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Abstract

In this paper, we generalize the classical Bonferroni inequalities and their im-
provements by Galambos to sums of type

∑
I⊆U (−1)|I|f(I) where U is a finite

set and f : 2U → R. The result is applied to the Tutte polynomial of a matroid
and the chromatic polynomial of a graph.
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1. Introduction
The classical inclusion-exclusion principle and its associated Bonferroni in-
equalities play an important role in combinatorial mathematics, probability the-
ory, reliability theory, and statistics (see [4] for a detailed survey and [1] for
some recent developments).

For any finite family of events{Eu}u∈U in some probability space(Ω, E, P )
the inclusion-exclusion principle (1.1) expresses the probability that none of the
eventsEu, u ∈ U , occurs as an alternating sum of2|U | terms each involving in-
tersections of up to|U |many events, while the classical Bonferroni inequalities
(1.2) provide bounds on this sum for each choice ofr ∈ N0 = {0, 1, 2, . . . }:

P

(⋂
u∈U

Eu

)
=
∑
I⊆U

(−1)|I|P

(⋂
i∈I

Ei

)
,(1.1)

(−1)rP

(⋂
u∈U

Eu

)
≤ (−1)r

∑
I⊆U
|I|≤r

(−1)|I|P

(⋂
i∈I

Ei

)
.(1.2)

The following bounds due to Galambos [3] improve the classical Bonferroni
bounds by including additional terms based on the(r + 1)-subsets ofU :

(−1)rP

(⋂
u∈U

Eu

)
≤ (−1)r

∑
I⊆U
|I|≤r

(−1)|I|P

(⋂
i∈I

Ei

)
−r + 1

|U |
∑
I⊆U

|I|=r+1

P

(⋂
i∈I

Ei

)
.
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In view of (1.1), the preceding improvement over (1.2) can also be written as

(1.3) (−1)r
∑
I⊆U

(−1)|I|f(I) ≤ (−1)r
∑
I⊆U
|I|≤r

(−1)|I|f(I)− r + 1

|U |
∑
I⊆U

|I|=r+1

f(I)

wheref(I) = P
(⋂

i∈I Ei

)
for anyI ⊆ U . This raises the question which other

functionsf : 2U → R+, whereR+ = {x ∈ R |x ≥ 0}, satisfy the preceding
inequality (1.3) for any possible choice ofr ∈ N0, or its weaker form

(1.4) (−1)r
∑
I⊆U

(−1)|I|f(I) ≤ (−1)r
∑
I⊆U
|I|≤r

(−1)|I|f(I).

Our main result provides a condition that ensures (1.3) (and thus (1.4)) to hold
for anyr ∈ N0, and which is easy to check. After establishing our main result
in Section2 and proving it in Section3, we give another characterization of the
class of relevant functions in Section4. In Section5 our main result is used to
obtain bounds on the Tutte polynomial of a matroid which, as finally shown in
Section6, has applications to the chromatic polynomial of a graph.
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2. Main Result
Our main result, which is proved in Section3, is as follows.

Theorem 2.1. Let U be a finite non-empty set andf : 2U → R be a function
such that for any disjoint subsetsJ, K ⊆ U ,

(2.1)
∑
I⊆K

(−1)|I|f(I ∪ J) ≥∗ 0.

Then, for anyr ∈ N0,

(2.2) (−1)r
∑
I⊆U

(−1)|I|f(I) ≤∗ (−1)r
∑
I⊆U
|I|≤r

(−1)|I|f(I)− r + 1

|U |
∑
I⊆U

|I|=r+1

f(I).

Moreover, the theorem can be dualized by interchanging≥ and≤ at the starred
(∗) places.

Remark 2.1. It is easy to see that for non-disjoint subsetsJ, K ⊆ U the left-
hand side of (2.1) equals zero. Thus, the disjointness ofJ andK is not signifi-
cant.

