp for oddh. The proof of([1.7)) is based on the observation that for
0 <r<1,we have

) (O§T1<T2§1).

f'(r) n n
ri =n-f—--<n— —m ——

f(r) L—ro(r) = 147r|e(r)]

where 2)
z
Z) =
A= P )

is analytic in the closed unit disc, andax|.—; |p(z)] < 1. Sincep(0) = —A, a familiar

generalization of Schwarz’s lemma [7, p. 212] implies that)| < (r + \)/(Ar + 1) for
0<r<l,andsoifo <r; <ry <1,then

T2 / 142\ 9 g 5
el = el esw ([R5 ar) < el (o)
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which readily leads us t@lL.7).

It is intriguing that this reasoning works fine for any evenand so does the one that was
used to prove Theorefm C, but somehow both lack the sophistication needed to settle the case
wheren is odd. We know that when is even, the polynomials which minimizé(r,)|/|f (r2)]|
have two zeros of multiplicity:/2 each. However, /2 ¢ N whenn is odd, and so the form of
the extremals must be different in the case wheigeven.

Q.l. Rahman, who co-authored [4], had communicated with James Clunie about Theorem D
years earlier, and had asked him for his thoughts about possible extremals vghahd and:;
is0. In other words, what kind of a polynomiglof odd degree: would minimize|f(r)|/|f(1)]
if

f(Z)::H(1+CuZ) (’Cllglv"'algn|§1§Zgu:())?

v=1
Generally, one uses a variational argument in such a situation. In a written note, Clunie re-
marked that, in the case of odd degree polynomials, the condition, ¢, = 0 is much more
difficult to work with than it is in the case of even degree polynomials, and proposed to check
if

(1.8) ;;8} > 1273 for 0<r<1if n=3 and f(0) =0
:?81 > 1;r3 1J;T2 for 0<r<1if n=>5 and f(0)=0.

He added that above held, it would seem reasonable to conjecture thatif2m+1, m € N,
and f'(0) = 0, then

(19) |f(’l")| > 1493 (1+T2

=2 2
We shall see thafl.8) does not hold at least for= 0. The same can be said abdu).

m—1
) for 0 <r<1.

2. STATEMENT OF RESULTS

Let A € C, |\| < 1. We shall denote by, , the class of all polynomials of the form
f(z) == >"_, ¢, z¥, not vanishing in the open unit disc, such that(nc) = . Thus, if f
belongs taP,, », then

f(2) ::COH(l_I'CVZ) <|C1| <1006 <1 Zgy:n)\> .
v=1 v=1

Let us take any two numbers andr, in [0, 1] such that; < r,. Then by(1.7)), for any reab,
we have

| f(r2€7)] < (1 + 2|Alry + 73

|f(rie™)] = \1+42|Ajry +172
In addition, we know that the upper bound figi(r, €)|/| f(r1 €7)| given by the preceding
inequality is attained if the degreeis even, and that it is attained for a polynomial which has
exactly two distinct zeroseach of multiplicityrn/2 and of modulud. When it comes to the
case wheren is odd, this bound is not sharp. What then is the best possible upper bound for
|f(roe™)/|f(r1e")] whenn is odd; is the bound attained? If the bound is attained, can we say
something about the extremals? We shall first show that

(2.1) Q) rpy = SUD {% fe Pm,\}

) (O§T1<7“2§1).
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is attained. For this it is enough to prove that for any 0 the polynomials

{f€Pur: f(rie")=c}
form anormal family of functionssay F. (for the definition of a normal family seél[1, pp.
210-211]). In order to prove th&&, is normal, letf(z) := ao [[_,(1 + ¢,2), where|(;| <

1,...,]¢| < 1. Then|f(2)] < |ao| 2" for |z| = 1 whereadc| = |f(rie)| > |ao| (1 — r)™
Hence on

max |f(2)] < — ||,

nax|/(2)] < 7= b

and so, by(1.2)), we have

n

|| R” (feF.).

Since any compact subset @fis contained inz| < R for some large enougR, inequality
implies that the polynomials itF, are uniformly bounded on every compact set. By a
well-known result, for which we refer the readerito [1, p. 216], the farfilys normal Hence
Qr, a1, defined in(2.1)), is attained. This implies that

e
(2.3) Wy rayy -= inf { e [ e Pn,/\}
is also attained.