Remark 2.2. By puttingK = ∅ we find that any function satisfying the re-
quirements of Theorem2.1 is non-negative. Similarly, any function satisfying
the requirements of the dual version of Theorem2.1 is non-positive. Thus, from
(2.2) we may deduce the weaker inequality (1.4), respectively its dual.

Remark 2.3. By puttingK = {u} for someu ∈ U we observe that any function
satisfying the requirements of Theorem2.1 is antitone. Likewise, any function
satisfying the requirements of the dual version is monotone.
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In verifying the requirements of Theorem2.1 the following proposition is
quite helpful. The example following the proposition demonstrates this.

Proposition 2.2. Let U be a finite non-empty set, and letf, g : 2U → R+ be
mappings such that for any subsetI ⊆ U ,

f(I) =
∑
J⊇I

g(J).

Then,f satisfies the requirements of Theorem2.1.

Proof. For any disjoint setsJ, K ⊆ U we find that∑
I⊆K

(−1)|I|f(I ∪ J) =
∑
I⊆K

(−1)|I|
∑

L⊇I∪J

g(L)

=
∑
L⊇J

∑
I⊆K∩L

(−1)|I|g(L)

=
∑
L⊇J

g(L)
∑

I⊆K∩L

(−1)|I|

=
∑
L⊇J

g(L)δ(K ∩ L, ∅) ≥ 0,

whereδ(·, ·) is the usual Kronecker delta.

Example 2.1. For any non-empty and finite collection of events{Eu}u∈U in
some probability space(Ω, E, P ), let f, g : 2U → R+ be defined by

f(I) := P

(⋂
i∈I

Ei

)
, g(I) := P

(⋂
i/∈I

Ei ∩
⋂
i∈I

Ei

)
.
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Then,f andg satisfy the requirements of Proposition2.2. For the present choice
of f andg, the inequalities in (2.2) agree with those of Galambos.
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3. Proof of the Main Result
For the proof of Theorem2.1some preliminary notations and results are needed.
For any functionf : 2U → R and anyu ∈ U define

fu : 2U\{u} → R, fu(I) := f(I),

fu : 2U\{u} → R, fu(I) := f(I ∪ {u}).

Lemma 3.1. LetU be a finite set andf : 2U → R be a function. Then, for any
u ∈ U and anyJ, K ⊆ U \ {u},

(3.1)
∑
I⊆K

(−1)|I| (fu − fu) (I ∪ J) =
∑

I⊆K∪{u}

(−1)|I|f(I ∪ J).

Proof. Evidently, the left-hand side of (3.1) is equal to∑
I⊆K

(−1)|I|f(I ∪ J)−
∑
I⊆K

(−1)|I|f (I ∪ J ∪ {u})

=
∑

I⊆K∪{u}
u/∈I

(−1)|I|f(I ∪ J) +
∑

I⊆K∪{u}
u∈I

(−1)|I|f(I ∪ J)

which immediately gives the right hand side of (3.1).

Lemma 3.2. If f : 2U → R is a function satisfying (2.1) for any disjointJ, K ⊆
U , then the same applies tofu, fu, andfu − fu for anyu ∈ U .

Proof. Forfu andfu the statement is immediately clear, while forfu − fu it is
implied by Lemma3.1.
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Although (1.4) is an immediate consequence of Theorem2.1, our forthcom-
ing proof of Theorem2.1requires (1.4) to be shown first.

Lemma 3.3.Under the requirements of Theorem2.1, (1.4) holds for anyr ∈ N0.

Proof. The proof is by induction on|U |. Evidently, the statement holds if|U | =
1. In what follows, we may assume that|U | > 1 and that the statement holds
for all proper non-empty subsets ofU . Let u ∈ U be chosen arbitrarily. By
applying Lemma3.1with K = U \ {u} andJ = ∅ we obtain

(−1)r
∑
I⊆U

(−1)|I|f(I)

= (−1)r
∑

I⊆U\{u}

(−1)|I|fu(I) + (−1)r−1
∑

I⊆U\{u}

(−1)|I|fu(I).

By Lemma3.2bothfu andfu satisfy the requirements of Theorem2.1. Thus,
by the induction hypothesis, these two functions both satisfy (1.4) and hence,

(−1)r
∑

I⊆U\{u}

(−1)|I|fu(I) ≤ (−1)r
∑

I⊆U\{u}
|I|≤r

(−1)|I|fu(I),

(−1)r−1
∑

I⊆U\{u}

(−1)|I|fu(I) ≤ (−1)r−1
∑

I⊆U\{u}
|I|≤r−1

(−1)|I|fu(I),

where, of course, the conclusion forfu requires thatr ≥ 1. However, due to
requirement (2.1) (with fu in place off , K = U \ {u}, J = ∅) the preceding

http://jipam.vu.edu.au/
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inequality forfu also holds forr = 0, and so for allr ∈ N0 we find that

(−1)r
∑
I⊆U

(−1)|I|f(I)

≤ (−1)r
∑

I⊆U\{u}
|I|≤r

(−1)|I|fu(I) + (−1)r−1
∑

I⊆U\{u}
|I|≤r−1

(−1)|I|fu(I)

= (−1)r
∑

I⊆U, u/∈I
|I|≤r

(−1)|I|f(I) + (−1)r
∑

I⊆U, u∈I
|I|≤r

(−1)|I|f(I),

which immediately gives the right-hand side of (1.4).

We are now ready to prove Theorem2.1.

Proof of Theorem2.1. Let u ∈ U be chosen uniformly at random. By applying
Lemma3.1with K = U \ {u} andJ = ∅ we obtain

(3.2) (−1)r
∑
I⊆U

(−1)|I|f(I) = (−1)r
∑

I⊆U\{u}

(−1)|I| (fu − fu) (I).

By Lemma3.2 fu − fu satisfies the requirements of Theorem2.1. Hence, we
may apply Lemma3.3to fu − fu, which gives

(3.3) (−1)r
∑

I⊆U\{u}

(−1)|I| (fu − fu) (I)

≤ (−1)r
∑

I⊆U\{u}
|I|≤r

(−1)|I| (fu − fu) (I).
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By combining (3.2) and (3.3) we obtain

(−1)r
∑
I⊆U

(−1)|I|f(I) ≤ (−1)r
∑

I⊆U\{u}
|I|≤r

(−1)|I| (fu − fu) (I)

= (−1)r
∑

I⊆U, u/∈I
|I|≤r

(−1)|I|f(I) + (−1)r
∑

I⊆U,u∈I
|I|≤r+1

(−1)|I|f(I)

= (−1)r
∑
I⊆U
|I|≤r

(−1)|I|f(I)−
∑

I⊆U,u∈I
|I|=r+1

f(I)

= (−1)r
∑
I⊆U
|I|≤r

(−1)|I|f(I)−
∑
I⊆U

|I|=r+1

f(I)1I(u),

where1I denotes the indicator function ofI. We thus have

(3.4) (−1)r
∑
I⊆U

(−1)|I|f(I) ≤ (−1)r
∑
I⊆U
|I|≤r

(−1)|I|f(I)−
∑
I⊆U

|I|=r+1

f(I) 1I .

Now, (2.2) follows by taking the expectation on both sides of (3.4). The dual
version of the theorem is finally obtained by moving fromf to−f .
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4. Characterization
The following theorem characterizes the class of functions satisfying the re-
quirements of Theorem2.1.

Theorem 4.1.The class of functions satisfying the requirements of Theorem2.1
is the smallest class of functionsF such that

1. all functionsf : 2U → R+ where|U | = 1 belong toF,

2. if fu ∈ F andfu − fu ∈ F for some functionf : 2U → R+, whereU is
finite and non-empty, andu ∈ U , thenf ∈ F.