Givenr; < roin [0, 1] and a real numbey, let £ = &£(n; rq, ro; v) denote the set of
all polynomialsf € P, for which the infimumw,, ,, , defined in is attained. Does a
polynomial f € P, necessarily have all its zeros on the unit circle? We already know that the
answer to this question is “yes" for evenwe have yet to find out if the same holds wheis
odd. The following result contains the answer.

Theorem 2.1.For A € C, |A\| < 1 let P, denote the class of all polynomials of the form
f(z) :=>""_, ¢ 2", notvanishing in the open unit disc, such that(ncy) = A. Givenr; < ry

in [0, 1] and areal numbety, let€ = E(n; r1, r2; v) denote the set of all polynomiafsc P,,

for which the infimunw,, ., , defined in(2.3) is attained. Then, any € £ must have at least
n — 1 zeros on the unit circle.

The theoretical possibility that a polynomiale £ may not have all its: zeros on the unit
circle can indeed occur in the case wherns odd. This is illustrated by our next result.

Theorem 2.2.Let f(2) := S0 _ ¢,z # 0for |z| < 1, and letc; = 0. Then, for any real, we
have

O o 4
|f(pe)| — 4+4p> +p!
For any giverp € (0, 1] equality holds in(2.4]) for constant multiples of the polynomial

fo(2):= (1_—p+ isze‘”) (1——'0 — i\/mze_”> (1 + Bz) .

(2.4) 0<p<1).

4 4 2

Remark 2.3. Inequality (2.4) says in particular thafl.8) does not hold for = 0. In (L.§) it
is presumed that the lower bound is attained by a polynomial that has all its zeros on the unit
circle. Surprisingly, it turns out to be false.

The following result is a consequence of Theofen 2.2. It is obtained by chopsinch that
|f (pe)| = maxis—, | f(2)].
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Corollary 2.4. Let f(z) := 3.>_, c,2” # 0for |2| < 1, and letc; = 0. Then

L nax|f(z)] 0<p<).

(2.5) FON 2 e

The estimate is sharp for eagte (0, 1].

3. AN AUXILIARY RESULT
Lemma 3.1. For any giveru € [0, 1/2],b:= /1 —a? andf € R, let

fap(2) = (1 + (a+ib)2e'”) (1 + (a — ib)ze'”) (1 — 2aze'?) .
Then, for anyp € [0, 1] and any rea#, we have
[fas (pe”)| < [ fag (—pe™)| = 1+ (1 — 4a*)p” + 209"

Proof. Itis enough to prove the result for= 0. The case = 1/2 being trivial, leta € (0, 1/2).
We have

2

‘fa,o (peie) ‘2 = ‘(1 + a,oew)2 + b2 p2e?? (1 — 4apcos 0 + 4a2p2)

= ‘1 + 2apel? + p2em‘2 (1 — 4ap cos b + 4a2p2)
= e + 2ap + eri(’f (1 —4apcosf + 4a*p?)
= [(1+p®) cosb + 2ap+i (=1 +p*) sin@}2
X (1 — 4apcost + 4a2p2)
={1-2p" +4a’p* + o+ (4ap + 4ap®) cos 0 + 4p* cos® 0}
X (1 — 4ap cos 6 + 4a2p2)
={1- (1-4a”) p2}2 +4a’p® + 4ap® (3 — p* + 4a°p”) cos §
+4 (1 — 4a2) p*cos? § — 16ap® cos® 6.
S0, | fa0 (p€?)| < | fan(—p)| for all reald if and only if
ap(3 — p* + 4a*p*)(1+cos ) — (1 — 4a*)(1—cos® §) —4ap(1+cos® §) <0,
that is, if and only if
ap(3 — p* +4a*p?) — (1 — 4a®)(1 — cos#) — 4ap(1 — cosh + cos*0) < 0.
To prove this latter inequality, we may replaas 6 by ¢, set
At) :==ap (3= p* +4a°p®) — 1+ 4a® — dap + (1 — 4a® + dap) t — dapt®
and show thati(¢) < 0 for —1 < ¢ < 1. First we note that
A(-1) < A(1) = {~1— (1 —4a’)p*}ap < 0,

and so, we may restrict ourselves to the open intgrval 1).