Proof. Let D be the class of functions satisfying the requirements of Theo-
rem2.1. Then,D contains all functionsf : 2U → R+ where|U | = 1 and as
shown subsequently, it contains all functionsf : 2U → R+ whereU is finite
and non-empty and bothfu andfu − fu are inD for someu ∈ U . Let f be
such a function. SinceD is closed under taking sums of functions on the same
domain,fu = fu +(fu− fu) ∈ D. Now, in order to show thatf ∈ D, we show
that (2.1) holds for all disjointJ, K ⊆ U . We consider three cases:
Case 1.If u /∈ K andu /∈ J , thenJ, K ⊆ U \ {u} and hence, sincefu ∈ D,∑

I⊆K

(−1)|I|f(I ∪ J) =
∑
I⊆K

(−1)|I|fu(I ∪ J) ≥ 0.

Case 2.If u /∈ K andu ∈ J , thenK ⊆ U \ {u} andJ \ {u} ⊆ U \ {u} and
hence, sincefu ∈ D, we find that∑

I⊆K

(−1)|I|f(I ∪ J) =
∑
I⊆K

(−1)|I|fu (I ∪ (J \ {u})) ≥ 0.
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Case 3.If u ∈ K andu /∈ J , thenJ ⊆ U \{u} andK \{u} ⊆ U \{u}. Hence,
by Lemma3.1and the assumption thatfu − fu ∈ D, we have∑

I⊆K

(−1)|I|f(I ∪ J) =
∑

I⊆K\{u}

(−1)|I|(fu − fu)(I ∪ J) ≥ 0.

In all three cases it turns out thatf ∈ D. To establish the minimality ofD, we
show thatD ⊆ F for any classF satisfying conditions 1 and 2 above. LetF be
such a class. By induction on|U | we show that anyf : 2U → R+ which is inD

must be inF. If |U | = 1, thenf ∈ F by condition 1. Let|U | > 1, andu ∈ U .
By Lemma3.2, fu, fu− fu ∈ D. By the induction hypothesis,fu, fu− fu ∈ F

and hence, by condition 2,f ∈ F. Hence,D ⊆ F.
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5. The Tutte Polynomial
In this section, our main result in Section2 is applied to the Tutte polynomial of
a general matroid. In the following, we briefly review the necessary concepts.
For a detailed exposition, the reader is referred to Welsh [5].

Definition 5.1. A matroidis a pairM = (U, %) consisting of a finite setU and
a function% : 2U → N0 (rank function) such that for anyX, Y ⊆ U ,

(i) %(X) ≤ |X|,
(ii) X ⊆ Y ⇒ %(X) ≤ %(Y ),

(iii) %(X ∪ Y ) + %(X ∩ Y ) ≤ %(X) + %(Y ).

TheTutte polynomialT (M ; x, y) of matroidM = (U, %) is defined by

T (M ; x, y) :=
∑
I⊆U

(x− 1)%(U)−%(I)(y − 1)|I|−%(I),

wherex andy are independent variables, and therank polynomialby

R(M ; x, y) := T (M ; x + 1, y + 1).

Example 5.1. Let G = (V, U) be a finite undirected graph. For any subsetI
of the edge-setU of G let G[I] denote the edge-subgraph induced byI, and let
n(G[I]) andc(G[I]) denote its number of vertices and connected components,
respectively. Let% : 2U → N0 be defined by

(5.1) %(I) := n(G[I])− c(G[I]).
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Then,M(G) := (U, %) is a matroid, which is called thecycle matroidof G.
Specializations of the Tutte or rank polynomial associated withM(G) count
various objects associated withG, e.g., subgraphs, spanning trees, acyclic ori-
entations and properλ-colorings (see Section6). It is also related to network
reliability. For details and further applications, see Welsh [5].

Our main result in this section is simplified by the following definition.

Definition 5.2. For any matroidM = (U, %) and anyX ⊆ U thedeletion ofX
from M is defined byM \X := (U \X, % | 2U\X). Thecontraction ofX from
M is defined byM/X := (U \X, %X) where the function%X : 2U\X → N0 is
defined by%X(I) := %(X∪I)−%(X) for anyI ⊆ U \X. Finally, therestriction
of M to X is defined byM |X := M \ (U \X). (Note thatM \X, M/X and
M |X are again matroids.)

As the rank polynomial gives rise to shorter expressions than the Tutte poly-
nomial, the results below are stated in terms of the rank polynomial.

Theorem 5.1. Let M = (U, %) be a matroid on some finite non-empty setU ,
and letx, y ∈ R such that for any disjoint subsetsJ, K ⊆ U ,

(5.2) (−1)|J |x%(U)−%(J∪K)y|J |−%(J)R ((M/J)|K; x, y) ≥∗ 0.

Then, for anyr ∈ N0,

(5.3) (−1)r R(M ; x, y) ≤∗ (−1)r
∑
I⊆U
|I|≤r

x%(U)−%(I)y|I|−%(I)

+ (−1)r r + 1

|U |
∑
I⊆U

|I|=r+1

x%(U)−%(I)y|I|−%(I).
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Moreover, the theorem can be dualized by interchanging≥ and≤ in the starred
( ∗) places.

Proof. In order to apply Theorem2.1we write

R(M ; x, y) =
∑
I⊆U

(−1)|I|f(I),

wheref : 2U → R is defined by

(5.4) f(I) := (−1)|I|x%(U)−%(I)y|I|−%(I) (I ⊆ U) .

For any disjoint subsetsJ, K ⊆ U we find that∑
I⊆K

(−1)|I|f(I ∪ J)

=
∑
I⊆K

(−1)|J |x%(U)−%(I∪J)y|I|+|J |−%(I∪J)

= (−1)|J |x%(U)−%(J)−%J (K)y|J |−%(J)
∑
I⊆K

x%J (K)−%J (I)y|I|−%J (I)

= (−1)|J |x%(U)−%(J∪K)y|J |−%(J)R ((M/J)|K; x, y) ≥ 0,

where the last inequality comes from condition (5.2) above. Hence,f satisfies
the requirements of Theorem2.1, and thus (5.3) follows from (2.2). Similarly,
the dual version follows by applying the dual version of Theorem2.1.
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Remark 5.1. By using (1.4) instead of (2.2) in the proof of Theorem5.1 one
would, under the requirements of Theorem5.1, obtain the weaker inequality

(5.5) (−1)rR(M ; x, y) ≤ (−1)r
∑
I⊆U
|I|≤r

x%(U)−%(I)y|I|−%(I).

This weaker inequality is also a direct consequence of Theorem5.1: Sincef(I),
as defined in (5.4), satisfies the requirements of Theorem2.1, it must be non-
negative due to the second remark following Theorem2.1and hence,

(5.6) (−1)r r + 1

|U |
∑
I⊆U

|I|=r+1

x%(U)−%(I)y|I|−%(I) ≤ 0.

Now, from (5.3) and (5.6) the weaker inequality (5.5) follows. Under the dual
requirements simply replace≤ by≥ in (5.5) and (5.6). The latter inequality
(5.6) and its dual will be used in deriving the subsequent corollary.

Definition 5.3. Let M = (U, %) be a matroid. A subsetI ⊆ U is dependent
in M if %(I) < |I|. Thegirth of M , g(M) for short, is the smallest size of a
dependent set inM if such a set exists; otherwiseg(M) := +∞.

Corollary 5.2. Under the requirements of Theorem5.1for 0 ≤ r < g(M),

(5.7) (−1)rR(M ; x, y)

≤ (−1)r

r∑
k=0

(
|U |
k

)
x%(U)−k + (−1)r

(
|U | − 1

r

)
x%(U)−r−1.

The corollary can be dualized by interchanging≥ and≤ in (5.2) and (5.7).
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Proof. For anyI ⊆ U , %(I) = |I| if |I| < g(M), and%(I) ≤ |I| if |I| ≥ g(M).
Thus, the inequality follows from (5.3) and (5.6), respectively their dual.