Clearly, A’(t) vanishes if and only if = (1 — 4a® + 4ap)/(8ap) which is inadmissible for
p < (1 —4a%/(4a). So, ifp < (1 — 4a®)/(4a), thenA'(t) is positive for allt € (—1,1) since
A'(0)is; andA(t) < A(1) <0.
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Now, letp > (1 — 4a?)/(4a). SinceA”(t) = —8ap < 0, the functionA must have a local
maximum att = (1 — 4a® + 4ap)/(8ap). However,

1 —4a®+4
A (%) =ap(3 — p* +4a*p*) — 1 + 4a® — dap
ap

N (1 —4a® + 4ap)* (1 — 4a® + 4ap)?

8ap 16ap
= —{ap+ (1 +ap®)(1 — 4a®)}
(1 — 4a*)? 4+ 16a?p* + 8ap(1 — 4a?)
16ap

1—4a?)? 1
=—(1 (1 — 4a? (—4a7)” 1
(1+ap’)(1—4a”) + T6ap +3

1 3 1 — 4a? 9
=<¢—| = 1-4
AT

1 .
< - (— + ap3) (1 —4a*) since p>

(1 — 4a?)

1 — 4a?
4a

4
<0.

4. PROOFS OF THEOREMS [Z.1AND 2.2

Proof of Theorerh 2]1Let g(z) := ¢ [[_,(1 + (,z). Suppose, if possible, th#f;| < 1 and
|Ck| < 1, wherel < j < k < n. Now, consider the function

bw) = Bt (G 0 THL+ (G + w)r e}

- {1+ (G w)r2 e {1+ (G + w)ra e}

which is analytic and different from zero in the dise| < 24 for all small§ > 0. Hence, its
minimum modulus iNw| < § cannot be attained at = 0. This means that i§,, is obtained
from g by changing(; to ¢; — w and(j to ¢ + w, then, for all smalb > 0, we can findw of

modulusd such that

gu (r1€7) | |g(rie)
Guw (r2€17) g (rae)
This is a contradiction sincg, € P, » for |w| < min{l — |¢;|, 1 — |k} O

Proof of Theorerfi 2]2We wish to minimize the quantity (0)|/|f(pe")| over the clas®;  of
all polynomials of the form

3 3
£ = [J1+62) (Kﬂéld@hSLKﬂ§1,§29=n>.
v=1 v=1

Givenp € (0, 1] andy € R, let

: |£(0)]
;= inf — - .
= { gty 1 € P
As we have already explaineah, ., is attained, i.e., there exists a culfice P;, such that
/7 (0)]

- =m .
[f<(pem)]
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In fact, there is at least one such culficwith f*(0) = 1. By Theorerr!l the cubif* must
haveat leasttwo zeros on the unit circle. In other words,fif(z IT,-:(1+¢ 2), then at
most one of the numbecs, (;, and(; can lie in the open unit dISC Thus, only two pOSSIbI|ItIeS
need to be considered, namely [{) | = |(2] = (3] = 1, and (i) |(1] = |Gl =1, 0 < | (5] < 1.

Case(i). Since(; + ¢ + (3 = 0, the extremalf* could only be of the formf*(z) := 1 +
338 3 € 10, 27/3], and then we would clearly have

oL 0
[f*(pem)| — 1+ p?
Case(ii). This time, because of the conditigh + ¢(» + (3 = 0, the extremalf* could only be

(4.1) 0<p<1, yER).

of the form
[ (2) = {1+ (a+ib)ze} {1+ (a —ib)ze”} (1 — 2aze”),
where0 < a < 1/2, b = v/1 —a? and3 € R. Then, for any realy and anyp < (0, 1], we
would, by Lemma 3]1, have
O ! 4

4.2 . = :
(4.2) |f*(pe)| — 0<I£lil}/2 14+ (1 —4a?)p? +2ap> 4+ 4p* + p*
Comparing(4.1)) and(4.2), we see that iff € P; o, then
/(0)] 4
avi 0<p<l y€eR),
Foon Z iraprp OSPshoeR)
which proves(2.4)). O
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