Remark 5.2. Using (5.5) instead of (5.3) in the proof of the preceding corollary
would, under the requirements of Theorem5.1, give the weaker inequality

(−1)rR(M ; x, y) ≤ (−1)r

r∑
k=0

(
|U |
k

)
x%(U)−k (0 ≤ r < g(M)),

respectively its dual (under the dual requirements).
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6. The Chromatic Polynomial
Let G = (V, U) be a finite undirected graph, and letM(G) denote its cycle
matroid (see Example5.1). It is well-known (cf. [5]) that for anyλ ∈ N,

PG(λ) := (−1)%(U)λc(G)T (M(G); 1−λ, 0) = (−1)%(U)λc(G)R(M(G);−λ,−1)

counts the number of properλ-colorings ofG, that is, the number of mappings
f : V → {1, . . . , λ} such thatf(v) 6= f(w) if v 6= w andv andw are adjacent
in G. The polynomialPG(λ) is called thechromatic polynomialof G.

Theorem 6.1. Let G = (V, U) be a finite undirected graph having at least one
edge (that is,U 6= ∅). Then, for anyλ ∈ N and anyr ∈ N0 we have

(6.1) (−1)rPG(λ) ≤ (−1)r
∑
I⊆U
|I|≤r

(−1)|I|λc(V,I) − r + 1

|U |
∑
I⊆U

|I|=r+1

λc(V,I),

wherec(V, I) denotes the number of connected components of the graph(V, I)
having vertex-setV and edge-setI.

Proof. Theorem6.1is deduced from Theorem5.1and its dual. For any disjoint
subsetsJ, K ⊆ U the left-hand side of (5.2) is equal to

(6.2) (−1)|J |(−λ)%(U)−%(J∪K)(−1)|J |−%(J)R ((M/J)|K;−λ,−1)

= (−1)%(U)λ%(U)−%(J∪K)λc((G/J)[K])P(G/J)[K](λ),

where% is the rank function of the cycle matroid as defined in (5.1), G/J is
the graph obtained fromG by contracting all edges inJ , and(G/J)[K] is the
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edge-subgraph induced byK in G/J . If %(U) is even, then the expression in
(6.2) is at least zero and hence, Theorem5.1can be applied. On the other hand,
if %(U) is odd, then the expression in (6.2) is at most zero, whence the dual
version of Theorem5.1can be applied. In either case we obtain

(−1)r
∑
I⊆U
|I|≤r

(−1)|I|λ%(U)−%(I) − r + 1

|U |
∑
I⊆U

|I|=r+1

λ%(U)−%(I).

as an upper bound for(−1)%(U)(−1)rR(M ;−λ,−1). By this and the definition
of the chromatic polynomial,

(−1)rPG(λ) ≤ (−1)r
∑
I⊆U
|I|≤r

(−1)|I|λ%(U)−%(I)+c(G)− r + 1

|U |
∑
I⊆U

|I|=r+1

λ%(U)−%(I)+c(G),

from which the result follows since%(U)− %(I) + c(G) = c(V, I).

The following result appears in [2]. Recall that thegirth of G, g(G), is the
length of a smallest cycle inG if G is not cycle-free; otherwise,g(G) := +∞.

Corollary 6.2. Under the requirements of Theorem6.1for 0 ≤ r < g(G),

(6.3) (−1)rPG(λ) ≤ (−1)r

r∑
k=0

(−1)k

(
|U |
k

)
λ|V |−k −

(
|U | − 1

r

)
λ|V |−r−1.

Proof. Note that for anyI ⊆ U , c(V, I) = |V | − |I| if |I| ≤ g(G) − 1, and
c(V, I) ≥ |V | − |I| if |I| ≥ g(G). Thus, for0 ≤ r < g(G), Theorem6.1gives

(−1)rPG(λ) ≤ (−1)r
∑
I⊆U
|I|≤r

(−1)|I|λ|V |−|I| − r + 1

|U |
∑
I⊆U

|I|=r+1

λ|V |−|I|,
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which simplifies to (6.3).

Remark 6.1. Corollary 6.2can also be deduced from Corollary5.2and its dual
in the same way as Theorem6.1 is deduced from Theorem5.1and its dual.
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